Dietary Exposure Assessment of Veterinary Antibiotics in Pork Meat on Children and Adolescents in Cyprus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pork Meat (Muscle Tissue) Sample Collection
2.2. Chemicals and Reagents
2.3. Microbial Screening Method for the Detection of Antibiotic Residues in Slaughter Animals
2.4. Liquid Chromatographic-Tandem Mass Spectrometric Analysis
3. Results and Discussion
3.1. Screening and Confirmatory Results
3.2. Daily Consumption of Raw Pork Meat for Children and Adolescent
3.3. Dietary Exposure Assessment of Veterinary Antibiotics in Children and Adolescents
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aminov, R.I. A brief history of the antibiotic era: Lessons learned and challenges for the future. Front. Microbiol. 2010, 1, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirchhelle, C. Pharming animals: A global history of antibiotics in food production (1935–2017). Palgrave Commun. 2018, 4, 96. [Google Scholar] [CrossRef] [Green Version]
- Martin, M.J.; Thottathil, S.E.; Newman, T.B. Antibiotics overuse in animal agriculture: A call to action for health care providers. Am. J. Public Health 2015, 105, 2409–2410. [Google Scholar] [CrossRef] [PubMed]
- Agersø, Y.; Aarestrup, F.M.; Pedersen, K.; Seyfarth, A.M.; Struve, T.; Hasman, H. Prevalence of extended-spectrum cephalosporinase (ESC)-producing Escherichia coli in Danish slaughter pigs and retail meat identified by selective enrichment and association with cephalosporin usage. J. Antimicrob. Chemother. 2012, 67, 582–588. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Wang, B.; Zhao, X.; Xie, X.; Xie, K.; Wang, X.; Zhang, G.; Zhang, T.; Liu, X.; Dai, G. Determination of thiamphenicol, florfenicol and florfenicol amine residues in poultry meat and pork via ASE-UPLC-FLD. J. Food Compos. Anal. 2019, 81, 19–27. [Google Scholar] [CrossRef]
- Wright, G.D. The antibiotic resistome: The nexus of chemical and genetic diversity. Nat. Rev. Microbiol. 2007, 5, 175–186. [Google Scholar] [CrossRef]
- Anders, J.; Bisha, B. High-throughput detection and characterization of antimicrobial resistant Enterococcus sp. Isolates from GI Tracts of European starlings visiting concentrated animal feeding operations. Foods 2020, 9, 890. [Google Scholar] [CrossRef]
- Medernach, L.R.; Logan, K.L. The growing threat of antibiotic resistance in children. Infect. Dis. Clin. N. Am. 2018, 32, 1–17. [Google Scholar] [CrossRef]
- Shreiner, A.B.; Kao, J.Y.; Young, V.B. The gut microbiome in health and in disease. Curr. Opin. Gastroenterol. 2015, 31, 69–75. [Google Scholar] [CrossRef]
- Ormerod, A.D.; Reid, T.M.; Main, R.A. Penicillin in milk—Its importance in urticaria. Clin. Exp. Allergy 1987, 17, 229–234. [Google Scholar] [CrossRef]
- Ajslev, T.A.; Andersen, C.S.; Gamborg, M.; Sorensen, T.I.A.; Jess, T. Childhood overweight after establishment of the gut microbiota: The role of delivery mode, pre pregnancy weight and early administration of antibiotics. Int. J. Obes. 2011, 35, 522–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chou, H.-W.; Wang, J.-L.; Chang, C.-H.; Lee, J.-J.; Shau, W.-Y.; Lai, M.-S. Risk of severe dysglycemia among diabetic patients receiving levofloxacin, ciprofloxacin, or moxifloxacin in Taiwan. Clin. Infect. Dis. 2013, 57, 971–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, L.; Forrest, C.B.; Zhang, P.; Richards, T.M.; Livshits, A.; DeRusso, P.A. Association of antibiotics in infancy with early childhood obesity. JAMA Pediatr. 2014, 168, 1063–1069. [Google Scholar] [CrossRef] [Green Version]
- Bacanlı, M.; Basaran, N. Importance of antibiotic residues in animal food. Food Chem. Toxicol. 2019, 125, 462–466. [Google Scholar] [CrossRef]
- Fernandez, E.; Perez, R.; Hernandez, A.; Tejada, P.; Arteta, M.; Ramos, J.T. Factors and mechanisms for pharmacokinetic differences between pediatric population and adults. Pharmaceutics 2011, 3, 53–72. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Zhang, S.; Xia, L.; Yu, Y.; Hu, S.; Sun, J.; Zhou, P.; Chen, P. Physical activity. A critical exposure factor of environmental pollution in children and adolescents health risk assessment. Int. J. Environ. Res. Public Health 2018, 15, 176. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.S.; Park, M.S. Antibiotic use at a pediatric age. Yonsei Med. J. 1998, 39, 595–603. [Google Scholar] [CrossRef]
- European Union; Regulations Commission. Pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. REGULATION (EU) No 37/2010, 22 December 2009. Off. J. Eur. Union 2010, L15, 1–2. Available online: https://ec.europa.eu/health/sites/health/files/files/eudralex/vol5/reg_2010_37/reg_2010_37_en.pdf (accessed on 1 March 2020).
- FAO/WHO. Maximum Residue Limits (MRLs) and Risk Management Recommendations (RMRs) for Residues of Veterinary Drugs in Foods CAC/MRL (2-2015); Codex Alimentarius, International Food Standards: Rome, Italy, 2015. [Google Scholar]
- FAO/WHO. Maximum Residue Limits (MRLs) and Risk Management Recommendations (RMRs) for Residues of Veterinary Drugs in Foods CX/MRL (2-2018); Codex Alimentarius, International Food Standards: Rome, Italy, 2018. [Google Scholar]
- Tang, K.L.; Caffrey, N.P.; Nóbrega, D.P.; Cork, S.C.; Ronksley, P.E.; Barkema, H.W.; Polachek, A.J.; Ganshorn, H.; Sharma, N.; Kellner, J.D.; et al. Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: A systematic review and meta-analysis. Lancet Planet. Health 2017, 1, e316–e327. [Google Scholar] [CrossRef]
- Landers, T.F.; Cohen, B.; Wittum, T.E.; Larson, E.L. A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Rep. 2012, 127, 4–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, A.R.; Hsieh, L.C.; Malbrough, M.S.; Short, C.R.; Barker, S.A. Multiresidue method for the determination of sulfonamides in pork tissue. J. Agric. Food Chem. 1990, 38, 423–426. [Google Scholar] [CrossRef]
- Panderi, I.; Gerakis, A.; Zonaras, V.; Athanasiou, L.; Kazanis, M. Development and validation of a liquid chromatography–electrospray ionization mass spectrometric method for the determination of dexamethasone in sheep plasma. Anal. Chim. Acta 2004, 504, 299–306. [Google Scholar] [CrossRef]
- Sanz, D.; Razquin, P.; Condón, S.; Juan, T.; Herraiz, B.; Mata, L. Incidence of antimicrobial residues in meat using a broad-spectrum screening strategy. Eur. J. Nutr. Food Saf. 2015, 5, 156–165. [Google Scholar] [CrossRef] [Green Version]
- Guardon, M.; Miranda, J.M.; Vázquez, B.I.; Cepeda, A.; Franco, C.M. Assessment of tetracyclines residues and tetracycline resistant bacteria in conventional and organic baby foods. Foods 2015, 4, 306–317. [Google Scholar] [CrossRef] [Green Version]
- Dasenaki, M.E.; Thomaidis, N.S. Multi-residue determination of 115 veterinary drugs and pharmaceutical residues in milk powder, butter, fish tissue and eggs using liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta 2015, 880, 103–121. [Google Scholar] [CrossRef] [PubMed]
- Bitas, D.; Samanidou, V. Molecularly imprinted polymers as extracting media for the chromatographic determination of antibiotics in milk. Molecules 2018, 23, 316. [Google Scholar] [CrossRef] [Green Version]
- Bitas, D.; Kabir, A.; Locatelli, M.; Samanidou, V. Food sample preparation for the determination of sulfonamides by high-performance liquid chromatography: State-of-the-art. Separations 2018, 5, 31. [Google Scholar] [CrossRef] [Green Version]
- Puvača, N.; Lika, E.; Tufarelli, V.; Bursić, V.; Pelić, D.L.; Nikolova, N.; Petrović, A.; Prodanović, R.; Vuković, G.; Lević, J.; et al. Influence of different tetracycline antimicrobial therapy of mycoplasma (Mycoplasma synoviae) in laying hens compared to tea tree essential oil on table egg quality and antibiotic residues. Foods 2020, 9, 612. [Google Scholar] [CrossRef]
- Magalhães, D.; Freitas, A.; Sofia, A.; Pouca, V.; Barbosa, J.; Ramos, F. The use of ultra-high-pressure-liquid chromatography tandem time-of-flight mass spectrometry as a confirmatory method in drug residue analysis: Application to the determination of antibiotics in piglet liver. J. Chromatogr. B 2020, 115, 122264. [Google Scholar] [CrossRef]
- FAO/WHO. Principles and Methods for the Risk Assessment of Chemicals in Food. Chapter 6: Dietary Exposure Assessment of Chemicals in Food; FAO/WHO: Rome, Italy, 2009; Available online: https://www.who.int/publications-detail/principles-and-methods-for-the-risk-assessment-of-chemicals-in-food (accessed on 15 December 2009).
- Liu, S.; Zhao, G.; Zhao, H.; Zhai, G.; Chen, J.; Zhao, H. Antibiotics in a general population: Relations with gender, body mass index (BMI) and age and their human health risks. Sci. Total. Environ. 2017, 599, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Sinanoglou, V.J.; Cavouras, D.; Xenogiannopoulos, D.; Proestos, C.; Zoumpoulakis, P. Quality assessment of pork and turkey hams using FT-IR spectroscopy, colorimetric, and image analysis. Foods 2018, 7, 152. [Google Scholar] [CrossRef] [Green Version]
- Kabrite, S.; Bou-Mitri, C.; Fares, J.E.H.; Hassan, H.F.; Boumosleh, J.M. Identification and dietary exposure assessment of tetracycline and penicillin residues in fluid milk, yogurt, and labneh: A cross-sectional study in Lebanon. Veter. World 2019, 12, 527–534. [Google Scholar] [CrossRef] [Green Version]
- Triki, M.; Herrero, A.M.; Jiménez-Colmenero, F.; Ruiz-Capillas, C. Quality assessment of fresh meat from several species based on free amino acid and biogenic amine contents during chilled storage. Foods 2018, 7, 132. [Google Scholar] [CrossRef]
- Choi, S.Y.; Kwon, N.J.; Kang, H.S.; Kim, J.; Cho, B.H.; Oh, J.H. Residues determination and dietary exposure to ethoxyquin and ethoxyquin dimer in farmed aquatic animals in South Korea. Food Control 2020, 111, 107067. [Google Scholar] [CrossRef]
- Ramatla, T.; Ngoma, L.; Adetunji, M.; Mwanza, M. Evaluation of Antibiotic Residues in Raw Meat Using Different Analytical Methods. Antibiotics 2017, 6, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schug, T.T.; Janesick, A.; Blumberg, B.; Heindel, J.J. Endocrine disrupting chemicals and disease susceptibility. J. Steroid Biochem. Mol. Biol. 2011, 127, 204–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaugain-Juhel, M.; Delepine, B.; Gautier, S.; Fourmond, M.P.; Gaudin, V.; Hurtaud-Kohanski, M.A.; DePristo, M.A.; Collins, J.J. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol. Cell 2010, 37, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Baynes, R.E.; Dedonder, K.; Kissell, L.; Mzyk, D.; Marmulak, T.; Smith, G.; Tell, L.; Gehring, R.; Davis, J.; Riviere, J.E. Health concerns and management of select veterinary drug residues. Food Chem. Toxicol. 2016, 88, 112–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, N.; Ho, W.K.; Ying, G.G.; Deng, W.J. Veterinary antibiotics in food, drinking water, and the urine of preschool children in Hong Kong. Environ. Int. 2017, 108, 246–252. [Google Scholar] [CrossRef]
- Ji, K.; Kho, Y.; Park, Y.; Choi, K. Influence of a five-day vegetarian diet on urinary levels of antibiotics and phthalate metabolites: A pilot study with “Temple Stay” participants. Environ. Res. 2010, 110, 375–382. [Google Scholar] [CrossRef]
- Ji, K.; Kho, Y.; Park, C.; Paek, D.; Ryu, P.; Paek, D.; Kim, M.; Kim, P.; Choi, K. Influence of water and food consumption on inadvertent antibiotics intake among general population. Environ. Res. 2010, 110, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Cox, L.M.; Blaser, M.J. Antibiotics in early life and obesity. Nat. Rev. Endocrinol. 2014, 11, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Cox, L.M.; Yamanishi, S.; Sohn, J.; Alekseyenko, A.V.; Leung, J.M.; Cho, I.; Kim, S.G.; Li, H.; Gao, Z.; Mahana, D.; et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 2014, 158, 705–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyriakides, D.; Panderi, I.; Hadjigeorgiou, M.; Christou, K.; Maou, M.; Kavantzas, N.; Lazaris, A. Veterinary antimicrobial residues in pork meat in Cyprus: An exposure assessment. J. Food Compos. Anal. 2020, 90, 103512. [Google Scholar] [CrossRef]
- Pikkemaat, G.M. Microbial screening methods for detection of antibiotic residues in slaughter animals. Anal. Bioanal. Chem. 2009, 395, 893–905. [Google Scholar] [CrossRef] [Green Version]
- CYSTAT. Population Statistics, Series II, Demographic Report No 53, pp 58, Table 28. Republic of Cyprus, Statistical Service. Available online: http://www.cystat.gov.cy/mof/cystat/statistics.nsf/All/C106FD0599F64191C22583550034275E/$file/DEMOGRAPHIC_REPORT-2016-271117.pdf?OpenElement (accessed on 1 March 2020).
- EFSA. Management of left-censored data in dietary exposure assessment of chemical substances. EFSA J. 2010, 8, 1–92. [Google Scholar]
- Savva, C.S.; Kourides, A.Y.; Hadjigeorgiou, C.; Tornaritis, J.M. Overweight and obesity prevalence and trends in children and adolescents in Cyprus 2000—2010. Obes. Res. Clin. Pract. 2014, 8, e426–e434. [Google Scholar] [CrossRef]
- Kroes, R.; Muller, D.; Lambe, J.; Lowik, M.; Van Klaveren, J.; Kleiner, J.; Massey, R.; Mayer, S.; Urieta, I.; Verger, P.; et al. Assessment of intake from the diet. Food Chem. Toxicol. 2002, 40, 327–385. [Google Scholar] [CrossRef]
- Magnér, J.; Wallberg, P.; Sandberg, J.; Cousins, A.P. Human Exposure to Pesticides from Food. A Pilot Study; On behalf of: Coop Sverige AB, Report number U 5080; IVL Swedish Environmental Research Institute: Stockholm, Sweden, 2015. [Google Scholar]
Antibiotic. | Antibiotic Class | MRL (μg·kg−1) |
---|---|---|
Dihydrostreptomycin | Aminoglycoside | 500 |
Gentamycin | Aminoglycoside | 50 |
Kanamycin | Aminoglycoside | 100 |
Paromomycin | Aminoglycoside | 500 |
Spectinomycin | Aminoglycoside | 300 |
Streptomycin | Aminoglycoside | 500 |
Cefalonium | Cephalosporin | N.E. i |
Cephapirin | Cephalosporin | 50 |
Cefoperazone | Cephalosporin | N.E. i |
Ciprofloxacin | Fluoroquinolone | 100 |
Danofloxacin | Fluoroquinolone | 200 |
Enrofloxacin | Fluoroquinolone | 100 |
Flumequine | Fluoroquinolone | 200 |
Marbofloxacin | Fluoroquinolone | 150 |
Norfloxacin | Fluoroquinolone | N.E. i |
Sarafloxacin | Fluoroquinolone | 10 |
Nalidixic acid | Quinolone | N.E.i |
Lincomycin | Lincosamide | 100 |
Erythromycin | Macrolide | 200 |
Spiramycin | Macrolide | 200 |
Tilmicosin | Macrolide | N.E. i |
Ampicillin | Penicillin | 50 |
Cloxacillin | Penicillin | 300 |
Dicloxacillin | Penicillin | 300 |
Penicillin-G (Benzylpenicilline) | Penicillin | 50 |
Penicillin-V (Phenoxymethylpenicillin) | Penicillin | 25 |
Nafcillin | β-lactam | N.E. i |
Oxacillin | β-lactam | 300 |
Tiamulin | Pleuromutilin | 100 |
Sulfadiazine | Sulphonamide | 100 |
Sulfadimethoxine | Sulphonamide | 100 |
Sulfadimidine | Sulphonamide | 100 |
Sulfadoxine | Sulphonamide | 100 |
Sulfamerazine | Sulphonamide | 100 |
Sulfamethoxazole | Sulphonamide | 100 |
Sulfamethoxypyridazine | Sulphonamide | 100 |
Sulfanilamide | Sulphonamide | 100 |
Sulfaguanidine | Sulphonamide | 100 |
Sulfaquinoxaline | Sulphonamide | 100 |
Sulfathiazole | Sulphonamide | 100 |
Trimethoprim | Dehydroreductase inhibitor | 50 |
Chlortetracycline | Tetracyclines | 100 |
Doxycycline | Tetracyclines | 100 |
Oxytetracycline | Tetracyclines | 100 |
Tetracycline | Tetracyclines | 100 |
2012 | 2013 | 2014 | |||||||
Antimicrobial Residue | 6–9 Years | 10–13 Years | 14–17 Years | 6–9 Years | 10–13 Years | 14–17 Years | 6–9 Years | 10–13 Years | 14–17 Years |
Sulfadiazine | 0.09 | 0.05 | 0.04 | 0.02 | 0.01 | 0.01 | 0.07 | 0.04 | 0.03 |
Sulfadimidine | 0.04 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 |
Sulfamethoxazole | 0.10 | 0.06 | 0.04 | <LOD i | <LOD i | <LOD i | 0.01 | 0.01 | 0.01 |
Trimethoprim | 0.05 | 0.03 | 0.02 | 0.05 | 0.03 | 0.02 | 0.10 | 0.06 | 0.04 |
Lincomycin | <LOD i | <LODi | <LOD i | 0.31 | 0.19 | 0.13 | 0.10 | 0.06 | 0.04 |
Chlortetracycline | 0.17 | 0.11 | 0.08 | 0.10 | 0.06 | 0.04 | 0.171 | 0.11 | 0.07 |
Doxycycline | 0.08 | 0.05 | 0.04 | 0.09 | 0.05 | 0.04 | <LOD i | <LOD i | <LOD i |
Oxytetracycline | 0.11 | 0.07 | 0.05 | 0.05 | 0.03 | 0.02 | 0.13 | 0.08 | 0.06 |
Tetracycline | <LOD i | <LODi | <LOD i | <LOD i | <LOD i | <LOD i | 0.06 | 0.04 | 0.02 |
Tilmicosin | 0.02 | 0.01 | 0.01 | <LOD i | <LOD i | <LOD i | <LOD i | <LOD i | <LOD i |
2015 | 2016 | 2017 | |||||||
Antimicrobial Residue | 6–9 Years | 10–13 Years | 14–17 Years | 6–9 Years | 10–13 Years | 14–17 Years | 6–9 Years | 10–13 Years | 14–17 Years |
Sulfadiazine | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.06 | 0.04 | 0.03 |
Sulfadimidine | 0.03 | 0.02 | 0.01 | 0.06 | 0.04 | 0.03 | <LOD i | <LOD i | <LOD i |
Sulfamethoxazole | 0.01 | 0.01 | 0.01 | <LOD i | <LODi | <LOD i | <LOD i | <LOD i | <LOD i |
Trimethoprim | 0.05 | 0.03 | 0.02 | <LOD i | <LODi | <LOD i | 0.04 | 0.03 | 0.02 |
Lincomycin | 0.04 | 0.03 | 0.02 | <LOD i | <LODi | <LOD i | 0.25 | 0.16 | 0.11 |
Chlortetracycline | 0.09 | 0.06 | 0.04 | <LOD i | <LODi | <LOD i | <LOD i | <LOD i | <LOD i |
Doxycycline | <LOD i | <LOD i | <LOD i | <LOD i | <LODi | <LOD i | 0.16 | 0.10 | 0.07 |
Oxytetracycline | 0.07 | 0.04 | 0.03 | <LOD i | <LODi | <LOD i | 0.05 | 0.03 | 0.02 |
Tetracycline | <LOD i | <LOD i | <LOD i | <LOD i | <LODi | <LOD i | <LOD i | <LOD i | <LOD i |
Tilmicosin | 0.03 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 |
2012 | 2013 | 2014 | |||||||
Antimicrobial Residue | 6–9 Years | 10–13 Years | 14–17 Years | 6–9 Years | 10–13 Years | 14–17 Years | 6–9 Years | 10–13 Years | 14–17 Years |
Sulfadiazine | 0.09 | 0.06 | 0.04 | 0.02 | 0.02 | 0.01 | 0.07 | 0.04 | 0.04 |
Sulfadimidine | 0.04 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 |
Sulfamethoxazole | 0.11 | 0.07 | 0.05 | <LOD i | <LOD i | <LOD i | 0.01 | 0.01 | 0.01 |
Trimethoprim | 0.05 | 0.03 | 0.03 | 0.05 | 0.03 | 0.02 | 0.11 | 0.07 | 0.05 |
Lincomycin | <LOD i | <LOD i | <LOD i | 0.32 | 0.19 | 0.16 | 0.10 | 0.06 | 0.05 |
Chlortetracycline | 0.18 | 0.11 | 0.09 | 0.10 | 0.06 | 0.05 | 0.18 | 0.11 | 0.09 |
Doxycycline | 0.08 | 0.05 | 0.04 | 0.09 | 0.06 | 0.04 | <LOD i | <LOD i | <LOD i |
Oxytetracycline | 0.11 | 0.07 | 0.06 | 0.05 | 0.03 | 0.03 | 0.14 | 0.08 | 0.07 |
Tetracycline | <LOD i | <LOD i | <LOD i | <LOD i | <LOD i | <LOD i | 0.06 | 0.04 | 0.03 |
Tilmicosin | 0.02 | 0.01 | 0.01 | <LOD i | <LOD i | <LOD i | <LOD i | <LOD i | <LOD i |
2015 | 2016 | 2017 | |||||||
Antimicrobial Residue | 6–9 Years | 10–13 Years | 14–17 Years | 6–9 Years | 10–13 Years | 14–17 Years | 6–9 Years | 10–13 Years | 14–17 Years |
Sulfadiazine | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.07 | 0.04 | 0.03 |
Sulfadimidine | 0.03 | 0.02 | 0.02 | 0.06 | 0.04 | 0.03 | <LOD i | <LOD i | <LOD i |
Sulfamethoxazole | 0.01 | 0.01 | 0.01 | <LOD i | <LOD i | <LOD i | <LOD i | <LOD i | <LOD i |
Trimethoprim | 0.05 | 0.03 | 0.02 | <LOD i | <LOD i | <LOD i | 0.04 | 0.03 | 0.02 |
Lincomycin | 0.04 | 0.03 | 0.02 | <LOD i | <LOD i | <LOD i | 0.26 | 0.16 | 0.13 |
Chlortetracycline | 0.09 | 0.06 | 0.04 | <LOD i | <LOD i | <LOD i | <LOD i | <LOD i | <LOD i |
Doxycycline | <LOD i | <LOD i | <LOD i | <LOD i | <LOD i | <LOD i | 0.17 | 0.11 | 0.09 |
Oxytetracycline | 0.07 | 0.04 | 0.04 | <LOD i | <LOD i | <LOD i | 0.05 | 0.03 | 0.02 |
Tetracycline | <LOD i | <LOD i | <LOD i | <LOD i | <LOD i | <LOD i | <LOD i | <LOD i | <LOD i |
Tilmicosin | 0.03 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 |
EDI (μg/kg bw/day) | %EDI to ADI Ratio iii | ||||||||
---|---|---|---|---|---|---|---|---|---|
Antimicrobial/ADI (μg/kg bw) | Year i | C ii (μg/kg) | 6–9 Years | 10–13 Years | 14–17 Years | 6–9 Years | 10–13 Years | 14–17 Years | Adults 18+ |
Sulfadiazine/0–20 | 2012 | 42.2 | 0.09 | 0.05 | 0.04 | 0.43 | 0.27 | 0.19 | 0.15 |
Sulfadimidine/0–50 | 2016 | 28.4 | 0.06 | 0.04 | 0.02 | 0.12 | 0.07 | 0.05 | 0.04 |
Sulfamethoxazole iv | 2012 | 50.3 | 0.10 | 0.06 | 0.05 | - | - | - | - |
Trimethoprim/12.5 | 2014 | 50.9 | 0.10 | 0.06 | 0.05 | 0.83 | 0.52 | 0.36 | 0.29 |
Lincomycin/0–30 | 2013 | 149.4 | 0.31 | 0.19 | 0.13 | 1.02 | 0.64 | 0.44 | 0.36 |
Chlortetracycline/0–30 | 2012 | 84.6 | 0.17 | 0.11 | 0.08 | 0.58 | 0.36 | 0.25 | 0.20 |
Doxycycline/0–3 | 2017 | 80.5 | 0.16 | 0.10 | 0.07 | 5.47 | 3.43 | 2.38 | 1.93 |
Oxytetracycline/0–30 | 2014 | 64.5 | 0.13 | 0.08 | 0.06 | 0.44 | 0.27 | 0.19 | 0.15 |
Tetracycline/0–30 | 2014 | 28.4 | 0.06 | 0.04 | 0.02 | 0.19 | 0.12 | 0.08 | 0.07 |
Tilmicosin/0–40 | 2015 | 13.2 | 0.03 | 0.02 | 0.01 | 0.07 | 0.04 | 0.03 | 0.02 |
EDI (μg/ kg bw/ day) | %EDI to ADI Ratio iii | ||||||||
---|---|---|---|---|---|---|---|---|---|
Antimicrobial/ADI (μg/kg bw) | Year i | C ii (μg/kg) | 6–9 Year | 10–13 Year | 14–17 Year | 6–9 Year | 10–13 Year | 14–17 Year | Adults 18+ |
Sulfadiazine/0–20 | 2012 | 42.2 | 0.09 | 0.06 | 0.04 | 0.44 | 0.28 | 0.23 | 0.19 |
Sulfadimidine/0–50 | 2016 | 28.4 | 0.06 | 0.04 | 0.03 | 0.12 | 0.07 | 0.06 | 0.05 |
Sulfamethoxazole iv | 2012 | 50.3 | 0.11 | 0.07 | 0.05 | - | - | - | - |
Trimethoprim/12.5 | 2014 | 50.9 | 0.11 | 0.07 | 0.05 | 0.86 | 0.53 | 0.43 | 0.37 |
Lincomycin/0–30 | 2013 | 149.4 | 0.32 | 0.19 | 0.16 | 1.05 | 0.65 | 0.53 | 0.45 |
Chlortetracycline/0–30 | 2012 | 84.6 | 0.18 | 0.11 | 0.09 | 0.59 | 0.37 | 0.30 | 0.25 |
Doxycycline/0–3 | 2017 | 80.5 | 0.17 | 0.11 | 0.09 | 5.65 | 3.51 | 2.86 | 2.41 |
Oxytetracycline/0–30 | 2014 | 64.5 | 0.14 | 0.08 | 0.07 | 0.45 | 0.28 | 0.23 | 0.19 |
Tetracycline/0–30 | 2014 | 28.4 | 0.06 | 0.04 | 0.03 | 0.20 | 0.12 | 0.10 | 0.09 |
Tilmicosin/0–40 | 2015 | 13.2 | 0.03 | 0.02 | 0.01 | 0.07 | 0.04 | 0.04 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyriakides, D.; Lazaris, A.C.; Arsenoglou, K.; Emmanouil, M.; Kyriakides, O.; Kavantzas, N.; Panderi, I. Dietary Exposure Assessment of Veterinary Antibiotics in Pork Meat on Children and Adolescents in Cyprus. Foods 2020, 9, 1479. https://doi.org/10.3390/foods9101479
Kyriakides D, Lazaris AC, Arsenoglou K, Emmanouil M, Kyriakides O, Kavantzas N, Panderi I. Dietary Exposure Assessment of Veterinary Antibiotics in Pork Meat on Children and Adolescents in Cyprus. Foods. 2020; 9(10):1479. https://doi.org/10.3390/foods9101479
Chicago/Turabian StyleKyriakides, Demetra, Andreas C. Lazaris, Konstantinos Arsenoglou, Maria Emmanouil, Olympia Kyriakides, Nikolaos Kavantzas, and Irene Panderi. 2020. "Dietary Exposure Assessment of Veterinary Antibiotics in Pork Meat on Children and Adolescents in Cyprus" Foods 9, no. 10: 1479. https://doi.org/10.3390/foods9101479
APA StyleKyriakides, D., Lazaris, A. C., Arsenoglou, K., Emmanouil, M., Kyriakides, O., Kavantzas, N., & Panderi, I. (2020). Dietary Exposure Assessment of Veterinary Antibiotics in Pork Meat on Children and Adolescents in Cyprus. Foods, 9(10), 1479. https://doi.org/10.3390/foods9101479