Influence of Chitosan, Salicylic Acid and Jasmonic Acid on Phenylpropanoid Accumulation in Germinated Buckwheat (Fagopyrum esculentum Moench)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Extraction and High-Performance Liquid Chromatography Analysis of Phenolics
2.3. Statistical Analysis
3. Results
3.1. Effects of Elicitor Treatments on Germinated Buckwheat
3.2. Time-Course Effects of 0.1% Chitosan Treatment on Phenolic Compounds of Germinated Buckwheat
3.3. Time-Course Effects of 150 µM Jasmonic Acid Treatment on Phenolic Compounds of Germinated Buckwheat
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Park, C.H.; Yeo, H.J.; Park, Y.J.; Morgan, A.; Valan Arasu, M.; Al-Dhabi, N.A.; Park, S.U. Influence of indole-3-acetic acid and gibberellic acid on phenylpropanoid accumulation in common buckwheat (Fagopyrum esculentum Moench) sprouts. Molecules 2017, 22, 374. [Google Scholar] [CrossRef]
- Kreft, I.; Fabjan, N.; Germ, M. Rutin in buckwheat: Protection of plants and its importance for the production of functional food. Fagopyrum 2003, 20, 7–11. [Google Scholar]
- Kim, C.D.; Lee, W.-K.; No, K.-O.; Park, S.-K.; Lee, M.-H.; Lim, S.R.; Roh, S.-S. Anti-allergic action of buckwheat (Fagopyrum esculentum Moench) grain extract. Int. Immunopharmacol. 2003, 3, 129–136. [Google Scholar] [CrossRef]
- Potapovich, A.; Kostyuk, V. Comparative study of antioxidant properties and cytoprotective activity of flavonoids. Biochemistry (Moscow) 2003, 68, 514–519. [Google Scholar] [CrossRef]
- Choi, J.-H.; Kim, D.-W.; Park, S.-E.; Lee, H.-J.; Kim, K.-M.; Kim, K.-J.; Kim, M.-K.; Kim, S.-J.; Kim, S. Anti-thrombotic effect of rutin isolated from Dendropanax morbifera Leveille. J. Biosci. Bioeng. 2015, 120, 181–186. [Google Scholar] [CrossRef]
- Deschner, E.E.; Ruperto, J.; Wong, G.; Newmark, H.L. Quercetin and rutin as inhibitors of azoxymethanol-induced colonic neoplasia. Carcinogenesis 1991, 12, 1193–1196. [Google Scholar] [CrossRef] [PubMed]
- Quirós-Sauceda, A.; Palafox-Carlos, H.; Sáyago-Ayerdi, S.; Ayala-Zavala, J.; Bello-Perez, L.A.; Alvarez-Parrilla, E.; De La Rosa, L.; Gonzalez-Cordova, A.; Gonzalez-Aguilar, G. Dietary fiber and phenolic compounds as functional ingredients: Interaction and possible effect after ingestion. Food Funct. 2014, 5, 1063–1072. [Google Scholar] [CrossRef]
- Saura-Calixto, F. Dietary fiber as a carrier of dietary antioxidants: An essential physiological function. J. Agric. Food Chem. 2010, 59, 43–49. [Google Scholar] [CrossRef]
- Vitaglione, P.; Napolitano, A.; Fogliano, V. Cereal dietary fibre: A natural functional ingredient to deliver phenolic compounds into the gut. Trends Food Sci. Technol. 2008, 19, 451–463. [Google Scholar] [CrossRef]
- Fardet, A. New concepts and paradigms for the protective effects of plant-based food components in relation to food complexity. In Vegetarian and Plant-Based Diets in Health and Disease Prevention; Mariotti, F., Ed.; Elsevier: New York, NY, USA, 2017; pp. 293–314. ISBN 9780128039687. [Google Scholar]
- Kris-Etherton, P.M.; Hecker, K.D.; Bonanome, A.; Coval, S.M.; Binkoski, A.E.; Hilpert, K.F.; Griel, A.E.; Etherton, T.D. Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. Am. J. Med. 2002, 113, 71–88. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef]
- Middleton, E.; Kandaswami, C.; Theoharides, T.C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 2000, 52, 673–751. [Google Scholar] [PubMed]
- Aboutabl, E.; Hashem, F.A.; Sleem, A.; Maamoon, A. Flavonoids, anti-inflammatory activity and cytotoxicity of Macfadyena unguis-cati L. Afr. J. Tradit. Complement. Altern. Med. 2008, 5, 18–26. [Google Scholar] [CrossRef]
- Wang, H.-K.; Xia, Y.; Yang, Z.-Y.; Natschke, S.L.M.; Lee, K.-H. Recent advances in the discovery and development of flavonoids and their analogues as antitumor and anti-HIV agents. In Flavonoids in the Living System; Springer: Boston, MA, USA, 1998; Volume 439, pp. 191–225. [Google Scholar]
- Lin, Y.-M.; Zhou, Y.; Flavin, M.T.; Zhou, L.-M.; Nie, W.; Chen, F.-C. Chalcones and flavonoids as anti-tuberculosis agents. Biorg. Med. Chem. 2002, 10, 2795–2802. [Google Scholar] [CrossRef]
- Babu, P.V.A.; Liu, D.; Gilbert, E.R. Recent advances in understanding the anti-diabetic actions of dietary flavonoids. J. Nutr. Biochem. 2013, 24, 1777–1789. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Davis, L.C.; Verpoorte, R. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol. Adv. 2005, 23, 283–333. [Google Scholar] [CrossRef]
- Ramachandra, R.S.; Ravishankar, G.A. Plant cell cultures: Chemical factories of secondary metanolites. Biotechnol. Adv. 2002, 20, 101–153. [Google Scholar] [CrossRef]
- Chakraborty, M.; Karun, A.; Mitra, A. Accumulation of phenylpropanoid derivatives in chitosan-induced cell suspension culture of Cocos nucifera. J. Plant Physiol. 2009, 166, 63–71. [Google Scholar] [CrossRef]
- Gadzovska, S.; Maury, S.; Delaunay, A.; Spasenoski, M.; Joseph, C.; Hagege, D. Jasmonic acid elicitation of Hypericum perforatum L. cell suspensions and effects on the production of phenylpropanoids and naphtodianthrones. Plant Cell Tiss. Org. Cult. 2007, 89, 1–13. [Google Scholar] [CrossRef]
- Guo, J.; Wang, M.-H. Ultraviolet A-specific induction of anthocyanin biosynthesis and PAL expression in tomato (Solanum lycopersicum L.). Plant. Growth Regul. 2010, 62, 1–8. [Google Scholar] [CrossRef]
- Brechner, M.L.; Albright, L.D.; Weston, L.A. Effects of UV-B on secondary metabolites of St. john’s wort (Hypericum perforatum L.) grown in controlled environments. Photochem. Photobiol. 2011, 87, 680–684. [Google Scholar] [CrossRef]
- Li, X.; Park, N.I.; Xu, H.; Woo, S.-H.; Park, C.H.; Park, S.U. Differential expression of flavonoid biosynthesis genes and accumulation of phenolic compounds in common buckwheat (Fagopyrum esculentum). J. Agric. Food Chem. 2010, 58, 12176–12181. [Google Scholar] [CrossRef]
- Inglett, G.E.; Chen, D.; Berhow, M.; Lee, S. Antioxidant activity of commercial buckwheat flours and their free and bound phenolic compositions. Food Chem. 2011, 125, 923–929. [Google Scholar] [CrossRef]
- Uddin, M.R.; Li, X.; Park, W.T.; Kim, Y.B.; Kim, S.J.; Kim, Y.S.; Lee, M.Y.; Park, C.H.; Park, S.U. Phenolic compound content in different organs of Korean common buckwheat cultivars. Asian J. Chem. 2013, 25, 424–426. [Google Scholar] [CrossRef]
- Chen, H.; Seguin, P.; Archambault, A.; Constan, L.; Jabaji, S. Gene expression and isoflavone concentrations in soybean sprouts treated with chitosan. Crop Sci. 2009, 49, 224–236. [Google Scholar] [CrossRef]
- Kim, Y.B.; Kim, J.K.; Uddin, M.R.; Xu, H.; Park, W.T.; Tuan, P.A.; Li, X.; Chung, E.; Lee, J.-H.; Park, S.U. Metabolomics analysis and biosynthesis of rosmarinic acid in Agastache rugosa Kuntze treated with methyl jasmonate. PLoS ONE 2013, 8, e64199. [Google Scholar] [CrossRef]
- Park, W.T.; Kim, Y.B.; Seo, J.M.; Kim, S.-J.; Chung, E.; Lee, J.-H.; Park, S.U. Accumulation of anthocyanin and associated gene expression in radish sprouts exposed to light and methyl jasmonate. J. Agric. Food Chem. 2013, 61, 4127–4132. [Google Scholar] [CrossRef] [PubMed]
- Chua, L.S. A review on plant-based rutin extraction methods and its pharmacological activities. J. Ethnopharmacol. 2013, 150, 805–817. [Google Scholar] [CrossRef]
- Wang, H.; Cao, Z. Anti-inflammatory effects of (–)-epicatechin in lipopolysaccharide-stimulated raw 264.7 macrophages. Trop. J. Pharm. Res. 2014, 13, 1415–1419. [Google Scholar] [CrossRef]
- Nogueira, L.; Ramirez-Sanchez, I.; Perkins, G.A.; Murphy, A.; Taub, P.R.; Ceballos, G.; Villarreal, F.J.; Hogan, M.C.; Malek, M.H. (−)-Epicatechin enhances fatigue resistance and oxidative capacity in mouse muscle. J. Physiol. 2011, 589, 4615–4631. [Google Scholar] [CrossRef]
- Azuma, K.; Ippoushi, K.; Nakayama, M.; Ito, H.; Higashio, H.; Terao, J. Absorption of chlorogenic acid and caffeic acid in rats after oral administration. J. Agric. Food Chem. 2000, 48, 5496–5500. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Dusting, G.J. Natural phenolic compounds as cardiovascular therapeutics: Potential role of their antiinflammatory effects. Curr. Vasc. Pahrmacol. 2003, 1, 135–156. [Google Scholar] [CrossRef]
- Xiang, Z.; Ning, Z. Scavenging and antioxidant properties of compound derived from chlorogenic acid in South-China honeysuckle. LWT-Food Sci. Technol. 2008, 41, 1189–1203. [Google Scholar] [CrossRef]
- Kaur, M.; Velmurugan, B.; Rajamanickam, S.; Agarwal, R.; Agarwal, C. Gallic acid, an active constituent of grape seed extract, exhibits anti-proliferative, pro-apoptotic and anti-tumorigenic effects against prostate carcinoma xenograft growth in nude mice. Pharm. Res. 2009, 26, 2133–2140. [Google Scholar] [CrossRef] [PubMed]
- Higdon, J.V.; Frei, B. Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions. Crit. Rev. Food Sci. Nutr. 2003, 43, 89–143. [Google Scholar] [CrossRef]
- Chen, J.H.; Ho, C.-T. Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J. Agric. Food Chem. 1997, 45, 2374–2378. [Google Scholar] [CrossRef]
- Flores, H.E.; Curtis, W.R. Approaches to Understanding and Manipulating the Biosynthetic Potential of Plant Roots. Ann. N. Y. Acad. Sci. 1992, 665, 188–209. [Google Scholar] [CrossRef] [PubMed]
- Sim, S.J.; Chang, H.N.; Liu, J.R.; Jung, K.H. Production and secretion of indole alkaloids in hairy root cultures of Catharanthus roseus: Effects of in situ adsorption, fungal elicitation and permeabilization. J. Ferment. Bioeng. 1994, 78, 229–234. [Google Scholar]
- Bhagyalakshmi, N.; Bopanna, K. Elicitation and immobilization of cell cultures for enhanced synthesis of pharmaceutical compounds. In Role of Biotechnology in Medicinal and Aromatic Plants; Ukaaz Publications: Hyderabad, India, 1998; Volume 1, pp. 305–325. [Google Scholar]
- Singh, G. Elicitation—Manipulating and enhancing secondary metabolite production. In Plant Cell and Tissue Culture for the Production of Food Ingredients; Springer: New York, NY, USA, 1999; pp. 101–111. [Google Scholar]
- Kim, H.-J.; Park, K.-J.; Lim, J.-H. Metabolomic analysis of phenolic compounds in buckwheat (Fagopyrum esculentum M.) sprouts treated with methyl jasmonate. J. Agric. Food Chem. 2011, 59, 5707–5713. [Google Scholar] [CrossRef]
- Li, X.; Park, N.I.; Park, C.H.; Kim, S.G.; Lee, S.Y.; Park, S.U. Influence of Sucrose on Rutin Content and Flavonoid Biosynthetic Gene Expression in Seedlings of Common Buckwheat (Fagopyrum esculentum Moench). Plant Omics 2011, 4, 215–219. [Google Scholar]
- Lim, J.-H.; Park, K.-J.; Kim, B.-K.; Jeong, J.-W.; Kim, H.-J. Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrum esculentum M.) sprout. Food Chem. 2012, 135, 1065–1070. [Google Scholar] [CrossRef]
- Zhao, J.; Zou, L.; Zhong, L.; Peng, L.; Ying, P.; Tan, M.; Zhao, G. Effects of polysaccharide elicitors from endophytic Bionectria pityrodes Fat6 on the growth and flavonoid production in tartary buckwheat sprout cultures. Cereal Res. Commun. 2015, 43, 661–671. [Google Scholar] [CrossRef]
- Sun, Z.; Hou, S.; Yang, W.; Han, Y. Exogenous application of salicylic acid enhanced the rutin accumulation and influenced the expression patterns of rutin biosynthesis related genes in Fagopyrum tartaricum Gaertn leaves. Plant Growth Regul. 2012, 68, 9–15. [Google Scholar] [CrossRef]
- Li, X.; Thwe, A.A.; Park, C.H.; Kim, S.J.; Arasu, M.V.; Abdullah Al-Dhabi, N.; Lee, S.Y.; Park, S.U. Ethephon-induced phenylpropanoid accumulation and related gene expression in tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) hairy root. Biotechnol. Biotechnol. Equip. 2017, 31, 304–311. [Google Scholar] [CrossRef]
- Park, C.H.; Thew, A.A.; Kim, S.J.; Park, J.S.; Arasu, M.V.; Abdullah Al-Dhabi, N.; Park, N.I.; Park, S.U. Effect of Auxins on Anthocyanin Accumulation in Hairy Root Cultures of Tartary Buckwheat Cultivar Hokkai T10. Nat. Prod. Commun. 2016, 11, 1283–1286. [Google Scholar] [CrossRef] [PubMed]
- Khan, W.; Prithiviraj, B.; Smith, D.L. Chitosan and chitin oligomers increase phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities in soybean leaves. J. Plant Physiol. 2003, 160, 859–863. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Chen, X.L.; Chai, X.F.; Xue, D.Q.; Zheng, W.; Shi, Y.Y.; Wang, A.X. The Involvement of Jasmonic Acid, Ethylene and Salicylic Acid in the Signaling Pathway of Clonostachys rosea-Induced Resistance to Gray Mold Disease in Tomato. Phytopathology 2019. [Google Scholar] [CrossRef]
- Fajardo, J.; Waniska, R.; Cuero, R.; Pettit, R. Phenolic compounds in peanut seeds: Enhanced elicitation by chitosan and effects on growth and aflatoxin B1 production by Aspergillus flavus. Food Biotechnol. 1995, 9, 59–78. [Google Scholar] [CrossRef]
- Mandal, S.; Gupta, C. Inducing cell wall-bound phenolic compounds by elicitors in eggplant (Solanum melongena). Appl. Biochem. Microbiol. 2016, 52, 650–656. [Google Scholar] [CrossRef]
- Skrzypczak-Pietraszek, E.; Słota, J.; Pietraszek, J. The influence of l-phenylalanine, methyl jasmonate and sucrose concentration on the accumulation of phenolic acids in Exacum affine Balf. f. ex Regel shoot culture. Acta Biochim. Pol. 2014, 61, 47–53. [Google Scholar] [CrossRef]
Benzoic Acid | Caffeic Acid | Catechin | Chlorogenic Acid | (−)-Epicatechin | Gallic Acid | Rutin | Total | |
---|---|---|---|---|---|---|---|---|
Control | 74.48 ± 5.27 abc,1 | 77.99 ± 1.54 cd | 56.18 ± 2.37 c | 58.92 ± 1.52 d | 44.44 ± 8.55 d | 6.09 ± 0.19 c | 424.42 ± 0.96 cde | 736.43 ± 11.35 e |
Chitosan 0.01% | 71.34 ± 4.48 bc | 82.52 ± 8.84 cd | 64.32 ± 6.63 c | 81.62 ± 11.69 bc | 48.79 ± 27.38 d | 6.27 ± 0.44 c | 399.7 ± 53.28 def | 754.55 ± 105.14 e |
Chitosan 0.1% | 58.17 ± 4.38 d | 81.25 ± 4.12 cd | 96.59 ± 8.06 b | 99.66 ± 2.91 b | 98.51 ± 17.90 c | 9.19 ± 1.91 b | 465.76 ± 50.35 cd | 909.12 ± 76.28 d |
Chitosan 0.5% | 68.56 ± 9.03 bcd | 70.27 ± 5.52 d | 66.34 ± 9.52 c | 66.56 ± 3.16 cd | 24.96 ± 18.03 d | 5.61 ± 0.45 c | 341.12 ± 35.09 f | 643.43 ± 26.63 e |
JA 50 µM | 59.49 ± 2.84 d | 96.61 ± 7.19 bc | 104.71 ± 10.35 b | 150.7 ± 23.68 a | 297.41 ± 53.66 b | 10.8 ± 2.00 ab | 494.99 ± 65.45 c | 1214.71 ± 153.05 c |
JA 100 µM | 58.06 ± 6.47 d | 104.76 ± 17.15 ab | 136.12 ± 32.75 a | 155.34 ± 8.87 a | 299.5 ± 25.82 b | 10.5 ± 1.68 ab | 764.39 ± 39.19 b | 1528.66 ± 108.41 b |
JA 150 µM | 68.17 ± 3.74 cd | 115.63 ± 11.79 a | 98.8 ± 23.94 b | 165.33 ± 22.43 a | 353.28 ± 13.17 a | 12.17 ± 0.85 a | 1011.3 ± 3.11 a | 1824.69 ± 72.80 a |
SA 50 mg/L | 79.48 ± 10.83 ab | 65.19 ± 19.09 d | 61.94 ± 4.92 c | 56.08 ± 5.78 d | 31.55 ± 7.38 d | 6.83 ± 0.28 c | 375.63 ± 72.65 ef | 676.7 ± 111.09 e |
SA 100 mg/L | 76.12 ± 2.94 abc | 73.11 ± 6.12 d | 58.92 ± 1.2 c | 58.98 ± 1.86 d | 37.62 ± 4.64 d | 6.24 ± 1.14 c | 420.9 ± 32.14 cdef | 731.89 ± 42.04 e |
SA 150 mg/L | 84.75 ± 1.76 a | 78.63 ± 0.51 cd | 59.4 ± 1.17 c | 62.21 ± 1.71 cd | 44.93 ± 2.32 d | 7.24 ± 0.13 c | 456.62 ± 6.31 cde | 793.79 ± 7.02 de |
Benzoic Acid | Caffeic Acid | Catechin | Chlorogenic Acid | (−)-Epicatechin | Gallic Acid | Rutin | Total | |
---|---|---|---|---|---|---|---|---|
Control 6 h | 81.96 ± 4.91 abc,1 | 74.93 ± 2.37 def | 57.21 ± 2.11 c | 55.72 ± 2.24 c | 43.13 ± 5.89 de | 6.78 ± 0.86 defgh | 371.84 ± 81.94 d | 691.57 ± 97.47 de |
Control 12 h | 83.82 ± 3.10 ab | 74.29 ± 2.57 def | 66.30 ± 3.85 c | 59.91 ± 3.24 c | 39.60 ± 1.00 de | 8.03 ± 0.45 cd | 428.66 ± 6.33 cd | 760.60 ± 6.96 de |
Control 24 h | 83.27 ± 1.96 ab | 76.44 ± 3.48 cdef | 65.97 ± 2.04 c | 61.52 ± 0.97 c | 34.10 ± 1.41 de | 6.98 ± 0.36 defgh | 418.00 ± 16.50 cd | 746.28 ± 23.56 de |
Control 48 h | 71.64 ± 9.63 de | 84.56 ± 8.24 bc | 99.05 ± 15.37 b | 105.81 ± 32.67 b | 135.74 ± 95.97 c | 7.91 ± 1.56 cde | 291.20 ± 100.31 e | 795.91 ± 95.38 cd |
Control 72 h | 74.48 ± 5.27 cde | 77.99 ± 1.54 cde | 56.18 ± 2.37 c | 58.92 ± 1.52 c | 44.44 ± 8.55 de | 6.09 ± 0.19 h | 424.42 ± 0.96 cd | 736.43 ± 11.35 de |
Chitosan 6 h | 80.78 ± 2.42 abc | 69.16 ± 1.78 ef | 52.53 ± 0.87 c | 57.24 ± 1.58 c | 23.58 ± 2.47 e | 7.83 ± 0.63 cde | 346.41 ± 12.92 de | 637.53 ± 14.44 e |
Chitosan 12 h | 80.59 ± 3.57 abc | 67.95 ± 1.60 f | 54.11 ± 3.32 c | 55.47 ± 0.79 c | 20.00 ± 3.43 e | 6.33 ± 0.22 fgh | 346.22 ± 23.57 de | 630.67 ± 34.24 e |
Chitosan 24 h | 80.64 ± 0.57 abc | 67.89 ± 2.22 f | 57.30 ± 0.63 c | 55.36 ± 0.04 c | 21.26 ± 1.66 e | 6.45 ± 0.25 efgh | 367.70 ± 26.01 de | 656.61 ± 25.54 de |
Chitosan 48 h | 78.79 ± 0.43 abcd | 73.47 ± 1.71 def | 70.25 ± 9.12 c | 72.28 ± 9.49 c | 55.14 ± 28.34 de | 6.14 ± 0.29 gh | 408.89 ± 15.52 cd | 764.96 ± 63.46 de |
Chitosan 72 h | 58.17 ± 4.38 f | 81.25 ± 4.12 cd | 96.59 ± 8.06 b | 99.66 ± 2.91 b | 98.51 ± 17.90 cd | 9.19 ± 1.91 bc | 465.76 ± 50.35 c | 909.12 ± 76.28 c |
Jasmonic acid 6 h | 77.14 ± 2.18 abcd | 76.42 ± 4.33 cdef | 55.06 ± 0.83 c | 60.78 ± 0.41 c | 39.81 ± 6.70 de | 7.58 ± 0.09 defg | 408.23 ± 16.91 cd | 725.03 ± 29.48 de |
Jasmonic acid 12 h | 76.13 ± 2.83 bcd | 74.11 ± 1.01 def | 56.20 ± 0.54 c | 69.99 ± 1.64 c | 40.19 ± 0.48 de | 8.04 ± 0.26 cd | 418.48 ± 18.94 cd | 743.15 ± 20.99 de |
Jasmonic acid 24 h | 74.63 ± 2.15 cde | 80.45 ± 2.57 cd | 62.54 ± 2.92 c | 70.34 ± 0.60 c | 38.88 ± 6.56 de | 7.69 ± 0.42 def | 395.77 ± 18.89 cd | 730.30 ± 22.81 de |
Jasmonic acid 48 h | 84.85 ± 3.43 a | 91.14 ± 5.84 b | 165.89 ± 51.97 a | 109.62 ± 20.75 b | 202.38 ± 89.88 b | 9.79 ± 0.35 b | 541.76 ± 68.57 b | 1205.4 ± 240.79 b |
Jasmonic acid 72 h | 68.17 ± 3.74 e | 115.63 ± 11.79 a | 98.80 ± 23.94 b | 165.33 ± 22.43 a | 353.8 ± 13.17 a | 12.17 ± 0.85 a | 1011.30 ± 3.11 a | 1824.6 ± 72.80 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, C.H.; Yeo, H.J.; Park, Y.E.; Chun, S.W.; Chung, Y.S.; Lee, S.Y.; Park, S.U. Influence of Chitosan, Salicylic Acid and Jasmonic Acid on Phenylpropanoid Accumulation in Germinated Buckwheat (Fagopyrum esculentum Moench). Foods 2019, 8, 153. https://doi.org/10.3390/foods8050153
Park CH, Yeo HJ, Park YE, Chun SW, Chung YS, Lee SY, Park SU. Influence of Chitosan, Salicylic Acid and Jasmonic Acid on Phenylpropanoid Accumulation in Germinated Buckwheat (Fagopyrum esculentum Moench). Foods. 2019; 8(5):153. https://doi.org/10.3390/foods8050153
Chicago/Turabian StylePark, Chang Ha, Hyeon Ji Yeo, Ye Eun Park, Se Won Chun, Yong Suk Chung, Sook Young Lee, and Sang Un Park. 2019. "Influence of Chitosan, Salicylic Acid and Jasmonic Acid on Phenylpropanoid Accumulation in Germinated Buckwheat (Fagopyrum esculentum Moench)" Foods 8, no. 5: 153. https://doi.org/10.3390/foods8050153
APA StylePark, C. H., Yeo, H. J., Park, Y. E., Chun, S. W., Chung, Y. S., Lee, S. Y., & Park, S. U. (2019). Influence of Chitosan, Salicylic Acid and Jasmonic Acid on Phenylpropanoid Accumulation in Germinated Buckwheat (Fagopyrum esculentum Moench). Foods, 8(5), 153. https://doi.org/10.3390/foods8050153