Sorghum–Insect Composites for Healthier Cookies: Nutritional, Functional, and Technological Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Sorghum and Termite Meal Blend
2.2. Methods
2.2.1. Preparation of Cookie Samples
2.2.2. Nutritional Composition
Ash
Protein
Glycemic (Available) Carbohydrate Content
Fat
Fiber
Gross Energy
Selected Minerals
Amino Acids
In Vitro Protein Digestibility
2.2.3. Physical Characteristics
Texture
2.2.4. Functional PropertiesWater and Oil Absorption Capacity
Water and Oil Absorption Capacity
Bulk density
2.2.5. Statistical Analysis
3. Results
3.1. Proximate Composition
3.2. Mineral Composition
3.3. Amino Acid Content
3.4. In Vitro Protein Digestibility
3.5. Physical Characteristics
3.6. Texture and Colour
3.7. Water and Oil Absorption Properties of Cookie Flours
3.8. Bulk Density of Cookie Flours
4. Discussion
4.1. Proximate Composition
4.2. Mineral Composition
4.3. Amino Acid Profile
4.4. In Vitro Protein Digestibility
4.5. Physical Characteristics
4.6. Texture and Colour
4.7. Water and Oil Absorption Properties of Cookie Flours
4.8. Bulk Density of Cookie Flours
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ubesie, A.C.; Ibeziako, N.S.; Ndiokwelu, C.I.; Uzoka, C.M.; Nwafor, C.A. Under-five protein energy malnutrition admitted at the university of Nigeria teaching hospital, Enugu: A 10-year retrospective review. Nutr. J. 2012, 11, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franco, V.; Hotta, J.K.; Jorge, S.M.; Dos Santos, J.E. Plasma fatty acids in children with grade III protein-energy malnutrition in its different clinical forms: Marasmus, marasmic kwashiorkor and kwashiorkor. J. Trop. Paediatr. 1999, 45, 71–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Bank. The Global Burden of Disease: Main Findings for Sub-Saharan Africa. 2013. Available online: https://www.worldbank.org/en/region/afr/publication/global-burden-of-diseasefindings-for-sub-saharan-africa (accessed on 24 August 2019).
- Chukwu, E.O.; Fiase, T.M.; Haruna, H.; Dathini, H.; Kever, T.R.; Lornengen, E.M. Predisposing factors to protein energy malnutrition among children (0–5years) in umuogele umuariam community in Obowo local government area of Imo state, Nigeria. J. Nutr. Health Food Eng. 2017, 6, 108–115. [Google Scholar]
- Anwar, F.; Khomsan, A.; Sukandar, D.; Riyadi, H.; Mudjajanto, E.S. High participation in posyandu nutrition program improved children nutritional status. Nutr. Res. Pract. 2010, 4, 208–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). Crops: Sorghum. 2009. Available online: www.icrisat.org/sorghum/sorghum.html (accessed on 13 June 2019).
- Doggett, H. Sorghum, 2nd ed.; Wiley: London, UK, 1988; pp. 260–282. [Google Scholar]
- Bulusu, S.; Laviolette, L.; Mannar, V.; Reddy, V. Cereal fortification programs in developing countries. In Issues in Complementary Feeding, 1st ed.; Agostoni, C., Brunser, O., Eds.; Karger AG: Basel, Switzerland, 2007; pp. 91–105. [Google Scholar]
- El-Khalifa, O.E.; El-Tinay, A. Effect of cystine on bakery products from wheat-sorghum blends. Food Chem. 2002, 77, 133–137. [Google Scholar] [CrossRef]
- Shewry, P.R. Wheat. J. Exp. Bot. 2009, 60, 1537–1553. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.R.N.; Schüssler, L. The protein compositions of the different anatomical parts of sorghum grain. J. Cereal Sci. 1986, 4, 361–369. [Google Scholar] [CrossRef]
- Ghosh, S.; Lee, S.M.; Jung, C.; Meyer-Rochow, V.B. Nutritional composition of five commercial edible insects in South Korea. J. Asia-Pac. Entomol. 2017, 20, 686–694. [Google Scholar] [CrossRef]
- Ghosh, S.; Jung, C.; Meyer-Rochow, V.B. Nutritional value and chemical composition of larvae, pupae, and adults of worker honey bee, Apis mellifera ligustica as a sustainable food source. J. Asia-Pac. Entomol. 2016, 19, 487–495. [Google Scholar] [CrossRef]
- Sirimungkararat, S.; Saksirirat, W.; Nopparat, T.; Natongkham, A. Edible Products From Eri Silkworm (Samia ricini D.) and Mulberry Silkworm (Bombyx mori L.) in Thailand. In Forest Insects as Food: Humans Bite Back, 2nd ed.; Durst, P.B., Johnson, D.V., Leslie, R.N., Shono, K., Eds.; RAP: Chiang Mai, Thailand, 2010; pp. 189–200. [Google Scholar]
- Florence, S.P.; Asna, U.; Asha, M.R.; Jyotona, R. Sensory, physical and nutritional qualities of cookies prepared from pearl millet (Opennisetum typhoideum). Food Process. Technol. 2014, 5, 1–6. [Google Scholar]
- Okaka, J.C. Handling, Storage and Processing of Plant Foods, 2nd ed.; OCJANCO Academic Publishers: Enugu, Nigeria, 2009; p. 132. [Google Scholar]
- Chinma, C.E.; Gernah, D.I. Physicochemical and sensory properties of cookies produced from cassava/soya bean/mango composite flours. J. Food Technol. 2007, 5, 256–260. [Google Scholar]
- Hikeezi, D. Cookie Making Using Dehulled High Tannin Sorghum Fortified with Peanut and/or Sunflower Flours. Master’s Thesis, Kansas State University, Manhattan, KS, USA, 1994. [Google Scholar]
- Mridula, D.; Gupta, R.K.; Manikantan, M.R. Effect of incorporation of sorghum flour to wheat flour on quality of biscuits fortified with defatted soy flour. Am. J. Food Technol. 2007, 2, 428–434. [Google Scholar]
- Yousif, A.; Nhepera, D.; Johnson, S. Influence of sorghum flour addition on flat bread in vitro starch digestibility, antioxidant capacity and consumer acceptability. Food Chem. 2012, 134, 880–887. [Google Scholar] [CrossRef] [PubMed]
- Serrem, C.A.; Kock, H.L.D.; Taylor, J.R.N. Nutritional quality, sensory quality and consumer acceptability of sorghum and bread wheat biscuits fortified with defatted soy flour. Int. J. Food Sci. Technol. 2011, 46, 74–83. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Gupta, A.; Singh, S.R.K.; Bharti, N.; Singh, K.P.; Mahajan, V.; Gupta, H.S. Compositional and varietal influence of finger millet flour on rheological properties of dough and quality of biscuit. LWT Food Sci. Technol. 2011, 44, 616–621. [Google Scholar] [CrossRef]
- Sudha, M.L.; Vetrimani, R.; Leelavathi, K. Influence of fibre from different cereals on the rheological characteristics of wheat flour dough and on biscuit quality. Food Chem. 2007, 100, 1365–1370. [Google Scholar] [CrossRef]
- Sudha, M.; Srivastava, A.K.; Vetrimani, R.; Leelavathi, K. Fat replacement in soft dough biscuits: Its implications on dough rheology and biscuit quality. J. Food Eng. 2007, 80, 922–930. [Google Scholar] [CrossRef]
- Akullo, J.; Agea, J.G.; Obaa, B.B.; Acai, J.O.; Nakimbugwe, D. Process development, sensory and nutritional evaluation of honey spread enriched with edible insect flour. Afr. J. Food Sci. 2017, 11, 30–39. [Google Scholar]
- De Jager, H.C. Foods and Cookery, 2nd ed.; Government Printers: Pretoria, South Africa, 1991; p. 215.
- Association of Official Analytical Chemists (AOAC) International. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2005. [Google Scholar]
- Association of Official Analytical Chemists (AOAC) International. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2002. [Google Scholar]
- Pearson, D.; Egan, H.; Sawyer, R.; Kirk, R.S. Chemical Analysis of Foods, Pearson’s Chemical Analysis of Foods, 8th ed.; Churchill Livingstone Publishers: Edinburg, UK, 1981; p. 24. [Google Scholar]
- Association of Official Analytical Chemists (AOAC) International. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 1998. [Google Scholar]
- Association of Official Analytical Chemists (AOAC) International. Official Methods of Analysis, 14th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1984. [Google Scholar]
- Hamaker, B.R.; Kirleis, A.W.; Butler, L.G.; Axtell, J.D.; Mertz, E.T. Improving the invitro protein digestibility of sorghum with reducing agents. Proc. Natl. Acad. Sci. USA 1987, 84, 626–628. [Google Scholar] [CrossRef] [Green Version]
- American Association of Cereal Chemists (AACC). Approved methods of the American Association of Cereal Chemists, 10th ed.; AACC International Press: St. Paul, MN, USA, 2000. [Google Scholar]
- Sosulski, F.W.; Ganat, M.D.; Slinkard, A.F. Functional properties of ten legumes flours. Can. Inst. Food Sci. Technol. 1976, 9, 66–74. [Google Scholar] [CrossRef]
- Okaka, J.C.; Potter, N.N. Functional and storage properties of cowpea-wheat flour blends in bread making. J. Food Sci. 1977, 42, 828–833. [Google Scholar] [CrossRef]
- Koffi-Niaba, P.V.; Kouakoul, B.; Gildas, G.K.; Thierry, A.; N’golo, K.; Dago, G. Quality characteristics of biscuits made from sorghum and defatted Macrotermes subhyalinus. Int. J. Biosci. 2013, 3, 58–69. [Google Scholar]
- Kinyuru, J.N.; Kenji, G.M.; Njoroge, M.S. Process development, nutrition and sensory qualities of wheat buns enriched with edible termites (Macrotermes subhylanus) from lake victoria region, Kenya. Afr. J. Food Agric. Nutr. Dev. 2009, 9, 1739–1750. [Google Scholar] [CrossRef] [Green Version]
- Omoba, O.S.; Omogbemile, A. Physicochemical properties of sorghum biscuits enriched with defatted soy flour. Br. J. Appl. Sci. Technol. 2014, 3, 1246–1256. [Google Scholar] [CrossRef]
- Bukkens, S.G.F. Insects in the human diet: Nutritional aspects. In Ecological Implications of Mini Livestock; Role of rodents, frogs, snails, and insects for sustainable development; Paoletti, M.G., Ed.; Science Publishers: Enfield, NH, USA, 2005. [Google Scholar]
- Bukkens, S.G.F. The nutritional value of edible insects. Ecol. Food Nutr. 1997, 36, 287–319. [Google Scholar] [CrossRef]
- Rehinan, Z.; Rashid, M.; Shah, W.H. Insoluble dietary fibre components of food legumes as affected by soaking and cooking processes. Food Chem. 2004, 85, 245–249. [Google Scholar] [CrossRef]
- Esan, O.T.; Adesanwo, A.S.; Dauda, O.A.; Arise, A.K.; Sotunde, A.J. Chemical composition and sensory qualities of wheat-sorghum date cookies. Croat. J. Food Technol. Biotechnol. Nutr. 2017, 12, 71–76. [Google Scholar]
- Yhoungaree, J.; Puwastien, P.; Attig, G.A. Edible insects in Thailand: An unconventional protein source? Ecol. Food Nutr. 1997, 36, 133–149. [Google Scholar] [CrossRef]
- Bauserman, M.; Lokangaka, A.; Gado, J. A cluster-randomized trial determining the efficacy of caterpillar cereal as a locally available and sustainable complementary food to prevent stunting and anaemia. Public Health Nutr. 2015, 18, 1785–1792. [Google Scholar] [CrossRef] [Green Version]
- Hongo, T.A. Micronutrient malnutrition in Kenya. Afr. J. Food Agric. Nutr. Dev. 2003, 3, 1–11. [Google Scholar]
- Michaelsen, K.F.; Hoppe, C.; Roos, N.; Kaestel, P.; Stougaard, M.; Lauritzen, L.; Molgaard, C.; Girma, T.; Friis, H. Choice of foods and ingredients for moderately malnourished children 6 months to 5 years of age. Food Nutr. Bull. 2009, 30, 343–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayieko, M.; Kinyuru, J.; Ndong’a, M.; Kenji, G. Nutritional value and consumption of black ants (Carebara vidua Smith) from the Lake Victoria region in Kenya. Adv. J. Food Sci. Technol. 2012, 4, 39–45. [Google Scholar]
- Christensen, D.L.; Orech, F.O.; Mungai, M.N.; Larsen, T.; Friss, H.; Aagaard-Hansen, J. Entomophagy among the luo of Kenya: A potential mineral source? Int. J. Food Sci. Nutr. 2006, 57, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, M.G.; Buscardo, E.; Vanderjagt, D.J.; Pastuszyn, A.; Pizzoferato, L.; Huang, Y.S.; Chung, L.T.; Glew, R.H.; Millson, M.; Cerda, H. Nutrient content of termites (Syntermes soldiers) consumed by Makirtare Amerindians of the Alto Orinoco of Venezuela. Ecol. Food Nutr. 2003, 42, 173–187. [Google Scholar] [CrossRef]
- Chakravorty, J.; Ghosh, S.; Megu, K.; Jung, C. Nutritional and anti-nutritional composition of Oecophylla smaragdina (Hymenoptera: Formicidae) and Odontotermes sp. (Isoptera: Termitidae): Two preferred edible insects of Arunachal Pradesh, India. J. Asia-Pac. Entomol. 2016, 19, 711–720. [Google Scholar] [CrossRef]
- Olaleye, A.A.; Adubiaro, H.O.; Olatoye, R.A. Amino acids profile of bee brood, soldier termite, snout beetle larva, silkworm larva and pupa: Nutritional implications. Adv. Anal. Chem. 2017, 7, 31–38. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). Edible Insects: Future Prospects for Food and Feed Security. 2013. Available online: http://www.fao.org/3/i3253e/i3253e06.pdf (accessed on 11 July 2019).
- Ogungbenle, H.N.; Olaleye, A.A.; Ayeni, K.E. Amino acid composition of three fresh water fish samples commonly found in South Western states of Nigeria. Elixir Food Sci. 2013, 62, 17411–17415. [Google Scholar]
- Ekpo, K.E.; Onigbinde, A.O. Nutritional potentials of the larva of Rhynchophorus phoenicis. Pak. J. Nutr. 2005, 4, 287–290. [Google Scholar]
- Food and Agriculture Organization/United Nations/World Health Organization (FAO/UN/WHO). Protein and Amino Acid Requirements in Human Nutrition. 2007. Available online: https://apps.who.int/iris/bitstream/handle/10665/43411/WHO_TRS_935_eng.pdf?ua=1 (accessed on 28 April 2019).
- Pencharz, P.B.; Elango, R.; Ball, R.O. An Approach to defining the upper safe limits of amino acid intake. J. Nutr. 2008, 138, 1996S–2002S. [Google Scholar] [CrossRef]
- Ramos-Elorduy, J.; Pino Moreno, J.M.; Prado, E.E.; Perez, M.A.; Otero, J.L. Nutritional value of edible insects from the state of Oaxaca, Mexico. J. Food Compos. Anal. 1997, 10, 142–157. [Google Scholar] [CrossRef]
- Ajayi, O.E. Biochemical analyses and nutritional content of four castes of subterranean termites, Macrotermes subhyalinus (Rambur) (Isoptera: Termitidae): Differences in digestibility and anti-nutrient contents among castes. Int. J. Biol. 2012, 4, 54–59. [Google Scholar] [CrossRef] [Green Version]
- Maache-Rezzoug, Z.; Bouvier, J.; Allaf, K.; Patras, C. Effect of principle ingredients and rheological behavior of biscuit dough on quality of biscuits. J. Food Eng. 1998, 35, 23–42. [Google Scholar] [CrossRef]
- Stauffer, C.E. Principles of dough formation. In Technology of Bread Making; Cauvain, S.P., Young, L.S., Eds.; Springer Science & Business Media: New York, NY, USA, 2007; pp. 299–322. [Google Scholar]
- Goeseart, H.; Brijs, K.; Veraverbeke, W.S.; Courtin, C.M.; Grubruers, K.; Delcour, J.A. Wheat flour constituents: How they impact on bread quality and how to impact their functionality. Trends Food Sci. Technol. 2005, 16, 12–30. [Google Scholar] [CrossRef]
- Saleem, Q.; Wildman, R.D.; Huntley, J.M.; Whitworth, M.B. Material properties of semi-sweet biscuits for finite element modelling of biscuit cracking. J. Food Eng. 2005, 68, 19–32. [Google Scholar] [CrossRef]
- Chiremba, C.; Taylor, J.R.N.; Duodu, K.G. Phenolic content, antioxidant activity and consumer acceptability of sorghum cookies. Cereal Chem. 2009, 86, 590–594. [Google Scholar] [CrossRef]
- Brennan, C.S.; Samyue, E. Evaluation of starch degradation and textural characteristics of dietary fibre enriched biscuits. Int. J. Food Prop. 2004, 7, 647–657. [Google Scholar] [CrossRef] [Green Version]
- Awobusuyi, T.D.; Pillay, K.; Siwela, M. Consumer Acceptance of Biscuits Supplemented with a Sorghum–Insect Meal. Nutrients 2020, 12, 895. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.; Rayas-Duarte, P.; Xu, J. Hard red spring wheat /C-TRIM 20 bread formulation, processing and texture analysis. Food Chem. 2008, 107, 516–524. [Google Scholar] [CrossRef]
- Singh, U. Functional properties of grain legume flours. J. Food Sci. 2001, 38, 191–199. [Google Scholar]
- Okpala, L.; Okoli, E.; Udensi, E. Physicochemical and sensory properties of cookies made from blends of germinated pigeon pea, fermented sorghum, and cocoyam flours. Food Sci. Nutr. 2013, 1, 8–14. [Google Scholar] [CrossRef]
- Abu, J.O.; Muller, K.; Duodu, K.G.; Minnaar, A. Gamma irradiation of cowpea (Vigna unguiculata) flours and pastes: Effects on functional, thermal and molecular properties of isolated proteins. Food Chem. 2006, 95, 138–147. [Google Scholar] [CrossRef]
- Aremu, M.O.; Olaofe, O.; Akintayo, E.T. Functional properties of some Nigerian varieties of legume seed flours and flour concentration effect on foaming and gelation properties. J. Food Technol. 2007, 5, 109–115. [Google Scholar]
- Lawal, O.S.; Adebowale, K.O. Effect of acetylation and succinylation on solubility profile, water absorption capacity, oil absorption Capacit and emulsifying properties of muncuna bean (Mucuna pruiens) protein concentrate. Nahr. Food 2004, 48, 129–136. [Google Scholar] [CrossRef]
- Jitngarmkusol, S.; Hongsuwankul, J.; Tananuwong, K. Chemical compositions, functional properties, and microstructure of defatted macadamia flours. Food Chem. 2008, 110, 23–30. [Google Scholar] [CrossRef]
- Falade, K.O.; Olugbuyi, A.O. Effects of maturity and drying methods on the physico-chemical and reconstitution properties of plantain flour. Int. J. Food Sci. Technol. 2010, 45, 170–178. [Google Scholar] [CrossRef]
- Ubbor, S.C.; Akobundu, E.N.T. Quality characteristics of cookies from composite flours of watermelon seed, cassava and wheat. Pak. J. Nutr. 2009, 8, 1097–1102. [Google Scholar] [CrossRef]
Ingredient | Relative Concentration (% w/w) | |||
---|---|---|---|---|
Wheat flour | 100 | 80 | 60 | 40 |
Sorghum meal | 0 | 15 | 30 | 45 |
Termite meal | 0 | 5 | 10 | 15 |
Identity of cookie sample | C0 (control) | C20 | C40 | C60 |
Sample | Ash | Protein | Fat | CHO | Dietary Fiber | Energy |
---|---|---|---|---|---|---|
C0 | 1.7 d ± 0.5 | 10.5 d ± 0.4 | 14.3 d ± 0.4 | 54.4 a ± 0.4 | 8.3 d ± 0.5 | 1180.2 d ± 0.5 |
C20 | 3.5 c ± 0.6 | 36.4 c ± 0.4 | 22.3 c ± 0.5 | 23.4 b ± 0.4 | 13.2 a ± 0.5 | 2032.8 c ± 0.5 |
C40 | 4.0 b ± 0.5 | 38.3 b ± 0.5 | 25.2 b ± 0.4 | 19.4 c ± 0.5 | 10.3 c ± 0.4 | 2108.4 b ± 0.3 |
C60 | 4.2 a ± 0.4 | 41.0 a ± 0.4 | 28.2 a ± 0.4 | 17.2 d ± 0.5 | 13.0 b ± 0.5 | 2217.6 a ± 0.2 |
Minerals | C0 | C20 | C40 | C60 | Recommended Daily Intake 2 | |
---|---|---|---|---|---|---|
Children | Adults | |||||
Ca | 2.5 d ± 0.4 | 5.5 c ± 0.5 | 8.6 b ± 0.5 | 10.8 a ± 0.5 | ||
Fe | 2.4 d ± 0.6 | 28.5 c ± 0.4 | 34.2 b ± 0.5 | 37.4 a ± 0.4 | 4.2 | 19.6 |
Mn | 1.2 d ± 0.5 | 13.2 c ± 0.4 | 17.3 b ± 0.4 | 24.5 a ± 0.4 | ||
Cu | 0.8 d ± 0.6 | 1.4 c ± 0.5 | 2.4 b ± 0.5 | 3.8 a ± 0.6 | 0.9 | 1.3 |
K | 1.8 d ± 0.6 | 12.5 c ± 0.4 | 18.6 b ± 0.5 | 22.9 a ± 0.4 | ||
Na | 0.8 d ± 0.6 | 8.1 c ± 0.5 | 13.5 b ± 0.6 | 16.9 a ± 0.5 | ||
Zn | 2.5 d ± 0.5 | 8.4 c ± 0.6 | 10.4 b ± 0.4 | 14.8 a ± 0.4 | 2.4 | 2.5 |
P | 0.8 d ± 0.5 | 22.5 c ± 0.5 | 31.2 b ± 0.4 | 37.6 a ± 0.5 | ||
Mg | 1.8 d ± 0.4 | 24.3 c ± 0.5 | 29.6 b ± 0.6 | 33.5 a ± 0.5 |
Amino Acids | C0 | C20 | C40 | C60 | FAO Reference Pattern 2 | |
---|---|---|---|---|---|---|
Children | Adults | |||||
Histidine | 15 | 21 | 32 | 43 | 15 | |
Lysine | 10 | 22 | 37 | 49 | 75 | 45 |
Tyrosine | 18 | 32 | 36 | 42 | ||
Cysteine | 18 | 22 | 29 | 33 | 6 | |
Tryptophan | 10 | 18 | 24 | 32 | 4.6 | 6 |
Methionine | 18 | 20 | 25 | 29 | 34 | 16 |
Isoleucine | 28 | 35 | 40 | 46 | 37 | 30 |
Phenylalanine | 25 | 33 | 39 | 44 | 34 | 30 |
Threonine | 21 | 30 | 34 | 46 | 44 | 23 |
Leucine | 27 | 48 | 58 | 63 | 56 | 59 |
Valine | 27 | 42 | 45 | 47 | 41 | 39 |
Samples | IVPD g/100 g | % Increase |
---|---|---|
C0 | 67 d ± 0.4 | - |
C20 | 73 c ± 0.2 | 8.95 |
C40 | 79 b ± 0.2 | 17.9 |
C60 | 83 a ± 0.3 | 23.8 |
Samples | Weight (g) | Diameter (mm) | Thickness (mm) | Spread Factor |
---|---|---|---|---|
C0 | 29.5 a ± 0.5 | 45.8 a ± 0.2 | 7.3 c ± 0.6 | 6.2 a ± 0.4 |
C20 | 27.4 b ± 0.7 | 44.4 b ± 0.4 | 7.5 c ± 0.7 | 5.9 b ± 0.7 |
C40 | 25.4 c ± 0.7 | 42.3 c ± 0.6 | 7.7 b ± 0.4 | 5.5 c ± 0.5 |
C60 | 24.5 c ± 0.7 | 41.6 c ± 0.5 | 7.9 a ± 0.5 | 5.2 c ± 0.2 |
Sample | Hardness (N) | Fracturability (mm) | Colour | ||
---|---|---|---|---|---|
Hunter L* | a* | b* | |||
C0 | 36.4 a ± 5.5 | 0.31 d ± 0.8 | 47.3 a ± 0.5 | 12.7 d ± 0.6 | 8.1 d ± 0.6 |
C20 | 29.4 d ± 8.6 | 0.64 c ± 1.2 | 46.2 b ± 1.2 | 14.5 c ± 0.8 | 8.3 c ± 0.7 |
C40 | 31.7 c ± 9.9 | 0.72 b ± 0.3 | 44.5 c ± 0.5 | 17.4 b ± 1.2 | 8.4 b ± 1.5 |
C60 | 32.1 b ± 0.4 | 1.14 a ± 0.1 | 41.2 d ± 0.6 | 18.8 a ± 0.7 | 8.6 a ± 0.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awobusuyi, T.D.; Siwela, M.; Pillay, K. Sorghum–Insect Composites for Healthier Cookies: Nutritional, Functional, and Technological Evaluation. Foods 2020, 9, 1427. https://doi.org/10.3390/foods9101427
Awobusuyi TD, Siwela M, Pillay K. Sorghum–Insect Composites for Healthier Cookies: Nutritional, Functional, and Technological Evaluation. Foods. 2020; 9(10):1427. https://doi.org/10.3390/foods9101427
Chicago/Turabian StyleAwobusuyi, Temitope D., Muthulisi Siwela, and Kirthee Pillay. 2020. "Sorghum–Insect Composites for Healthier Cookies: Nutritional, Functional, and Technological Evaluation" Foods 9, no. 10: 1427. https://doi.org/10.3390/foods9101427
APA StyleAwobusuyi, T. D., Siwela, M., & Pillay, K. (2020). Sorghum–Insect Composites for Healthier Cookies: Nutritional, Functional, and Technological Evaluation. Foods, 9(10), 1427. https://doi.org/10.3390/foods9101427