Simple and Efficient Green Extraction of Steviol Glycosides from Stevia rebaudiana Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents, Standards, and Samples
2.2. Extraction of Steviosides: Experimental Design
2.3. Analysis of Steviosides
2.4. Method Validation
2.5. Statistical Analysis
3. Results and Discussion
3.1. Selection of Factors Affecting the Extraction Efficiency: Factorial Screening Design
3.2. Response Surface Methodology for the Selection of Optimum Extraction Conditions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Puri, M.; Sharma, D.; Barrow, C.J. Enzyme assisted extraction of bioactive from plants. Trends Biotechnol. 2011, 30, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedula, V.S.; Upreti, M.; Prakash, I. Diterpene glycosides from Stevia rebaudiana. Molecules 2011, 16, 3552–3562. [Google Scholar] [CrossRef] [PubMed]
- Lemus-Mondaca, R.; Vega-Galvez, A.; Zura-Bravo, L.; Ah-Hen, K. Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: A comprehensive review on the biochemical, nutritional and functional aspects. Food Chem. 2012, 132, 1121–1132. [Google Scholar] [CrossRef] [PubMed]
- Boonkaewwan, C.; Burodom, A. Anti-inflammatory and immunomodulatory activities of stevioside and steviol on colonic epithelial cells. J. Sci. Food Agric. 2013, 93, 3820–3825. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Chenn, A.; Li, D.; Yi, B.; Wu, W. Effects of salt stress on the growth, physiological responses, and glycoside contents of Stevia rebaudiana Bertoni. J. Agric. Food Chem. 2013, 61, 5720–5726. [Google Scholar] [CrossRef] [PubMed]
- López, V.; Pérez, S.; Vinuesa, A.; Zorzetto, C.; Abian, O. Stevia rebaudiana ethanolic extract exerts better antioxidant properties and antiproliferative effects in tumour cells than its diterpene glycoside stevioside. Food Funct. 2016, 7, 2107–2113. [Google Scholar] [CrossRef]
- Ritu, M.; Nandini, J. Nutritional composition of Stevia rebaudiana, a sweet herb, and its hypoglycemic and hypolipidaemic effect on patients with non-insulin dependent diabetes mellitus. J. Sci. Food Agric. 2016, 96, 4231–4234. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Ruiz, J.C.; Moguel-Ordoñez, Y.B.; Segura-Campos, M.R. Biological activity of Stevia rebaudiana Bertoni and their relationship to health. Crit. Rev. Food Sci. Nutr. 2017, 57, 2680–2690. [Google Scholar] [CrossRef] [PubMed]
- Puri, M.; Sharma, D.; Barrow, C.J.; Tiwary, A.K. Optimisation of novel method for the extraction of steviosides from Stevia rebaudiana leaves. Food Chem. 2012, 132, 1113–1120. [Google Scholar] [CrossRef]
- Das, A.; Golder, A.K.; Das, C. Enhanced extraction of rebaudioside-A: Experimental, response surface optimization and prediction using artificial neural network. Ind. Crops Prod. 2015, 65, 415–421. [Google Scholar] [CrossRef]
- Gasmalla, M.A.A.; Yang, R.; Musa, A.; Hua, X.; Ye, F. Influence of sonication process parameters to the state of liquid concentration of extracted rebaudioside A from Stevia (Stevia rebaudiana bertoni) leaves. Arab. J. Chem. 2017, 10, 726–731. [Google Scholar] [CrossRef]
- Ameer, K.; Bae, S.-W.; Jo, Y.; Chung, N.; Gao, Y.; Kwon, J.-H. Optimization and modeling for heat reflux extraction of total yield, stevioside and rebaudioside–A from Stevia rebaudiana (Bertoni) leaves. Sep. Sci. Technol. 2017, 52, 1193–1205. [Google Scholar] [CrossRef]
- Bursać Kovačević, D.; Maras, M.; Barba, F.J.; Granato, D.; Roohinejad, S.; Mallikarjunan, K.; Montesano, D.; Lorenzo, J.M.; Putnik, P. Innovative technologies for the recovery of phytochemicals from Stevia rebaudiana Bertoni leaves: A review. Food Chem. 2018, 268, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Pieri, V.; Belancic, A.; Morales, S.; Stuppner, H. Identification and quantification of major steviol glycosides in Stevia rebaudiana purified extracts by 1H NMR spectroscopy. J. Agric. Food Chem. 2011, 59, 4378–4384. [Google Scholar] [CrossRef] [PubMed]
- Tada, A.; Takahashi, K.; Ishizuki, K.; Sugimoto, N.; Suematsu, T.; Arifuku, K.; Tahara, M.; Akiyama, T.; Ito, Y.; Yamazaki, T.; et al. Absolute quantitation of stevioside and rebaudioside A in commercial standards by quantitative NMR. Chem. Pharm. Bull. 2013, 61, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Yolmeh, M.; HabibiNajafi, M.; Farhoosh, R. Optimization of ultrasound-assisted extraction of natural pigment from annatto seeds by response surface methodology (RSM). Food Chem. 2014, 155, 319–324. [Google Scholar] [CrossRef]
- Pacifico, S.; Piccolella, S.; Nocera, P.; Tranquillo, E.; Dal Poggetto, F.; Catauro, M. Steviol glycosides content in cultivated Stevia rebaudiana Bertoni: A new sweet expectation from the Campania region (Italy). J. Food Comp. Anal. 2017, 63, 111–120. [Google Scholar] [CrossRef]
- Pavlíček, V.; Tůma, P. The use of capillary electrophoresis with contactless conductivity detection for sensitive determination of stevioside and rebaudioside A in foods and beverages. Food Chem. 2017, 219, 193–198. [Google Scholar] [CrossRef]
- Woelwer-Rieck, U.; Lankes, C.; Wawrzun, A.; Wüst, M. Improved HPLC method for the evaluation of the major steviol glycosides in leaves of Stevia rebaudiana. Eur. Food Res. Technol. 2010, 231, 581–588. [Google Scholar] [CrossRef]
- Well, C.; Frank, O.; Hofmann, T. Quantitation of sweet steviol glycosides by means of a HILIC-MS/MS-SIDA approach. J. Agric. Food Chem. 2013, 61, 11312–11320. [Google Scholar] [CrossRef]
- Lorenzo, C.; Serrano-Díaz, J.; Plaza, M.; Quintanilla, C.; Alonso, G.L. Fast methodology of analysing major steviol glycosides from Stevia rebaudiana leaves. Food Chem. 2014, 157, 518–523. [Google Scholar] [CrossRef] [PubMed]
- Aranda-González, I.; Moguel-Ordoñez, Y.; Betancur-Ancona, D. Validation of HPLC-UV method for determination of minor glycosides contained in Stevia rebaudiana Bertoni leaves. Biomed. Chromatogr. 2015, 29, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Molina-Calle, M.; Priego-Capote, F.; Luque de Castro, M.D. Characterization of stevia leaves by LC–QTOF MS/MS analysis of polar and non-polar extracts. Food Chem. 2017, 219, 329–338. [Google Scholar] [CrossRef]
- Gardana, C.; Simonetti, P. Determination of steviol glycosides in commercial extracts of Stevia rebaudiana and sweeteners by ultra-high performance liquid chromatography Orbitrap mass spectrometry. J. Chromatogr. A 2018, 1578, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Box, G.E.P.; Behnken, D.W. Some new three level designs for the study of quantitative variables. Technometrics 1960, 2, 455–475. [Google Scholar] [CrossRef]
- Miller, J.N.; Miller, J.C. Statistics and Chemometrics for Analytical Chemistry, 5th ed.; Pearson Prentice Hall: Harlow, UK, 2005. [Google Scholar]
- Pinelo, M.; Rubilar, M.; Jerez, M.; Sineiro, J.; Nuñez, M.J. Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. J. Agric. Food Chem. 2005, 53, 2111–2117. [Google Scholar] [CrossRef] [PubMed]
- Spigno, G.; Tramelli, L.; De Faveri, D.M. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J. Food Eng. 2007, 81, 200–208. [Google Scholar] [CrossRef]
- Jentzer, J.B.; Alignan, M.; Vaca-Garcia, C.; Rigal, L.; Vilarem, G. Response surface methodology to optimise Accelerated Solvent Extraction of steviol glycosides from Stevia rebaudiana Bertoni leaves. Food Chem. 2015, 166, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology: Process. and Product Optimization Using Designed Experiments, 5th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Bezzera, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef]
Independent Variables (Factors) | Codes | Levels | |
---|---|---|---|
−1 | +1 | ||
Temperature (°C) | X1 | 37 | 100 |
Sample-to solvent ratio (g L−1) | X2 | 6.25 (12.5 g in 2 L) | 12.5 (25 g in 2 L) |
Grinding | X3 | without grinding | with grinding |
Agitation | X4 | without agitation | with agitation |
Time (min) | X5 | 10 | 60 |
Factors | Brix Degrees | Stevioside (ppm) | Rebaudioside A (ppm) |
---|---|---|---|
Temperature | 0.002696 | 0.083793 | 0.047323 |
Sample-to solvent ratio | 0.000187 | 0.000607 | 0.000642 |
Grinding | 0.045356 | 0.008628 | 0.037213 |
Agitation | 0.114666 | 0.047176 | 0.096332 |
Time | 0.365637 | 0.457476 | 0.980448 |
Order | Independent Factor | Responses | |||||||
---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | Brix Degrees | Stevioside (ppm) | Rebaudioside A (ppm) | ||||
1 | 60 | −1 | 100 | −1 | S | 0 | 2.50 | 81.13 | 15.63 |
2 | 80 | 1 | 100 | −1 | S | 0 | 2.75 | 120.53 | 23.40 |
3 | 60 | −1 | 200 | 1 | S | 0 | 3.10 | 178.47 | 37.25 |
4 | 80 | 1 | 200 | 1 | S | 0 | 4.05 | 171.07 | 33.77 |
5 | 60 | −1 | 150 | 0 | W | −1 | 2.70 | 127.22 | 23.57 |
6 | 80 | 1 | 150 | 0 | W | −1 | 4.60 | 139.55 | 26.48 |
7 | 60 | −1 | 150 | 0 | G | 1 | 3.25 | 153.99 | 26.68 |
8 | 80 | 1 | 150 | 0 | G | 1 | 3.65 | 170.65 | 29.70 |
9 | 70 | 0 | 100 | −1 | W | −1 | 2.45 | 88.82 | 18.33 |
10 | 70 | 0 | 200 | 1 | W | −1 | 3.50 | 144.05 | 27.89 |
11 | 70 | 0 | 100 | −1 | G | 1 | 4.10 | 114.54 | 21.77 |
12 | 70 | 0 | 200 | 1 | G | 1 | 4.20 | 172.24 | 32.93 |
13 | 70 | 0 | 150 | 0 | S | 0 | 3.55 | 155.82 | 30.65 |
14 | 70 | 0 | 150 | 0 | S | 0 | 3.45 | 157.74 | 33.09 |
15 | 70 | 0 | 150 | 0 | S | 0 | 3.50 | 161.45 | 31.24 |
Regression Coefficients | Responses | ||
---|---|---|---|
Brix Degrees | Stevioside | Rebaudioside A | |
Β0 | −11.5583 | −475.418 | −148.842 |
Β1 | 0.3583 | 6.093 | 2.911 |
Β2 | 0.0055 | 4.599 | 0.857 |
Β3 | 2.9750 | 4.547 | 0.462 |
Β12 | 0.0004 | −0.023 | −0.006 |
Β13 | −0.0300 | 0.108 | 0.003 |
Β23 | −0.0040 | 0.012 | 0.008 |
Β11 | −0.0027 | −0.013 | −0.014 |
Β22 | −0.0001 | −0.008 | −0.001 |
Β33 | 0.2833 | −9.185 | −3.664 |
Validation of the model | |||
R2 | 0.782 | 0.986 | 0.961 |
R2adj | 0.391 | 0.962 | 0.891 |
p-value (model) | 0.230361 | 0.000374 | 0.005032 |
p-value (lack of fit) | 0.0075 | 0.1395 | 0.2334 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Carbón, V.; Sayago, A.; González-Domínguez, R.; Fernández-Recamales, Á. Simple and Efficient Green Extraction of Steviol Glycosides from Stevia rebaudiana Leaves. Foods 2019, 8, 402. https://doi.org/10.3390/foods8090402
López-Carbón V, Sayago A, González-Domínguez R, Fernández-Recamales Á. Simple and Efficient Green Extraction of Steviol Glycosides from Stevia rebaudiana Leaves. Foods. 2019; 8(9):402. https://doi.org/10.3390/foods8090402
Chicago/Turabian StyleLópez-Carbón, Verónica, Ana Sayago, Raúl González-Domínguez, and Ángeles Fernández-Recamales. 2019. "Simple and Efficient Green Extraction of Steviol Glycosides from Stevia rebaudiana Leaves" Foods 8, no. 9: 402. https://doi.org/10.3390/foods8090402
APA StyleLópez-Carbón, V., Sayago, A., González-Domínguez, R., & Fernández-Recamales, Á. (2019). Simple and Efficient Green Extraction of Steviol Glycosides from Stevia rebaudiana Leaves. Foods, 8(9), 402. https://doi.org/10.3390/foods8090402