Evaluation of the Oxidative Status of Salami Packaged with an Active Whey Protein Film
Abstract
:1. Introduction
2. Materials and Methods
2.1. Whey Protein Film
2.2. Salami Slices
2.3. Lipid Oxidation Status of the Model Food
2.3.1. Monitorization of Hexanal Content
2.3.2. TBARS Assay
2.4. Sensorial Analyses
2.5. Statistical Analysis
3. Results and Discussion
3.1. State of Lipid Oxidation of the Salami Slices Packaged with the Active Film
3.1.1. Hexanal Monitorization
3.1.2. TBARS Assay
3.2. Sensorial Analyses
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gutiérrez, J.B. Ciencia bromatológica: Principios Generales de los Alimentos; Ediciones Díaz de Santos: Madrid, Spain, 2000. [Google Scholar]
- Márquez-Ruiz, G.; García-Martínez, M.C.; Holgado, F. Changes and Effects of Dietary Oxidized Lipids in the Gastrointestinal Tract. Lipid Insights 2008, 2, 11–19. [Google Scholar] [CrossRef]
- Mariutti, L.R.B.; Bragagnolo, N. Influence of salt on lipid oxidation in meat and seafood products: A review. Food Res. Int. 2017, 94, 90–100. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J.; Decker, E.A. Lipid Oxidation in Oil-in-Water Emulsions: Impact of Molecular Environment on Chemical Reactions in Heterogeneous Food Systems. J. Food Sci. 2000, 65, 1270–1282. [Google Scholar] [CrossRef]
- Teasdale, B.; West, A.; Taylor, H.; Klein, A. A simple restriction fragment length polymorphism (RFLP) assay to discriminate common Porphyra (Bangiophyceae, Rhodophyta) taxa from the Northwest Atlantic. J. Appl. Phycol. 2002, 14, 293–298. [Google Scholar] [CrossRef]
- Pereira de Abreu, D.A.; Losada, P.P.; Maroto, J.; Cruz, J.M. Evaluation of the effectiveness of a new active packaging film containing natural antioxidants (from barley husks) that retard lipid damage in frozen Atlantic salmon (Salmo salar L.). Food Res. Int. 2010, 43, 1277–1282. [Google Scholar] [CrossRef]
- Sanches-Silva, A.; Cruz, J.M.; Sendn-Garca, R.; Paseiro-Losada, P. Determination of Butylated Hydroxytoluene in Food Samples by High-Performance Liquid Chromatography with Ultraviolet Detection and Gas Chromatography/Mass Spectrometry. J. AOAC Int. 2007, 90, 277–283. [Google Scholar] [PubMed]
- Ho, C.-T. Phenolic Compounds in Food: An Overview. In Phenolic Compounds in Food and Their Effects on Health; American Chemical Society: Washington, DC, USA, 1992; pp. 2–7. ISBN 0097-6156. [Google Scholar]
- Cuvelier, M.-E.; Richard, H.; Berset, C. Antioxidative activity and phenolic composition of pilot-plant and commercial extracts of sage and rosemary. J. Am. Oil Chem. Soc. 1996, 73, 645–652. [Google Scholar] [CrossRef]
- Erkan, N.; Ayranci, G.; Ayranci, E. Antioxidant activities of rosemary (Rosmarinus Officinalis L.) extract, blackseed (Nigella sativa L.) essential oil, carnosic acid, rosmarinic acid and sesamol. Food Chem. 2008, 110, 76–82. [Google Scholar] [CrossRef] [PubMed]
- FDA, Title 21: Food and Drugs. Chapter I—Food and Drug Administration, Department of Health and Human Services, Subchapter B—Food for Human Consumption (Continued), Part 182—Substances Generally Recognized as Safe (GRAS). Code Fed. Regul. 2017. [Google Scholar]
- European Commission Commission Directive 2010/67/EU. Off. J. Eur. Union 2010, 17–26.
- European Commission Commission Directive 2010/69/EU. Off. J. Eur. Union 2010, 22–31.
- Johnson, J.J. Carnosol: A promising anti-cancer and anti-inflammatory agent. Cancer Lett. 2011, 305, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, A.-H.; Liang, Y.-C.; Lin-Shiau, S.-Y.; Ho, C.-T.; Lin, J.-K. Carnosol, an antioxidant in rosemary, suppresses inducible nitric oxide synthase through down-regulating nuclear factor-κB in mouse macrophages. Carcinogenesis 2002, 23, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Brody, A.L.; Bugusu, B.; Han, J.H.; Sand, C.K.; McHugh, T.H. Innovative food packaging solutions. J. Food Sci. 2008, 73. [Google Scholar]
- Dainelli, D.; Gontard, N.; Spyropoulos, D.; Zondervan-van den Beuken, E.; Tobback, P. Active and intelligent food packaging: legal aspects and safety concerns. Trends Food Sci. Technol. 2008, 19, S103–S112. [Google Scholar] [CrossRef]
- Silva, A.S.; Cruz Freire, J.M.; Sendón, R.; Franz, R.; Paseiro Losada, P. Migration and Diffusion of Diphenylbutadiene from Packages into Foods. J. Agric. Food Chem. 2009, 57, 10225–10230. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.S.; Freire, J.M.C.; Franz, R.; Losada, P.P. Mass transport studies of model migrants within dry foodstuffs. J. Cereal Sci. 2008, 48, 662–669. [Google Scholar] [CrossRef]
- Brody, A.L.; Strupinsky, E.R.; Kline, L.R. Ative Packaging for Food Applications; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- European Parliament and the Council of the European Union Regulation (EU) No 1935/2004. Off. J. Eur. Union 2004, 4–17.
- Sanches-Silva, A.; Ribeiro, T.; Albuquerque, T.G.; Paseiro, P.; Sendón, R.; de Quirós, A.B.; López-Cervantes, J.; Sánchez-Machado, D.I.; Soto Valdez, H.; Angulo, I.; et al. Ultra-high pressure LC for astaxanthin determination in shrimp by-products and active food packaging. Biomed. Chromatogr. 2013, 27, 757–764. [Google Scholar] [CrossRef]
- de Wit, J.N. Nutritional and Functional Characteristics of Whey Proteins in Food Products. J. Dairy Sci. 1998, 81, 597–608. [Google Scholar] [CrossRef]
- Perez-Gago, M.B.; Krochta, J.M. Drying Temperature Effect on Water Vapor Permeability and Mechanical Properties of Whey Protein−Lipid Emulsion Films. J. Agric. Food Chem. 2000, 48, 2687–2692. [Google Scholar] [CrossRef] [PubMed]
- Pelegrine, D.H.; Gasparetto, C.A. Estudo da solubilidade das proteínas presentes no soro de leite e na clara de ovo. Rev. Bras. Prod. Agroind. Camp. Gd. 2003, 5, 57–65. [Google Scholar] [CrossRef]
- Ramos, O.L.; Pereira, R.N.; Rodrigues, R.; Teixeira, J.A.; Vicente, A.A.; Xavier Malcata, F. Physical effects upon whey protein aggregation for nano-coating production. Food Res. Int. 2014, 66, 344–355. [Google Scholar] [CrossRef] [Green Version]
- Andrade, M.A.; Ribeiro-Santos, R.; Costa Bonito, M.C.; Saraiva, M.; Sanches-Silva, A. Characterization of rosemary and thyme extracts for incorporation into a whey protein based film. LWT Food Sci. Technol. 2018, 92, 497–508. [Google Scholar] [CrossRef]
- United States Department of Agriculture Salami, Italian, Pork. National Nutrient Database. 2018. Available online: https://ndb.nal.usda.gov/ndb/foods/show/07926?fgcd=&manu=&format=&count=&max=25&offset=&sort=default&order=asc&qlookup=Salami%2C+Italian%2C+pork.+&ds=&qt=&qp=&qa=&qn=&q=&ing= (accessed on 2 September 2019).
- Wen, J.; Morrissey, P.; Walton, J.; Sheehy, P. Rapid and Quantitative Determination of Hexanal in Cooked Muscle Foods. Irish J. Agric. Food Res. 1997, 36, 75–84. [Google Scholar]
- Sanches-Silva, A.; Rodríguez-Bernaldo de Quirós, A.; López-Hernández, J.; Paseiro-Losada, P. Determination of hexanal as indicator of the lipidic oxidation state in potato crisps using gas chromatography and high-performance liquid chromatography. J. Chromatogr. A 2004, 1046, 75–81. [Google Scholar] [CrossRef]
- Miller, D.D. Food Chemistry: A Laboratory Manual, 2nd ed.; Wiley: Hoboken, NJ, USA, 1998. [Google Scholar]
- Ross, C.F.; Smith, D.M. Use of Volatiles as Indicators of Lipid Oxidation in Muscle Foods. Compr. Rev. Food Sci. Food Saf. 2006, 5, 18–25. [Google Scholar] [CrossRef]
- Nissen, L.R.; Byrne, D.V.; Bertelsen, G.; Skibsted, L.H. The antioxidative activity of plant extracts in cooked pork patties as evaluated by descriptive sensory profiling and chemical analysis. Meat Sci. 2004, 68, 485–495. [Google Scholar] [CrossRef]
- Vilarinho, F.; Andrade, M.; Buonocore, G.G.; Stanzione, M.; Vaz, M.F.; Sanches Silva, A. Monitoring lipid oxidation in a processed meat product packaged with nanocomposite poly(lactic acid) film. Eur. Polym. J. 2018, 98, 362–367. [Google Scholar] [CrossRef]
- Madsen, H.L.; Sørensen, B.; Skibsted, L.H.; Bertelsen, G. The antioxidative activity of summer savory (Satureja hortemis L.) and rosemary (Rosmarinus officinalis L.) in dressing stored exposed to light or in darkness. Food Chem. 1998, 63, 173–180. [Google Scholar] [CrossRef]
- Erdmann, M.E.; Lautenschlaeger, R.; Zeeb, B.; Gibis, M.; Weiss, J. Effect of differently sized O/W emulsions loaded with rosemary extract on lipid oxidation in cooked emulsion-type sausages rich in n-3 fatty acids. LWT Food Sci. Technol. 2017, 79, 496–502. [Google Scholar] [CrossRef]
- Osawa, C.C.; de Felício, P.E.; Gonçalves, L.A.G. Teste de TBA aplicado a carnes e derivados: métodos tradicionais, modificados e alternativos. Quim. Nova 2005, 28, 655–663. [Google Scholar] [CrossRef]
- Castro, F.V.R.; Andrade, M.A.; Sanches Silva, A.; Vaz, M.F.; Vilarinho, F. The Contribution of a Whey Protein Film Incorporated with Green Tea Extract to Minimize the Lipid Oxidation of Salmon (Salmo salar L.). Foods 2019, 8, 327. [Google Scholar] [CrossRef] [PubMed]
- Remya, S.; Mohan, C.O.; Bindu, J.; Sivaraman, G.K.; Venkateshwarlu, G.; Ravishankar, C.N. Effect of chitosan based active packaging film on the keeping quality of chilled stored barracuda fish. J. Food Sci. Technol. 2016, 53, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Hernández, E.; Ponce-Alquicira, E.; Jaramillo-Flores, M.E.; Guerrero Legarreta, I. Antioxidant effect rosemary (Rosmarinus officinalis L.) and oregano (Origanum vulgare L.) extracts on TBARS and colour of model raw pork batters. Meat Sci. 2009, 81, 410–417. [Google Scholar]
- Frutos, M.J.; Hernández-Herrero, J.A. Effects of rosemary extract (Rosmarinus officinalis) on the stability of bread with an oil, garlic and parsley dressing. LWT Food Sci. Technol. 2005, 38, 651–655. [Google Scholar] [CrossRef]
- Chammem, N.; Saoudi, S.; Sifaoui, I.; Sifi, S.; de Person, M.; Abderraba, M.; Moussa, F.; Hamdi, M. Improvement of vegetable oils quality in frying conditions by adding rosemary extract. Ind. Crops Prod. 2015, 74, 592–599. [Google Scholar] [CrossRef]
Nutrient | Unit | Value per 100 g | ||
---|---|---|---|---|
Label | USDA | PT | ||
Water | g | 34.6 | 38.0 | |
Energy | kcal | 352.7 | 425 | 422 |
Protein | g | 23.5 | 21.7 | 19.5 |
Total lipid (fat) | g | 26.5 | 37.0 | 37.6 |
Carbohydrate | g | 4.9 | 1.20 | 1.30 |
Fiber | g | 0.00 | ||
Sugars | g | 1.20 | ||
Minerals | ||||
Calcium (Ca) | mg | - | 10.0 | 25.0 |
Iron (Fe) | mg | - | 1.52 | 2.30 |
Magnesium (Mg) | mg | - | 22.0 | 22.0 |
Phosphorus (P) | mg | - | 229 | 200 |
Potassium (K) | mg | - | 340 | 140 |
Sodium (Na) | mg | - | 1890 | 2300 |
Zinc (Zn) | mg | - | 4.20 | 4.30 |
Vitamins | ||||
Thiamin | mg | - | 0.93 | 0.36 |
Riboflavin | mg | - | 0.33 | 0.22 |
Niacin | mg | - | 5.60 | 3.00 |
Vitamin B-6 | mg | - | 0.55 | 0.25 |
Folate, DFE | µg | 2.00 | 3.00 | |
Vitamin B-12 | µg | 2.80 | 1.00 | |
Lipids | ||||
Fatty acids, total saturated | g | 13.1 | 12.9 | |
Fatty acids, total monounsaturated | g | 18.2 | 14.9 | |
Fatty acids, total polyunsaturated | g | 3.6 | 4.3 | |
Cholesterol | mg | 80.0 | 80.0 |
Code | Sample Description |
---|---|
317 | Salami slice packaged for 30 days with control film—evaluation without packaging |
137 | Salami slice packaged for 30 days with control film—evaluation with packaging |
491 | Salami slice packaged for 30 days with active film—evaluation without packaging |
798 | Salami slice packaged for 30 days with active film—evaluation with packaging |
351 | Salami slice packaged for 90 days with control film—evaluation without packaging |
563 | Salami slice packaged for 90 days with control film—evaluation with packaging |
846 | Salami slice packaged for 90 days with active film—evaluation without packaging |
782 | Salami slice packaged for 90 days with active film—evaluation with packaging |
Sample | Salty | Smoke | Strange | Acidity | Bitter | Spicy | Annatto | Greasy | Fibrous | Succulence | Softness | Redcolor | Typicalsmell | Typicalaroma | Appealingappearance |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | 2.17a | 2.00a | 1.92a | 1.92a | 2.00acde | 2.08a | 1.92a | 2.92a | 2.83a | 3.00a | 3.25a | 3.67a | 3.17a | 3.25a | 3.92a |
B | 2.17a | 2.00a | 2.17a | 2.00a | 1.92ce | 2.08a | 1.92a | 2.75a | 2.83a | 2.83a | 3.42a | 3.42a | 2.92a | 3.08a | 3.75a |
C | 2.50 a | 2.17a | 2.58a | 2.25a | 2.58abcde | 2.33a | 2.08a | 3.08a | 3.00a | 3.42a | 3.17a | 3.25a | 2.25a | 2.33a | 3.50a |
D | 2.58a | 2.42a | 3.25a | 2.42a | 3.25bd | 2.42a | 2.08a | 3.25a | 2.92a | 3.42a | 3.33a | 2.83a | 2.42a | 2.42a | 3.08a |
E | 2.08a | 1.83a | 1.75a | 2.00a | 1.92e | 1.67a | 1.67a | 2.92a | 3.08a | 3.17a | 3.42a | 3.67a | 3.00a | 3.08a | 4.00a |
F | 2.33a | 2.00a | 1.75a | 2.17a | 2.00acde | 1.75a | 1.92a | 2.92a | 3.08a | 3.17a | 3.75a | 3.58a | 2.75a | 2.83a | 3.83a |
G | 2.42a | 2.25a | 2.17a | 2.00a | 2.67abcde | 2.17a | 2.00a | 3.00a | 2.58a | 3.25a | 3.58a | 3.50a | 3.33a | 3.00a | 3.33a |
H | 2.50a | 2.25a | 2.58a | 2.17a | 3.42b | 2.33a | 2.08a | 2.92a | 2.83a | 3.25a | 3.50a | 2.83a | 3.00a | 2.83a | 3.25a |
p | 0.51 | 0.80 | 0.06 | 0.93 | <0.05 | 0.52 | 0.98 | 0.96 | 0.93 | 0.65 | 0.99 | 0.29 | 0.30 | 0.11 | 0.40 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade, M.A.; Ribeiro-Santos, R.; Guerra, M.; Sanches-Silva, A. Evaluation of the Oxidative Status of Salami Packaged with an Active Whey Protein Film. Foods 2019, 8, 387. https://doi.org/10.3390/foods8090387
Andrade MA, Ribeiro-Santos R, Guerra M, Sanches-Silva A. Evaluation of the Oxidative Status of Salami Packaged with an Active Whey Protein Film. Foods. 2019; 8(9):387. https://doi.org/10.3390/foods8090387
Chicago/Turabian StyleAndrade, Mariana A., Regiane Ribeiro-Santos, Manuela Guerra, and Ana Sanches-Silva. 2019. "Evaluation of the Oxidative Status of Salami Packaged with an Active Whey Protein Film" Foods 8, no. 9: 387. https://doi.org/10.3390/foods8090387
APA StyleAndrade, M. A., Ribeiro-Santos, R., Guerra, M., & Sanches-Silva, A. (2019). Evaluation of the Oxidative Status of Salami Packaged with an Active Whey Protein Film. Foods, 8(9), 387. https://doi.org/10.3390/foods8090387