Stability and Quality of Anthocyanin in Purple Sweet Potato Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Anthocyanin from Purple Sweet Potato
2.3. Analysis of Anthocyanin Content and Degradation Index
2.4. Antioxidant Activity
2.5. Color Change Measurement
2.6. Thermal Degradation Kinetics
2.7. Storage Test of PSPAE
2.8. Statistical Analysis
3. Results and Discussion
3.1. Extraction Efficiency of Purple Sweet Potato Anthocyanin
3.2. Antioxidant Capacity
3.3. Thermal Degradation Kinetics
3.4. Storage Test of Photodegradation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tardif-Douglin, D.G. The Marketing of Sweet Potatoes in Rwanda: Commercializing A Perishable Crop under Adverse Conditions. Ph.D. Thesis, Cornell University, New York, NY, USA, 1994. [Google Scholar]
- Goda, Y.; Shimizu, T.; Kato, Y.; Nakamura, M.; Maitani, T.; Yamada, T.; Terahara, N.; Yamaguchi, M. Two acylated anthocyanins from purple sweet potato. Phytochemistry 1997, 44, 183–186. [Google Scholar] [CrossRef]
- GuiLing, L.; HaiXia, L.; Binhui, G.; Peng, Z. Effects of Different Extraction Methods on Anthocyanin Content Detection in Sweet Potato. Chin. Agric. Sci. Bull. 2007, 23, 91–94. [Google Scholar]
- Huang, Y.-C.; Chang, Y.-H.; Shao, Y.-Y. Effects of genotype and treatment on the antioxidant activity of sweet potato in Taiwan. Food Chem. 2006, 98, 529–538. [Google Scholar] [CrossRef]
- Chou, C.; Li, M. A research of effect of three sweet potato varieties and addition on resistant starch content and physical characteristics of steamed rice bowl cake. J. Food Nutr. Res. 2018, 6, 551–556. [Google Scholar] [CrossRef]
- Mu, T.H.; Sun, H.N.; Li, P.G. Other sweet potato-based products. Trop. Roots Tubers 2016, 11, 532–557. [Google Scholar]
- Low, J.W.; van Jaarsveld, P.J. The potential contribution of bread buns fortified with β-carotene–rich sweet potato in Central Mozambique. Food Nutr. Bull. 2008, 29, 98–107. [Google Scholar] [CrossRef]
- Kano, M.; Takayanagi, T.; Harada, K.; Makino, K.; Ishikawa, F. Antioxidative activity of anthocyanins from purple sweet potato, Ipomoera batatas cultivar Ayamurasaki. Biosci. Biotechnol. Biochem. 2005, 69, 979–988. [Google Scholar] [CrossRef]
- Ahmed, M.; Akter, M.S.; Eun, J.-B. Optimization conditions for anthocyanin and phenolic content extraction form purple sweet potato using response surface methodology. Int. J. Food Sci. Nutr. 2011, 62, 91–96. [Google Scholar] [CrossRef]
- Fan, G.; Han, Y.; Gu, Z.; Chen, D. Optimizing conditions for anthocyanins extraction from purple sweet potato using response surface methodology (RSM). Food Sci. Technol. 2008, 41, 155–160. [Google Scholar] [CrossRef]
- Yoshimoto, M.; Okuno, S.; Yamaguchi, M.; Yamakawa, O. Antimutagenicity of deacylated anthocyanins in purple-fleshed sweetpotato. Biosci. Biotechnol. Biochem. 2001, 65, 1652–1655. [Google Scholar] [CrossRef]
- Gansch, H.; Weber, C.A.; Lee, C.Y. Antioxidant Capacity and Phenolic Phytochemicals in Black Raspberries. Red 2009, 17, 20–23. [Google Scholar]
- Sutharut, J.; Sudarat, J. Total anthocyanin content and antioxidant activity of germinated colored rice. Int. Food Res. J. 2012, 19, 215–221. [Google Scholar]
- Khanal, R.C.; Howard, L.R.; Prior, R.L. Effect of heating on the stability of grape and blueberry pomace procyanidins and total anthocyanins. Food Res. Int. 2010, 43, 1464–1469. [Google Scholar] [CrossRef]
- Tsuda, T.; Horio, F.; Uchida, K.; Aoki, H.; Osawa, T. Dietary cyanidin 3-O-β-d-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J. Nutr. 2003, 133, 2125–2130. [Google Scholar] [CrossRef]
- Mozaffari-Khosravi, H.; Jalali-Khanabadi, B.-A.; Afkhami-Ardekani, M.; Fatehi, F. Effects of sour tea (Hibiscus sabdariffa) on lipid profile and lipoproteins in patients with type II diabetes. J. Altern. Complementary Med. 2009, 15, 899–903. [Google Scholar] [CrossRef]
- Yang, M.-Y.; Peng, C.-H.; Chan, K.-C.; Yang, Y.-S.; Huang, C.-N.; Wang, C.-J. The hypolipidemic effect of Hibiscus sabdariffa polyphenols via inhibiting lipogenesis and promoting hepatic lipid clearance. J. Agric. food Chem. 2009, 58, 850–859. [Google Scholar] [CrossRef]
- Kong, J.-M.; Chia, L.-S.; Goh, N.-K.; Chia, T.-F.; Brouillard, R. Analysis and biological activities of anthocyanins. Phytochemistry 2003, 64, 923–933. [Google Scholar] [CrossRef]
- Hughes, L. Biological consequences of global warming: Is the signal already apparent? Trends Ecol. Evol. 2000, 15, 56–61. [Google Scholar] [CrossRef]
- Lustig, R.H.; Schmidt, L.A.; Brindis, C.D. Public health: The toxic truth about sugar. Nature 2012, 482, 27–29. [Google Scholar] [CrossRef]
- Hawkes, C. The worldwide battle against soft drinks in schools. Am. J. Prev. Med. 2010, 38, 457–461. [Google Scholar] [CrossRef]
- Charters, S.; Velikova, N.; Ritchie, C.; Fountain, J.; Thach, L.; Dodd, T.H.; Fish, N.; Herbst, F.; Terblanche, N. Generation Y and sparkling wines: A cross-cultural perspective. Int. J. Wine Bus. Res. 2011, 23, 161–175. [Google Scholar] [CrossRef]
- Ferrier, C. Bottled water: Understanding a social phenomenon. AMBIO J. Hum. Environ. 2001, 30, 118–120. [Google Scholar] [CrossRef]
- Santoiemmo, C. Select Serving and Flavored Sparkling Beverage Maker. U.S. Patent No. 8,250,972, 28 August 2012. [Google Scholar]
- Viljanen, K.; Kylli, P.; Hubbermann, E.-M.; Schwarz, K.; Heinonen, M. Anthocyanin antioxidant activity and partition behavior in whey protein emulsion. J. Agric. Food Chem. 2005, 53, 2022–2027. [Google Scholar] [CrossRef]
- Abdel-Aal, E.-S.M.; Young, J.C.; Rabalski, I. Anthocyanin composition in black, blue, pink, purple, and red cereal grains. J. Agric. food Chem. 2006, 54, 4696–4704. [Google Scholar] [CrossRef]
- Geissman, T. Anthocyanins, chalcones, aurones, flavones and related water-soluble plant pigments. In Moderne Methoden der Pflanzenanalyse/Modern Methods of Plant Analysis; Springer: Berlin, Germany, 1955; pp. 450–498. [Google Scholar]
- Martynenko, A.; Chen, Y. Degradation kinetics of total anthocyanins and formation of polymeric color in blueberry hydrothermodynamic (HTD) processing. J. Food Eng. 2016, 171, 44–51. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 779. [Google Scholar] [CrossRef]
- Sui, X. Changes in the color, chemical stability and antioxidant capacity of thermally treated anthocyanin aqueous solution over storage. In Impact of Food Processing on Anthocyanins; Springer: Singapore, 2017; pp. 49–65. [Google Scholar]
- Weber, F.; Boch, K.; Schieber, A. Influence of copigmentation on the stability of spray dried anthocyanins from blackberry. LWT-Food Sci. Technol. 2017, 75, 72–77. [Google Scholar] [CrossRef]
- Giusti, M.M.; Wrolstad, R.E. Characterization and measurement of anthocyanins by UV-visible spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, F1.2.1–F1.2.13. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.-E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Li, P.; Li, Y.; Wang, H. Comparative study of antioxidant activity of grape (Vitis vinifera) seed powder assessed by different methods. J. Food Drug Anal. 2008, 16, 67–73. [Google Scholar]
- Wahyuningsih, S.; Wulandari, L.; Wartono, M.; Munawaroh, H.; Ramelan, A. The effect of pH and color stability of anthocyanin on food colorant. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Surakarta, Indonesia, October 2016; p. 012047. [Google Scholar]
- Wu, H.-Y.; Yang, K.-M.; Chiang, P.-Y. Roselle anthocyanins: Antioxidant properties and stability to heat and pH. Molecules 2018, 23, 1357. [Google Scholar] [CrossRef]
- Heinonen, J.; Farahmandazad, H.; Vuorinen, A.; Kallio, H.; Yang, B.; Sainio, T. Extraction and purification of anthocyanins from purple-fleshed potato. Food Bioprod. Process. 2016, 99, 136–146. [Google Scholar] [CrossRef]
- Huang, H.; Xu, Q.; Belwal, T.; Li, L.; Aalim, H.; Wu, Q.; Duan, Z.; Zhang, X.; Luo, Z. Ultrasonic impact on viscosity and extraction efficiency of polyethylene glycol: A greener approach for anthocyanins recovery from purple sweet potato. Food Chem. 2019, 283, 59–67. [Google Scholar] [CrossRef]
- Liu, X.; Mu, T.; Sun, H.; Zhang, M.; Chen, J. Optimisation of aqueous two-phase extraction of anthocyanins from purple sweet potatoes by response surface methodology. Food Chem. 2013, 141, 3034–3041. [Google Scholar] [CrossRef]
- Li, J.; Li, X.-D.; Zhang, Y.; Zheng, Z.-D.; Qu, Z.-Y.; Liu, M.; Zhu, S.-H.; Liu, S.; Wang, M.; Qu, L. Identification and thermal stability of purple-fleshed sweet potato anthocyanins in aqueous solutions with various pH values and fruit juices. Food Chem. 2013, 136, 1429–1434. [Google Scholar] [CrossRef]
- Ghosh, D.; Konishi, T. Anthocyanins and anthocyanin-rich extracts: role in diabetes and eye function. Asia Pac. J. Clin. Nutr. 2007, 16, 200–208. [Google Scholar]
- Tsuda, T.; Shiga, K.; Ohshima, K.; Kawakishi, S.; Osawa, T. Inhibition of lipid peroxidation and the active oxygen radical scavenging effect of anthocyanin pigments isolated from Phaseolus vulgaris L. Biochem. Pharmacol. 1996, 52, 1033–1039. [Google Scholar] [CrossRef]
- Hagiwara, A.; Yoshino, H.; Ichihara, T.; Kawabe, M.; Tamano, S.; Aoki, H.; Koda, T.; Nakamura, M.; Imaida, K.; Ito, N. Prevention by natural food anthocyanins, purple sweet potato color and red cabbage color, of 2-amino-1-methyl-6-phenylimidazo (4,5-B) pyridine (phip)-associated colorectal carcinogenesis in rats. J. Toxicol. Sci. 2002, 27, 57–68. [Google Scholar] [CrossRef]
- Wang, S.; Chu, Z.; Ren, M.; Jia, R.; Zhao, C.; Fei, D.; Su, H.; Fan, X.; Zhang, X.; Li, Y. Identification of anthocyanin composition and functional analysis of an anthocyanin activator in solanum nigrum fruits. Molecules 2017, 22, 876. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Seo, W.D.; Kim, J.Y.; Han, S.-I.; Ra, J.-E.; Lee, J.H.; Song, Y.C.; Park, M.J.; Kang, H.W.; Oh, S.K.; Jang, K.C. Relationship of radical scavenging activities and anthocyanin contents in the 12 colored rice varieties in Korea. J. Korean Soc. Appl. Biol. Chem. 2011, 54, 693–699. [Google Scholar] [CrossRef]
- Ferretti, G.; Neri, D.; Bacchetti, T. Effect of Italian sour cherry (Prunus cerasus L.) On the formation of advanced glycation end products and lipid peroxidation. Food Nutr. Sci. 2014, 5, 1568–1576. [Google Scholar]
- Lee, H.-R.; Hwang, I.-W.; Zheng, H.-Z.; Jeong, W.-S.; Kim, Y.-C.; Chung, S.-K. Antioxidant properties of proanthocyanidin fraction isolated from wild grape (Vitis amurensis) peel. Korean J. Food Sci. Technol. 2010, 42, 420–423. [Google Scholar]
- Strugala, P.; Dudra, A.; Kucharska, A.Z.; Sokół-Łętowska, A.; Wojnicz, D.; Cisowska, A.; Walkowski, S.; Sroka, Z.; Gabrielska, J.; Hendrich, A.B. Biological activity of the methanol and water extracts of the fruits of anthocyanin-rich plants grown in south-west Poland. Nat. Prod. Commun. 2015, 10, 467–474. [Google Scholar] [CrossRef]
- De Moura, S.C.; Berling, C.L.; Germer, S.P.; Alvim, I.D.; Hubinger, M.D. Encapsulating anthocyanins from Hibiscus sabdariffa L. calyces by ionic gelation: Pigment stability during storage of microparticles. Food Chem. 2018, 241, 317–327. [Google Scholar] [CrossRef]
- Kechinski, C.P.; Guimarães, P.V.R.; Noreña, C.P.Z.; Tessaro, I.C.; Marczak, L.D.F. Degradation kinetics of anthocyanin in blueberry juice during thermal treatment. J. Food Sci. 2010, 75, C173–C176. [Google Scholar] [CrossRef]
- Askar, K.A.; Alsawad, Z.H.; Khalaf, M.N. Evaluation of the pH and thermal stabilities of rosella anthocyanin extracts under solar light. Beni-Suef Univ. J. Appl. Sci. 2015, 4, 262–268. [Google Scholar] [CrossRef] [Green Version]
- Özkan, M.; Yemenicioğlu, A.; Cemeroğlu, B. Degradation of various fruit juice anthocyanins by hydrogen peroxide. Food Res. Int. 2005, 38, 1015–1021. [Google Scholar] [CrossRef] [Green Version]
- Furtado, P.; Figueiredo, P.; das Neves, H.C.; Pina, F. Photochemical and thermal degradation of anthocyanidins. J. Photochem. Photobiol. A. Chem. 1993, 75, 113–118. [Google Scholar] [CrossRef]
- Zhao, M.; Luo, Y.; Li, Y.; Liu, X.; Wu, J.; Liao, X.; Chen, F. The identification of degradation products and degradation pathway of malvidin-3-glucoside and malvidin-3,5-diglucoside under microwave treatment. Food Chem. 2013, 141, 3260–3267. [Google Scholar] [CrossRef]
- Achir, N.; Sinela, A.; Mertz, C.; Fulcrand, H.; Dornier, M. Monitoring anthocyanin degradation in Hibiscus sabdariffa extracts with multi-curve resolution on spectral measurement during storage. Food Chem. 2019, 271, 536–542. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Fan, L. Evaluation of the composition of Chinese bayberry wine and its effects on the color changes during storage. Food Chem. 2019, 276, 451–457. [Google Scholar] [CrossRef]
- Panić, M.; Gunjević, V.; Cravotto, G.; Redovniković, I.R. Enabling technologies for the extraction of grape-pomace anthocyanins using natural deep eutectic solvents in up-to-half-litre batches Extraction of grape-pomace anthocyanins using NADES. Food Chem. 2019, 300, 125185. [Google Scholar] [CrossRef]
pH | Temperature(°C) | k(hour −1) | T1/2(hour) | Ea(kJ/mol) | Arrhenius Equation |
---|---|---|---|---|---|
1 | 60 | 6.21 × 10−3 | 111.66 | 59.82 | y = −2010.7x + 1.0002 |
70 | 8.47 × 10−3 | 81.84 | |||
80 | 8.72 × 10−3 | 79.52 | |||
3 | 60 | 7.64 × 10−3 | 90.7 | 59.55 | y = −2019.7x + 1.1764 |
70 | 8.72 × 10−3 | 83.23 | |||
80 | 1.08 × 10−2 | 64.26 | |||
5 | 60 | 8.12 × 10−3 | 85.41 | 29.38 | y = −4094x + 7.4764 |
70 | 1.15 × 10−2 | 60.39 | |||
80 | 1.63 × 10−2 | 42.55 | |||
7 | 60 | 9.59 × 10−3 | 72.25 | 30.26 | y = −3975.1x + 7.2548 |
70 | 1.22 × 10−2 | 56.92 | |||
80 | 1.89 × 10−2 | 36.66 | |||
9 | 60 | 1.08 × 10−2 | 64.14 | 26.13 | y = −4603.6x + 9.1887 |
70 | 1.16 × 10−2 | 59.7 | |||
80 | 2.38 × 10−2 | 29.12 |
Storage Temperature | Light | Dark | |||
---|---|---|---|---|---|
6 Days | 15 Days | 6 Days | 15 Days | ||
4 °C | L | 42.68 ± 1.07 dC | 60.38 ± 0.87 cB | 43.87 ± 0.38 dC | 63.24 ± 0.95 bA |
a | 44.23 ± 0.47 aC | 41.74 ± 0.62 aD | 55.14 ± 2.07 aA | 47.82 ± 1.03 aB | |
b | 10.85 ± 0.62 aA | 1.72 ± 0.38 cB | 11.03 ± 0.82 aA | 1.76 ± 0.31 dB | |
ΔE | 6.90 ± 1.16 cA | 6.11 ± 0.42 cA | 6.05 ± 0.86 cA | 6.20 ± 1.26 dA | |
DI | 0.32 ± 0.01 aC | 0.34 ± 0.01 aB | 0.36 ± 0.01 aA | 0.35 ± 0.01 aB | |
25 °C | L | 53.80 ± 0.49 cB | 55.84 ± 1.62 dAB | 53.94 ± 0.80 cB | 56.47 ± 1.10 cA |
a | 43.37 ± 1.17 aB | 39.65 ± 0.65 bC | 48.91 ± 0.92 bA | 42.84 ± 1.50 bB | |
b | 7.74 ± 0.53 bA | 7.71 ± 0.42 bA | 7.29 ± 0.39 bA | 6.49 ± 0.44 bB | |
ΔE | 7.98 ± 0.85 cA | 7.67 ± 1.33 cA | 7.28 ± 0.93 cA | 9.93 ± 1.65 cA | |
DI | 0.63 ± 0.01 cA | 0.58 ± 0.02 bB | 0.51 ± 0.02 bC | 0.58 ± 0.05 bBC | |
37 °C | L | 61.37 ± 1.98 bB | 66.80 ± 1.00 bA | 61.37 ± 1.99 bB | 64.52 ± 1.06 bA |
a | 43.75 ± 1.08 aB | 32.43 ± 1.40 cC | 46.32 ± 0.93 cA | 41.88 ± 1.65 bB | |
b | 4.92 ± 0.25 cB | 7.45 ± 0.48 bA | 4.37 ± 0.65 cB | 5.09 ± 0.26 cB | |
ΔE | 14.91 ± 1.33 bB | 18.79 ± 1.13 bA | 16.11 ± 1.42 bB | 16.97 ± 1.38 bA | |
DI | 0.56 ± 0.02 bC | 0.79 ± 0.01 cA | 0.56 ± 0.01 cC | 0.69 ± 0.03 cB | |
55 °C | L | 73.88 ± 0.75 aC | 87.98 ± 0.88 aA | 72.04 ± 1.39 aC | 82.15 ± 1.31 aB |
a | 32.38 ± 0.93 bB | 4.60 ± 0.44 dD | 38.72 ± 1.03 dA | 14.57 ± 0.58 cC | |
b | 4.81 ± 0.30 cC | 15.51 ± 0.46 aA | 4.20 ± 0.55 cC | 13.05 ± 0.35 aB | |
ΔE | 26.03 ± 0.55 aC | 51.31 ± 0.89 aA | 23.89 ± 1.26 aD | 40.43 ± 1.20 aB | |
DI | 0.73 ± 0.05 dC | 1.96 ± 0.06 dA | 0.69 ± 0.03 dD | 1.45 ± 0.04 dB |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-C.; Lin, C.; Chen, M.-H.; Chiang, P.-Y. Stability and Quality of Anthocyanin in Purple Sweet Potato Extracts. Foods 2019, 8, 393. https://doi.org/10.3390/foods8090393
Chen C-C, Lin C, Chen M-H, Chiang P-Y. Stability and Quality of Anthocyanin in Purple Sweet Potato Extracts. Foods. 2019; 8(9):393. https://doi.org/10.3390/foods8090393
Chicago/Turabian StyleChen, Chin-Chia, Chi Lin, Min-Hung Chen, and Po-Yuan Chiang. 2019. "Stability and Quality of Anthocyanin in Purple Sweet Potato Extracts" Foods 8, no. 9: 393. https://doi.org/10.3390/foods8090393
APA StyleChen, C. -C., Lin, C., Chen, M. -H., & Chiang, P. -Y. (2019). Stability and Quality of Anthocyanin in Purple Sweet Potato Extracts. Foods, 8(9), 393. https://doi.org/10.3390/foods8090393