Optimization of Ultrasonicated Kaempferol Extraction from Ocimum basilicum Using a Box–Behnken Design and Its Densitometric Validation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample and Sample Preparation
2.2. Solvent Mixture Screening
2.3. Total Flavonoid Content
2.4. Ultrasonic-Assisted Extraction of KA
2.5. Column Chromatography
2.6. Identification and Quantification of KA Using HPTLC-VIS
2.7. Calibration Curve Preparation
2.8. Response Surface Design
2.9. Validation Method
2.10. Free Radical Scavenging Activity
2.11. Surface Method Model Response and Validity Testing
3. Results and Discussion
3.1. Screening of Total Flavonoid Content in Basil Leaves
3.2. HPTLC-VIS Analysis of KA
3.3. Model Fitting
3.4. Effect of Extraction Parameters on KA Yield of Ultrasonicated Ocimum Basilicum and RSM Analysis
3.5. Optimization and Verification of the Model for Extraction Parameters
3.6. RSM Validation
3.7. Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Altemimi, A.; Lightfoot, D.A.; Kinsel, M.; Watson, D.G. Employing response surface methodology for the optimization of ultrasound assisted extraction of lutein and β-carotene from spinach. Molecules 2015, 20, 6611–6625. [Google Scholar] [CrossRef] [PubMed]
- Mathivha, P.L.; Msagati, T.A.; Thibane, V.S.; Mudau, F.N. Phytochemical Analysis of Herbal Teas and Their Potential Health, and Food Safety Benefits: A Review. In Herbal Medicine in India; Springer: Singapore, 2020; pp. 281–301. [Google Scholar]
- Al-Maskari, M.Y.; Hanif, M.A.; Al-Maskri, A.Y.; Al-Adawi, S. Basil: A natural source of antioxidants and neutraceuticals. In Natural Products and Their Active Compounds on Disease Prevention; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2012; pp. 463–471. [Google Scholar]
- Abd El-Azim, M.H.; Abdelgawad, A.A.; El-Gerby, M.; Ali, S.; El-Mesallamy, A.M. Phenolic compounds and cytotoxic activities of methanol extract of basil (Ocimum basilicum L.). J. Microb. Biochem. Technol. 2015, 7, 182–185. [Google Scholar] [CrossRef]
- Jahan, R.; Jannat, K.; Shoma, J.F.; Khan, M.A.; Shekhar, H.U.; Rahmatullah, M. Drug Discovery and Herbal Drug Development: A Special Focus on the Anti-diarrheal Plants of Bangladesh. In Herbal Medicine in India; Springer: Singapore, 2020; pp. 363–400. [Google Scholar]
- Pratama, H.N.; Dwiyanti, R.D.; Muhlisin, A. Growth of Malassezia furfur in Media with The Addition of Basil (Ocimum basilicum Linn) Powder. Trop. Med. Int. Health 2020, 2, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, C.; Sharma, N.L.; Gaurav, S.S. An analysis of basil (Ocimum sp.) to study the morphological variability. Ind. J. Fund. Appl. Life Sci. 2013, 3, 521–525. [Google Scholar]
- Skrypnik, L.; Novikova, A.; Tokupova, E. Improvement of Phenolic Compounds, Essential Oil Content and Antioxidant Properties of Sweet Basil (Ocimum basilicum L.) Depending on Type and Concentration of Selenium Application. Plants 2019, 8, 458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilal, A.; Jahan, N.; Ahmed, A.; Bilal, S.N.; Habib, S.; Hajra, S. Phytochemical and pharmacological studies on Ocimum basilicum L.: A review. Int. J. Curr. Res. Rev. 2012, 4, 73–83. [Google Scholar]
- Pedro, A.C.; Moreira, F.; Granato, D.; Rosso, N.D. Extraction of bioactive compounds and free radical scavenging activity of purple basil (Ocimum basilicum L.) leaf extracts as affected by temperature and time. An. Acad. Bras. Ciênc. 2016, 88, 1055–1068. [Google Scholar] [CrossRef] [Green Version]
- Prinsi, B.; Morgutti, S.; Negrini, N.; Faoro, F.; Espen, L. Insight into Composition of Bioactive Phenolic Compounds in Leaves and Flowers of Green and Purple Basil. Plants 2020, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- Abdelrahman, N.; El-Banna, R.; Arafa, M.M.; Hady, M.M. Hypoglycemic efficacy of Rosmarinus officinalis and/or Ocimum basilicum leaves powder as a promising clinico-nutritional management tool for diabetes mellitus in Rottweiler dogs. Vet. World 2020, 13, 73–79. [Google Scholar] [CrossRef]
- Zhan, Y.; An, X.; Wang, S.; Sun, M.; Zhou, H. Basil polysaccharides: A review on extraction, bioactivities and pharmacological applications. Bioorg. Med. Chem. 2020, 28, 115179. [Google Scholar] [CrossRef]
- Aburjai, T.A.; Mansi, K.; Azzam, H.; Alqudah, D.A.; Alshaer, W.; Abuirjei, M. Chemical Compositions and Anticancer Potential of Essential Oil from Greenhouse-cultivated Ocimum basilicum Leaves. Ind. J. Pharm. Sci. 2020, 82, 179–184. [Google Scholar] [CrossRef] [Green Version]
- Nazir, M.; Ullah, M.A.; Younas, M.; Siddiquah, A.; Shah, M.; Giglioli-Guivarc’h, N.; Abbasi, B.H. Light-mediated biosynthesis of phenylpropanoid metabolites and antioxidant potential in callus cultures of purple basil (Ocimum basilicum L. var purpurascens). Plant Cell Tissue Organ Cult. 2020, 142, 107–120. [Google Scholar] [CrossRef]
- Da Silva, L.A.L.; Pezzini, B.R.; Soares, L. Spectrophotometric determination of the total flavonoid content in Ocimum basilicum L. (Lamiaceae) leaves. Pharmacogn. Mag. 2015, 11, 96. [Google Scholar] [PubMed] [Green Version]
- Elansary, H.O.; Szopa, A.; Kubica, P.; Ekiert, H.; El-Ansary, D.O.; Al-Mana, F.A.; Mahmoud, E.A. Saudi Rosmarinus officinalis and Ocimum basilicum L. Polyphenols and Biological Activities. Processes 2020, 8, 446. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.H. Dietary Inducers of Detoxification Enzymes. In Xenobiotic Metabolic Enzymes: Bioactivation and Antioxidant Defense; Springer: Cham, Switzerland, 2020; pp. 221–234. [Google Scholar]
- Garro-Aguilar, Y.; Cayssials, V.; Achaintre, D.; Boeing, H.; Mancini, F.R.; Mahamat-Saleh, Y.; Karakatsani, A. Correlations between urinary concentrations and dietary intakes of flavonols in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Eur. J. Nutr. 2020, 59, 1481–1492. [Google Scholar] [CrossRef] [PubMed]
- Paswan, S.K.; Srivastava, S.; Rao, C.V. Wound healing, antimicrobial and antioxidant efficacy of Amaranthus spinosus ethanolic extract on rats. Biocatal. Agric. Biotechnol. 2020, 26, 101624. [Google Scholar] [CrossRef]
- Legerská, B.; Chmelová, D.; Ondrejovič, M. TLC-Bioautography as a fast and cheap screening method for the detection of α-chymotrypsin inhibitors in crude plant extracts. J. Biotechnol. 2020, 313, 11–17. [Google Scholar] [CrossRef]
- Sagbo, I.J.; Orock, A.E.; Kola, E.; Otang-Mbeng, W. Phytochemical screening and gas chromatography-mass spectrometry analysis of ethanol extract of Scambiosa columbabria L. Pharmacogn. Res. 2020, 12, 35. [Google Scholar] [CrossRef]
- Al-Samman, A.M.M.A.; Siddique, N.A. Gas Chromatography-Mass Spectrometry (GC-MS/MS) Analysis, Ultrasonic Assisted Extraction, Antibacterial and Antifungal Activity of Emblica officinalis Fruit Extract. Pharmacogn. J. 2019, 11, 315–323. [Google Scholar] [CrossRef] [Green Version]
- Doctor, N.; Kayan, B.; Parker, G.; Vang, K.; Yang, Y. Stability and extraction of vanillin and coumarin under subcritical water conditions. Molecules 2020, 25, 1061. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, P.; Banarjee, A.; Jindal, D.; Kaur, C.; Singh, G.; Kumar, P.; Kumar, R. Validation of TLC-densitometry method for estimation of catechin in acacia catechu heartwood. Pharm. Chem. J. 2020, 54, 184–189. [Google Scholar] [CrossRef]
- Marinova, D.; Ribarova, F.; Atanassova, M. Total phenolics and total flavonoids in Bulgarian fruits and vegetables. J. Univ. Chem. Technol. Metall. 2005, 40, 255–260. [Google Scholar]
- Mensor, L.L.; Menezes, F.S.; Leitão, G.G.; Reis, A.S.; Santos, T.C.D.; Coube, C.S.; Leitão, S.G. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother. Res. 2001, 15, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Naczk, M.; Shahidi, F. Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. J. Pharm. Biomed. Anal. 2006, 41, 1523–1542. [Google Scholar] [CrossRef] [PubMed]
- Alothman, M.; Bhat, R.; Karim, A.A. Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chem. 2009, 115, 785–788. [Google Scholar] [CrossRef]
- Chávez-González, M.L.; Sepúlveda, L.; Verma, D.K.; Luna-García, H.A.; Rodríguez-Durán, L.V.; Ilina, A.; Aguilar, C.N. Conventional and Emerging Extraction Processes of Flavonoids. Processes 2020, 8, 434. [Google Scholar] [CrossRef] [Green Version]
- Kobus-Cisowska, J.; Szczepaniak, O.; Szymanowska-Powałowska, D.; Piechocka, J.; Szulc, P.; Dziedziński, M. Antioxidant potential of various solvent extract from Morus alba fruits and its major polyphenols composition. Ciênc. Rural 2020, 50. [Google Scholar] [CrossRef] [Green Version]
- Vural, N.; Cavuldak, Ö.A.; Akay, M.A.; Anlı, R.E. Determination of the various extraction solvent effects on polyphenolic profile and antioxidant activities of selected tea samples by chemometric approach. J. Food Meas. Charact. 2020, 14, 1286–1305. [Google Scholar] [CrossRef]
- Siddiqui, N.; Aeri, V. Optimization of betulinic acid extraction from Tecomella undulata bark using a box-Behnken design and its densitometric validation. Molecules 2016, 21, 393. [Google Scholar] [CrossRef]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef]
- Ilyas, U.K.; Deepshikha, P.H.; Vidhu, A. Densitometric Validation and Optimisation of Polyphenols in Ocimum sanctum Linn by High Performance Thin-layer Chromatography. Phytochem. Anal. 2015, 26, 237–246. [Google Scholar]
- Chadha, H. Application of Response Surface Methodology for Combination of Herbal Extracts Against Antioxidant and Antipsoriatic Activity. Asian J. Pharm. 2020, 14, 169–174. [Google Scholar]
- Li, W.; Liu, Z.; Wang, Z.; Chen, L.; Sun, Y.; Hou, J.; Zheng, Y. Application of accelerated solvent extraction to the investigation of saikosaponins from the roots of Bupleurum falcatum. J. Sep. Sci. 2010, 33, 1870–1876. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.-X.; Zou, L.; Zhao, J.; Xiang, D.-B.; Zhu, P.; Zhao, G. Response surface modeling and optimization of ultrasound-assisted extraction of three flavonoids from tartary buckwheat (Fagopyrum tataricum). Pharmacogn. Mag. 2013, 9, 210. [Google Scholar] [PubMed]
- Shafique, M.; Khan, S.J.; Khan, N.H. Study of antioxidant and antimicrobial activity of sweet basil (Ocimum basilicum) essential oil. Pharmacologyonline 2011, 1, 105–111. [Google Scholar]
Solvent Mixture Code | Composition of Solvent Mixture |
---|---|
I | Methanol/water (50/50, v/v) |
II | Acetic acid/acetone/water (10/60/30) |
III | Methanol/acetic acid (90/10, v/v) |
IV | Methanol/water/acetone (40/40/20, v/v/v) |
V | Absolute methanol |
Independent Variable | Ranges of Independent Variable | Dependent Variable | Goal | ||
---|---|---|---|---|---|
−1 | 0 | +1 | |||
Methanol concentration (%) | 40 | 60 | 80 | KA Yield | Maximized |
Extraction temperature (°C) | 40 | 50 | 60 | ||
Extraction time (min) | 5 | 10 | 15 |
Validation Parameter | Value |
---|---|
Linearity range | (50–400) ng/spot |
Correlation coefficient | 0.99 |
LOD (ng) | 8.16 |
LOQ (ng) | 18.142 |
Specificity | Specific |
Rf value | 0.261 |
Concentration (ng/spot) | Amount of KA Found (Mean) | SD | %RSD | %Recovery (n = 3) | |
---|---|---|---|---|---|
Taken | Added | ||||
150 | 0 | 148.90 | 0.59 | 0.401 | 99.26 |
150 | 25 | 171.88 | 0.71 | 0.413 | 98.21 |
150 | 50 | 197 | 0.57 | 0.289 | 98.50 |
150 | 75 | 222 | 0.66 | 0.297 | 98.66 |
150 | 100 | 247 | 0.43 | 0.174 | 98.80 |
Concentration (μg/spot) | Inter-Day Precision (n = 5) | Intra-Day Precision (n = 3) | ||||
---|---|---|---|---|---|---|
Peak Area (Mean) | SD | %RSD | Peak Area (Mean) | SD | %RSD | |
5 | 875 | 9.77 | 1.11 | 922.11 | 1.14 | 0.12 |
10 | 1172.23 | 9.98 | 0.85 | 1290.88 | 0.94 | 0.07 |
15 | 1388.16 | 1.49 | 0.10 | 1465 | 7.77 | 0.53 |
20 | 1642.99 | 1.13 | 0.06 | 1805.29 | 3.31 | 0.18 |
25 | 1923.23 | 1.09 | 0.05 | 2218.22 | 3.03 | 0.13 |
Run | Methanol Concentration (A) (%) | Extraction Temperature (B) (°C) | Extraction Time (C) (min) | KA (ng/spot) |
---|---|---|---|---|
1 | 60 | 50 | 10 | 90 |
2 | 80 | 60 | 10 | 95 |
3 | 80 | 50 | 5 | 91 |
4 | 60 | 60 | 5 | 91.1 |
5 | 40 | 40 | 10 | 91.2 |
6 | 40 | 60 | 10 | 90.2 |
7 | 40 | 50 | 15 | 90 |
8 | 80 | 40 | 10 | 89 |
9 | 60 | 50 | 10 | 90.3 |
10 | 40 | 50 | 5 | 90.6 |
11 | 60 | 60 | 15 | 90.2 |
12 | 60 | 40 | 15 | 89 |
13 | 80 | 50 | 15 | 90.5 |
14 | 60 | 40 | 5 | 87 |
KA Yield | Model F Value | R2 | Adjusted R2 | Predicted R2 |
Linear | 0.3835 | 0.1986 | −0.3353 | |
2FI | 0.7557 | 0.5462 | −0.3151 | |
Cubic | 0.8924 | 0.9033 | - | |
Quadratic | 0.9735 | 0.9138 | 0.9088 |
Source | Sum of Square | Degree of Freedom | Mean Square F | F-Value | Prob > F |
---|---|---|---|---|---|
Model | 37.55 | 9 | 4.17 | 16.32 | 0.0082 |
Residual | 1.02 | 4 | 0.2556 | - | - |
Lack of fit | 0.9775 | 3 | 0.3258 | 7.24 | 0.2651 |
Pure error | 0.0450 | 1 | 0.0450 | - | - |
Test Samples | IC50 (μg/mL) |
---|---|
Methanol extract of ultrasonicated Ocimum basilicum | 50.10 ± 0.513 |
Isolated KA | 0.68 ± 0.021 c |
L-ascorbic acid | 0.79 ± 0.015 b |
BHT | 0.88 ± 0.026 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altemimi, A.B.; Mohammed, M.J.; Yi-Chen, L.; Watson, D.G.; Lakhssassi, N.; Cacciola, F.; Ibrahim, S.A. Optimization of Ultrasonicated Kaempferol Extraction from Ocimum basilicum Using a Box–Behnken Design and Its Densitometric Validation. Foods 2020, 9, 1379. https://doi.org/10.3390/foods9101379
Altemimi AB, Mohammed MJ, Yi-Chen L, Watson DG, Lakhssassi N, Cacciola F, Ibrahim SA. Optimization of Ultrasonicated Kaempferol Extraction from Ocimum basilicum Using a Box–Behnken Design and Its Densitometric Validation. Foods. 2020; 9(10):1379. https://doi.org/10.3390/foods9101379
Chicago/Turabian StyleAltemimi, Ammar B., Muthanna J. Mohammed, Lee Yi-Chen, Dennis G. Watson, Naoufal Lakhssassi, Francesco Cacciola, and Salam A. Ibrahim. 2020. "Optimization of Ultrasonicated Kaempferol Extraction from Ocimum basilicum Using a Box–Behnken Design and Its Densitometric Validation" Foods 9, no. 10: 1379. https://doi.org/10.3390/foods9101379
APA StyleAltemimi, A. B., Mohammed, M. J., Yi-Chen, L., Watson, D. G., Lakhssassi, N., Cacciola, F., & Ibrahim, S. A. (2020). Optimization of Ultrasonicated Kaempferol Extraction from Ocimum basilicum Using a Box–Behnken Design and Its Densitometric Validation. Foods, 9(10), 1379. https://doi.org/10.3390/foods9101379