Potential of Cold Plasma Technology in Ensuring the Safety of Foods and Agricultural Produce: A Review
Abstract
:1. Introduction
2. Design Elements of Cold Plasma Technology
3. Mode of Action of CP and Its Use in Food Decontamination
4. The Evolving Capability of Cold Plasma (CP) Applications in Spores Deactivation
5. Emerging CP Treatment for Removal of Mycotoxin
6. Limitation and Negative Impacts of CP
7. Government Regulations Regarding Food Safety
8. Summary of the Studies and Future Research
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Whitehead, J.C. The Chemistry of Cold Plasma. In Cold Plasma in Food and Agriculture; Elsevier: Amsterdam, The Netherlands, 2016; pp. 53–81. [Google Scholar]
- Hertwig, C.; Meneses, N.; Mathys, A. Cold atmospheric pressure plasma and low energy electron beam as alternative nonthermal decontamination technologies for dry food surfaces: A review. Trends Food Sci. Technol. 2018, 77, 131–142. [Google Scholar] [CrossRef]
- Fridman, A.; Chirokov, A.; Gutsol, A. Non-thermal atmospheric pressure discharges. J. Phys. D Appl. Phys. 2005, 38, R1–R24. [Google Scholar] [CrossRef]
- Dave, H.; Ledwani, L.; Nema, S. Nonthermal plasma: A promising green technology to improve environmental performance of textile industries. In The Impact and Prospects of Green Chemistry for Textile Technology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 199–249. [Google Scholar] [CrossRef]
- Misra, N. Quality of Cold Plasma Treated Plant Foods. In Cold Plasma in Food and Agriculture; Elsevier: Amsterdam, The Netherlands, 2016; pp. 253–271. [Google Scholar]
- Misra, N.; Jo, C. Applications of cold plasma technology for microbiological safety in meat industry. Trends Food Sci. Technol. 2017, 64, 74–86. [Google Scholar] [CrossRef]
- Misra, N.; Schlüter, O.; Cullen, P.J. Plasma in Food and Agriculture. In Cold Plasma in Food and Agriculture; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–16. [Google Scholar]
- Niemira, B.A. Cold Plasma Decontamination of Foods. Annu. Rev. Food Sci. Technol. 2012, 3, 125–142. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.; Moiseev, T.; Misra, N.; Cullen, P.J.; Mosnier, J.-P.; Keener, K.; Bourke, P. Influence of high voltage atmospheric cold plasma process parameters and role of relative humidity on inactivation of Bacillus atrophaeus spores inside a sealed package. J. Hosp. Infect. 2014, 88, 162–169. [Google Scholar] [CrossRef]
- Moisan, M.; Barbeau, J.; Crevier, M.-C.; Pelletier, J.; Philip, N.; Saoudi, B. Plasma sterilization. Methods and mechanisms. Pure Appl. Chem. 2002, 74, 349–358. [Google Scholar] [CrossRef]
- Prokopowich, D.; Blank, G. Microbiological Evaluation of Vegetable Sprouts and Seeds. J. Food Prot. 1991, 54, 560–562. [Google Scholar] [CrossRef]
- Noriega, E.; Shama, G.; Laca, A.; Díaz, M.; Kong, M.G. Cold atmospheric gas plasma disinfection of chicken meat and chicken skin contaminated with Listeria innocua. Food Microbiol. 2011, 28, 1293–1300. [Google Scholar] [CrossRef] [Green Version]
- Bußler, S.; Herppich, W.B.; Neugart, S.; Schreiner, M.; Ehlbeck, J.; Rohn, S.; Schlüter, O.K. Impact of cold atmospheric pressure plasma on physiology and flavonol glycoside profile of peas (Pisum sativum ‘Salamanca’). Food Res. Int. 2015, 76, 132–141. [Google Scholar] [CrossRef]
- Lacombe, A.; Niemira, B.A.; Gurtler, J.B.; Fan, X.; Sites, J.; Boyd, G.; Chen, H. Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Food Microbiol. 2015, 46, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Kim, H.-J.; Yun, S.-W.; Jo, C.; Kim, J.-K.; Kim, S.H.; Park, H.Y.; Oh, S.-K.; Kim, W.H. Evaluation of cold plasma treatments for improved microbial and physicochemical qualities of brown rice. LWT 2016, 73, 442–447. [Google Scholar] [CrossRef]
- Pasquali, F.; Stratakos, A.C.; Koidis, A.; Berardinelli, A.; Cevoli, C.; Ragni, L.; Mancusi, R.; Manfreda, G.; Trevisani, M. Atmospheric cold plasma process for vegetable leaf decontamination: A feasibility study on radicchio (red chicory, Cichorium intybus L.). Food Control. 2016, 60, 552–559. [Google Scholar] [CrossRef] [Green Version]
- Sarangapani, C.; O’Toole, G.; Cullen, P.; Bourke, P. Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innov. Food Sci. Emerg. Technol. 2017, 44, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Ziuzina, D.; Misra, N.N.; Cullen, P.J.; Keener, K.; Mosnier, J.P.; Vilaró, I.; Gaston, E.; Bourke, P. Demonstrating the Potential of Industrial Scale In-Package Atmospheric Cold Plasma for Decontamination of Cherry Tomatoes. Plasma Med. 2016, 6, 397–412. [Google Scholar] [CrossRef] [Green Version]
- Vaideki, K. Plasma Technology for Antimicrobial Textiles; Elsevier: Amsterdam, The Netherlands, 2016; pp. 73–86. [Google Scholar]
- Niemira, B.A.; Gutsol, A. Nonthermal Plasma as a Novel Food Processing Technology. In Nonthermal Processing Technologies for Food; Wiley: New York, NY, USA, 2011; pp. 271–288. [Google Scholar]
- Pinela, J.; Ferreira, I.C.F.R. Nonthermal physical technologies to decontaminate and extend the shelf-life of fruits and vegetables: Trends aiming at quality and safety. Crit. Rev. Food Sci. Nutr. 2015, 57, 2095–2111. [Google Scholar] [CrossRef]
- Ben Gadri, R.; Roth, J.; Montie, T.C.; Kelly-Wintenberg, K.; Tsai, P.P.-Y.; Helfritch, D.J.; Feldman, P.; Sherman, D.M.; Karakaya, F.; Chen, Z. Sterilization and plasma processing of room temperature surfaces with a one atmosphere uniform glow discharge plasma (OAUGDP). Surf. Coatings Technol. 2000, 131, 528–541. [Google Scholar] [CrossRef]
- Raviteja, T.; Dayam, S.K.; Yashwanth, J. A Study on Cold Plasma for Food Preservation. J. Sci. Res. Rep. 2019, 1–14. [Google Scholar] [CrossRef]
- Mandal, R.; Singh, A.; Singh, A.P. Recent developments in cold plasma decontamination technology in the food industry. Trends Food Sci. Technol. 2018, 80, 93–103. [Google Scholar] [CrossRef]
- Sladek, R.E.J.; Stoffels, E. Deactivation ofEscherichia coliby the plasma needle. J. Phys. D Appl. Phys. 2005, 38, 1716–1721. [Google Scholar] [CrossRef]
- Lee, K.-Y.; Park, B.J.; Lee, D.H.; Lee, I.-S.; Hyun, S.O.; Chung, K.-H.; Park, J.-C. Sterilization of Escherichia coli and MRSA using microwave-induced argon plasma at atmospheric pressure. Surf. Coatings Technol. 2005, 193, 35–38. [Google Scholar] [CrossRef]
- Sharma, A.K.; Josephson, G.B.; Camaioni, D.M.; Goheen, S.C. Destruction of Pentachlorophenol Using Glow Discharge Plasma Process. Environ. Sci. Technol. 2000, 34, 2267–2272. [Google Scholar] [CrossRef]
- Deng, S.; Ruan, R.; Mok, C.K.; Huang, G.; Chen, P. Non-Thermal Plasma Disinfection of Escherichia coli on almond. In Proceedings of the 2005 ASAE Annual Meeting, Tampa, FL, USA, 17 August 2005. [Google Scholar] [CrossRef]
- Laroussi, M.; A Mendis, D.; Rosenberg, M. Plasma interaction with microbes. New J. Phys. 2003, 5, 41. [Google Scholar] [CrossRef]
- Xu, Z.; Shen, J.; Zhang, Z.; Ma, J.; Ma, R.; Zhao, Y.; Sun, Q.; Qian, S.; Zhang, H.; Ding, L.; et al. Inactivation Effects of Non-Thermal Atmospheric-Pressure Helium Plasma Jet on Staphylococcus aureus Biofilms. Plasma Process. Polym. 2015, 12, 827–835. [Google Scholar] [CrossRef]
- Ali, A.; Kim, Y.H.; Lee, J.Y.; Lee, S.; Uhm, H.S.; Cho, G.; Park, B.J.; Choi, E.H. Inactivation of Propionibacterium acnes and its biofilm by non-thermal plasma. Curr. Appl. Phys. 2014, 14, S142–S148. [Google Scholar] [CrossRef]
- Lee, M.H.; Park, B.J.; Jin, S.C.; Kim, D.; Han, I.; Kim, J.; O Hyun, S.; Chung, K.-H.; Park, J.-C. Removal and sterilization of biofilms and planktonic bacteria by microwave-induced argon plasma at atmospheric pressure. New J. Phys. 2009, 11, 115022. [Google Scholar] [CrossRef]
- Maisch, T.; Shimizu, T.; Isbary, G.; Heinlin, J.; Karrer, S.; Klämpfl, T.G.; Li, Y.-F.; Morfill, G.; Zimmermann, J.L. Contact-Free Inactivation of Candida albicans Biofilms by Cold Atmospheric Air Plasma. Appl. Environ. Microbiol. 2012, 78, 4242–4247. [Google Scholar] [CrossRef] [Green Version]
- Dorai, R.; Kushner, M.J. A model for plasma modification of polypropylene using atmospheric pressure discharges. J. Phys. D Appl. Phys. 2003, 36, 666–685. [Google Scholar] [CrossRef]
- Laroussi, M.; Leipold, F. Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int. J. Mass Spectrom. 2004, 233, 81–86. [Google Scholar] [CrossRef]
- Albertos, I.; Martín-Diana, A.B.; Cullen, P.J.; Tiwari, B.; Ojha, S.; Bourke, P.; Álvarez, C.; Rico, D. Effects of dielectric barrier discharge (DBD) generated plasma on microbial reduction and quality parameters of fresh mackerel (Scomber scombrus) fillets. Innov. Food Sci. Emerg. Technol. 2017, 44, 117–122. [Google Scholar] [CrossRef]
- Grzegorzewski, F.; Ehlbeck, J.; Schlüter, O.K.; Kroh, L.W.; Rohn, S. Treating lamb’s lettuce with a cold plasma – Influence of atmospheric pressure Ar plasma immanent species on the phenolic profile of Valerianella locusta. LWT 2011, 44, 2285–2289. [Google Scholar] [CrossRef]
- Min, S.C.; Roh, S.H.; Niemira, B.; Sites, J.E.; Boyd, G.; Lacombe, A. Dielectric barrier discharge atmospheric cold plasma inhibits Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Tulane virus in Romaine lettuce. Int. J. Food Microbiol. 2016, 237, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.J.; Song, A.Y.; Min, S.C. Inhibition of Salmonella typhimurium on radish sprouts using nitrogen-cold plasma. Int. J. Food Microbiol. 2017, 249, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Trevisani, M.; Berardinelli, A.; Cevoli, C.; Cecchini, M.; Ragni, L.; Pasquali, F. Effects of sanitizing treatments with atmospheric cold plasma, SDS and lactic acid on verotoxin-producing Escherichia coli and Listeria monocytogenes in red chicory (radicchio). Food Control. 2017, 78, 138–143. [Google Scholar] [CrossRef]
- Min, S.C.; Roh, S.H.; Niemira, B.; Boyd, G.; Sites, J.E.; Uknalis, J.; Fan, X. In-package inhibition of E. coli O157:H7 on bulk Romaine lettuce using cold plasma. Food Microbiol. 2017, 65, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dirks, B.P.; Dobrynin, D.; Fridman, G.; Mukhin, Y.; Fridman, A.; Quinlan, J.J. Treatment of Raw Poultry with Nonthermal Dielectric Barrier Discharge Plasma To Reduce Campylobacter jejuni and Salmonella enterica. J. Food Prot. 2012, 75, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-J.; Yong, H.I.; Park, S.; Choe, W.; Jo, C. Effects of dielectric barrier discharge plasma on pathogen inactivation and the physicochemical and sensory characteristics of pork loin. Curr. Appl. Phys. 2013, 13, 1420–1425. [Google Scholar] [CrossRef]
- Kim, J.-S.; Lee, E.-J.; Choi, E.H.; Kim, Y.-J. Inactivation of Staphylococcus aureus on the beef jerky by radio-frequency atmospheric pressure plasma discharge treatment. Innov. Food Sci. Emerg. Technol. 2014, 22, 124–130. [Google Scholar] [CrossRef]
- Boudam, M.K.; Moisan, M.; Saoudi, B.; Popovici, C.; Gherardi, N.; Massines, F. Bacterial spore inactivation by atmospheric-pressure plasmas in the presence or absence of UV photons as obtained with the same gas mixture. J. Phys. D Appl. Phys. 2006, 39, 3494–3507. [Google Scholar] [CrossRef]
- Brandenburg, R.; Ehlbeck, J.; Stieber, M.; Von Woedtke, T.; Zeymer, J.; Schlüter, O.; Weltmann, K.-D. Antimicrobial Treatment of Heat Sensitive Materials by Means of Atmospheric Pressure Rf-Driven Plasma Jet. Contrib. Plasma Phys. 2007, 47, 72–79. [Google Scholar] [CrossRef]
- Hertwig, C.; Reineke, K.; Ehlbeck, J.; Knorr, D.; Schlüter, O.K. Decontamination of whole black pepper using different cold atmospheric pressure plasma applications. Food Control. 2015, 55, 221–229. [Google Scholar] [CrossRef]
- Kim, J.E.; Lee, D.-U.; Min, S.C. Microbial decontamination of red pepper powder by cold plasma. Food Microbiol. 2014, 38, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Lassen, K.S.; Nordby, B.; Grün, R. The dependence of the sporicidal effects on the power and pressure of RF-generated plasma processes. J. Biomed. Mater. Res. Part B Appl. Biomater. 2005, 74, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Reineke, K.; Langer, K.; Hertwig, C.; Ehlbeck, J.; Schlüter, O.K. The impact of different process gas compositions on the inactivation effect of an atmospheric pressure plasma jet on Bacillus spores. Innov. Food Sci. Emerg. Technol. 2015, 30, 112–118. [Google Scholar] [CrossRef]
- Gavahian, M.; Cullen, P. Cold Plasma as an Emerging Technique for Mycotoxin-Free Food: Efficacy, Mechanisms, and Trends. Food Rev. Int. 2019, 36, 193–214. [Google Scholar] [CrossRef]
- Dowd, D. Involvement of arthropods in the establishment of mycotoxigenic fungi under field conditions. In Mycotoxins in Agriculture and Food Safety; Sinha, K.K., Bhatnagar, D., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 1998; pp. 307–350. [Google Scholar]
- Fallah, A.A. Assessment of aflatoxin M1 contamination in pasteurized and UHT milk marketed in central part of Iran. Food Chem. Toxicol. 2010, 48, 988–991. [Google Scholar] [CrossRef]
- Mannon, J.; Johnson, E. Fungi down on the farm. New Sci. 1985, 105, 12–16. [Google Scholar]
- Kuiper-Goodman, T. Food safety: Mycotoxins and phycotoxins in perspective. In Mycotoxins and Phycotoxins—Developments in Chemistry, Toxicology and Food Safety; Miraglia, M., van Edmond, H., Brera, C., Gilbert, J., Eds.; Alaken, Inc.: Fort Collins, Colorado, 1998; pp. 25–48. [Google Scholar]
- Van Egmond, H. Mycotoxins in dairy products. Food Chem. 1983, 11, 289–307. [Google Scholar] [CrossRef]
- Shahbazi, Y. Aflatoxin M 1 Contamination in Milk and Dairy Products. In Nutrients in Dairy and their Implications on Health and Disease; Elsevier: Amsterdam, The Netherlands, 2017; pp. 237–250. [Google Scholar]
- Ueno, Y. Trichothecene Mycotoxins Mycology, Chemistry, and Toxicology. In Advances in Nutritional Research; Springer Science and Business Media LLC: Larkspur, CA, USA, 1980; pp. 301–353. [Google Scholar]
- Rotter, B.A. Invited Review: Toxicology of Deoxynivalenol (Vomitoxin). J. Toxicol. Environ. Heal. Part A 1996, 48, 1–34. [Google Scholar] [CrossRef]
- Bosch, L.T.; Pfohl, K.; Avramidis, G.; Wieneke, S.; Viöl, W.; Karlovsky, P. Plasma-Based Degradation of Mycotoxins Produced by Fusarium, Aspergillus and Alternaria Species. Toxins 2017, 9, 97. [Google Scholar] [CrossRef] [Green Version]
- A Ouf, S.; Basher, A.H.; Mohamed, A.-A.H. Inhibitory effect of double atmospheric pressure argon cold plasma on spores and mycotoxin production ofAspergillus nigercontaminating date palm fruits. J. Sci. Food Agric. 2015, 95, 3204–3210. [Google Scholar] [CrossRef] [PubMed]
- Devi, Y.; Thirumdas, R.; Sarangapani, C.; Deshmukh, R.; Annapure, U. Influence of cold plasma on fungal growth and aflatoxins production on groundnuts. Food Control. 2017, 77, 187–191. [Google Scholar] [CrossRef]
- Kriz, P.; Petr, B.; Zbynek, H.; Jaromir, K.; Pavel, O.; Petr, S.; Miroslav, D.; Valaskova, K.; Havelka, Z.; Kadlec, J.; et al. Influence of Plasma Treatment in Open Air on Mycotoxin Content and Grain Nutriments. Plasma Med. 2015, 5, 145–158. [Google Scholar] [CrossRef]
- Ren, C.; Huang, G.; Wang, S.; Xiao, J.; Xiong, X.; Liu, Y. Influence of atmospheric pressure argon plasma treatment on the quality of peanut oil. Eur. J. Lipid Sci. Technol. 2017, 119, 1700062. [Google Scholar] [CrossRef]
- Shi, H.; Ileleji, K.E.; Stroshine, R.L.; Keener, K.; Jensen, J.L. Reduction of Aflatoxin in Corn by High Voltage Atmospheric Cold Plasma. Food Bioprocess Technol. 2017, 10, 1042–1052. [Google Scholar] [CrossRef]
- Siciliano, I.; Spadaro, D.; Prelle, A.; Vallauri, D.; Cavallero, M.C.; Garibaldi, A.; Gullino, M.L. Use of Cold Atmospheric Plasma to Detoxify Hazelnuts from Aflatoxins. Toxins 2016, 8, 125. [Google Scholar] [CrossRef]
- Almeida, F.D.L.; Cavalcante, R.S.; Cullen, P.J.; Frias, J.; Bourke, P.; Fernandes, F.A.N.; Rodrigues, S. Effects of atmospheric cold plasma and ozone on prebiotic orange juice. Innov. Food Sci. Emerg. Technol. 2015, 32, 127–135. [Google Scholar] [CrossRef]
- Food Safety Standards and Guidelines. Canada.ca. Available online: https://www.canada.ca/en/food-inspection (accessed on 21 August 2020).
- Jermann, C.; Koutchma, T.; Margas, E.; Leadley, C.; Ros-Polski, V. Mapping trends in novel and emerging food processing technologies around the world. Innov. Food Sci. Emerg. Technol. 2015, 31, 14–27. [Google Scholar] [CrossRef]
- Ishikawa, K. Plasma Diagnostics in Cold Plasma in Food and Agriculture: Fundamentals and Applications; Academic Press: Dublin, Ireland, 2016; pp. 117–141. [Google Scholar]
Commodity | Plasma Type | Plasma Parameters | Physicochemical Effects | Microbial Effects | References |
---|---|---|---|---|---|
Peas | Dielectric barrier discharge | 6–12 kV/20 MHz/5 min/electrode distance was 20 mm | Decreased the photosynthetic efficiency of seedlings and modified the concentration of flavonoid glycosides | - | [13] |
Blueberries | Atmospheric pressure plasma jet | 47 kHz/549 W/Air | Significantly reduced firmness after 60 s | Reduced the population of native microflora on fresh blueberries | [14] |
Significantly reduced in firmness. Impacted the surface color. | Was not effective in reducing yeast and mold counts. | ||||
Brown rice | Dielectric barrier discharge | 15 kHz/250 W/5–20 min./air/electrode distance was 2 cm. | Decrease in pH and hardness | Reduced bacteria by approximately 2.3 log10 CFU/g Bacillus cereus, Bacillus subtilis, E coli O157:H7, and total aerobic bacteria counts were significantly reduced | [15] |
Increased L* and decreased a* and b* values of brown rice | |||||
Red chicory (radicchio) | Dielectric barrier discharge | 15 KV/12.5 kHz/15–30 min/1.5 m/s/air/electrode distance was 0.15 cm | Did not significantly affects the antioxidant activity and external appearance of produce | Reduced E. coli O158:H7 (1.35 log10 MPN/g)/L. monocytogenes (2.2 log10 CFU/g) counts | [16] |
Blueberries | Dielectric barrier discharge | 80 kV and 1 A for 5 min./electrode distance was 35 mm | Significantly decreased of firmness | - | [17] |
Changed color of blueberries but was not statistically significant from untreated blueberries | |||||
Decreased total polyphenolic content, total flavonoid, ascorbic acid, and anthocyanin at higher voltage and long exposure time. | |||||
Significantly degraded pesticide residues such as Boscalid and Imidacloprid | |||||
Removal efficiencies of 75% for Boscalid and 80% for Imidacloprid were observed | |||||
Cherry tomatoes | Dielectric barrier discharge | 100 kV/150 sec/air/electrode distance was 4.5 cm | Did not significantly affect color, firmness, pH, and total soluble solids. | Reduced E. coli and Listeria innocua counts by 3.5 log CFU/g | [18] |
Reduction in mesophiles, yeast and mold by 3.5 log units | |||||
Fresh mackerel | Dielectric barrier discharge | 80 kV/5 min/electrode distance was 35 mm | Lipid oxidation occurred | Reduced total aerobic psychrotrophic, Pseudomonas, and lactic acid bacteria counts | [36] |
There were no changes in color. | |||||
Lamb lettuce | Atmospheric pressure plasma jet | 27.12 MHz/2 min./argon | Had negative impacts on phenolic acids and flavonoids. | [37] | |
Romaine lettuce | Dielectric barrier discharge | 47.6 kV and 1 A for 5 min./electrode distance was 30 mm | Did not result in any signs of burns, wilting, and color. | E. coli was reduced by 1.1 log CFU/g | [38] |
Modified atmospheric packaging (MAP) help reduced the inactivation rates of E. coli. | |||||
Salmonella was reduced by 0.6 log CFU/g | |||||
Listeria monocytogenes was reduced by 0.8 log CFU/g | |||||
Tulane virus was reduced by1.3 log PFU/g lettuce with or without evaporation of water. | |||||
Radish Sprouts | Microwave plasma | 2.45 GHz/900 W/669 Pa/10 min/N2 | Did not negatively affect appearance, odor, ascorbic acid, and antioxidant activity | Reduced the number of Salmonella typhimurium by 1.8 log CFU/g | [39] |
Radish sprout exhibited wilting after 20 min of plasma treatment. | |||||
Red chicory | Dielectric barrier discharge | 19.15 V/3.15 A/15 min/electrode distance was 2.0 cm | No detrimental effects on color, freshness, and texture. | Reduced L. monocytogenes by more than 4 log CFU/g | [40] |
Odor and overall acceptability slightly decreased during storage | Reduced VTEC (E. coli) by more than 5 log10 | ||||
Romaine lettuce | Dielectric barrier discharge | 42.6 kV/1.5 A/10 min/air/electrode distance was 5.0 cm | No significant changes in the surface morphology, color, respiration rate, and weight loss were observed | Reduced E. coli O157:H7 (0.4 – 0.8 log10 CFU/g) in certain layer configurations. | [41] |
Reduction in bulk stacking with 7 layers (1.1 log10 CFU/g) | |||||
Skinless chicken breast and chicken thigh with skin | Dielectric barrier discharge | 30 kV and 1 A for 3 min. | Decreased nutritional quality, and shelf life due reactive oxygen species that induced lipid oxidation. | Reduced Salmonella enterica and Campylobacter jejuni counts by 1.3 to 1.8 log CFU/g on skin and approximately 2.5 log CFU/g on breast for both | [42] |
Reduced background microflora | |||||
Raw pork loin | Dielectric barrier discharge | 3 kV, 30 kHz/10 min./3 mm between DBD actuator and sample/He or He + O2 | Reduced pH | Reduced E. coli at 0.55 log CFU/g and L. monocytogenes at 0.59 log CFU/g | [43] |
Changed meat color | |||||
Decreased nutritional quality, and shelf life due to reactive oxygen species that induced lipid oxidation. | |||||
Significantly affected appearance, color, odor, and acceptability. | |||||
Beef jerky | Radio-frequency atmospheric pressure plasma | 20,000 sccm /200 W/3 min./argon | Little changes in nutritional qualities such as fatty acid composition and sensory qualities were observed | Reduced Staphyylococcus aureus by (3–4) log CFU/g | [44] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varilla, C.; Marcone, M.; Annor, G.A. Potential of Cold Plasma Technology in Ensuring the Safety of Foods and Agricultural Produce: A Review. Foods 2020, 9, 1435. https://doi.org/10.3390/foods9101435
Varilla C, Marcone M, Annor GA. Potential of Cold Plasma Technology in Ensuring the Safety of Foods and Agricultural Produce: A Review. Foods. 2020; 9(10):1435. https://doi.org/10.3390/foods9101435
Chicago/Turabian StyleVarilla, Carolina, Massimo Marcone, and George A. Annor. 2020. "Potential of Cold Plasma Technology in Ensuring the Safety of Foods and Agricultural Produce: A Review" Foods 9, no. 10: 1435. https://doi.org/10.3390/foods9101435
APA StyleVarilla, C., Marcone, M., & Annor, G. A. (2020). Potential of Cold Plasma Technology in Ensuring the Safety of Foods and Agricultural Produce: A Review. Foods, 9(10), 1435. https://doi.org/10.3390/foods9101435