Rapid Authentication of 100% Italian Durum Wheat Pasta by FT-NIR Spectroscopy Combined with Chemometric Tools
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pasta Samples
2.2. FT-NIR Spectroscopy Analysis and Multivariate Statistical Analysis
2.2.1. Principal Component Analysis (PCA)
2.2.2. Principal Component-Linear Discriminant Analysis (PC-LDA)
2.2.3. Partial Least-Squares Discriminant Analysis (PLS-DA)
2.2.4. Support Vector Machine Classification (SVMc)
2.2.5. Evaluation of Classification Performance
3. Results and Discussion
3.1. Spectral Information
3.2. PCA
3.3. Supervised Classification Models
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kill, R.C. Chapter 1: Introduction. In Pasta and Semolina Technology; Kill, R.C., Turnbull, K., Eds.; Blackwell Science Ltd.: Oxford, UK, 2001; pp. 1–10. [Google Scholar]
- International Pasta Organization (IPO). The World Pasta Industry Status Report 2014; International Pasta Organization (IPO): Rome, Italy, 2014. [Google Scholar]
- Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004. Off. J. 2011, L304, 18–63.
- Italian law n. 166 of 20 November 2009. Conversione in legge, con modificazioni, del decreto legge 25 settembre 2009, n. 135, recante disposizioni urgenti per l’attuazione di obblighi comunitari e per l’esecuzione di sentenze della Corte di giustizia delle Comunità europee. Italian Official Gazette, 24 November 2009; 26–74. [Google Scholar]
- European Commission Implementing Regulation (EU) 2018/775 of 28th May 2018 laying down rules for the application of Article 26(3) of Regulation (EU) No 1169/2011 of the European Parliament and of the Council on the provision of food information to consumers, as regards the rules for indicating the country of origin or place of provenance of the primary ingredient of a food. Off. J. 2018, L131, 8–11.
- Italian Ministerial Decree of 26 July 2017. Indicazione dell’origine, in etichetta, del grano duro per paste di semola di grano duro. The Italian Official Gazette, 17 August 2017; 16–18. [Google Scholar]
- MiPAAF. Ministry of Agricultural, Food and Forestry Policies. Etichettatura, Mipaaf e Mise: Firmata Proroga per Origine Obbligatoria per Pasta, Riso e Derivati del Pomodoro. 2020. Available online: https://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/15269 (accessed on 27 July 2020).
- Graziano, S.; Marando, S.; Prandi, B.; Boukid, F.; Marmiroli, N.; Francia, E.; Pecchioni, N.; Sforza, S.; Visioli, G.; Gullì, M. Technological quality and nutritional value of two durum wheat varieties depend on both genetic and environmental factors. J. Agric. Food Chem. 2019, 67, 2384–2395. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Guo, B.; Wei, Y.; Zhang, B. Effects of grown origin, genotype, harvest year, and their interactions of wheat kernels on near infrared spectral fingerprints for geographical traceability. Food Chem. 2014, 152, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Cavanna, D.; Righetti, L.; Elliott, C.; Suman, M. The scientific challenges in moving from targeted to non-targeted mass spectrometric methods for food fraud analysis: A proposed validation workflow to bring about a harmonized approach. Trends Food Sci. Technol. 2018, 80, 223–241. [Google Scholar] [CrossRef]
- Cavanna, D.; Loffia, C.; Dall’Asta, C.; Suman, M. A non-targeted high-resolution mass spectrometry approach for the assessment of the geographical origin of durum wheat. Food Chem. 2020, 317, 126366. [Google Scholar] [CrossRef] [PubMed]
- Danezis, G.P.; Tsagkaris, A.S.; Camin, F.; Brusic, V.; Georgiou, C.A. Food authentication: Techniques, trends & emerging approaches. TRAC-Trend Anal. Chem. 2016, 85, 123–132. [Google Scholar]
- McGrath, T.F.; Haughey, S.A.; Patterson, J.; Fauhl-Hassek, C.; Donarski, J.; Alewijn, M.; van Ruth, S.; Elliott, C.T. What are the scientific challenges in moving from targeted to non-targeted methods for food fraud testing and how can they be addressed?—Spectroscopy case study. Trends Food Sci. Technol. 2018, 76, 38–55. [Google Scholar] [CrossRef]
- Medina, S.; Perestrelo, R.; Silva, P.; Pereira, J.A.M.; Câmara, J.S. Current trends and recent advances on food authenticity technologies and chemometric approaches. Trends Food Sci. Technol. 2019, 85, 163–176. [Google Scholar] [CrossRef]
- Medina, S.; Pereira, J.A.; Silva, P.; Perestrelo, R.; Câmara, J.S. Food fingerprints—A valuable tool to monitor food authenticity and safety. Food Chem. 2019, 278, 144–162. [Google Scholar] [CrossRef]
- Morin, J.F.; Lees, M.; Vermeulen, P.; Baeten, V.; Maestri, E.; Marmiroli, N. Cereals and cereal-based products. In Food Integrity Handbook. A Guide to Food Authenticity Issues and Analytical Solutions; Morin, J.F., Lees, M., Eds.; Eurofins Analytics France: Nantes, France, 2018; pp. 101–114. [Google Scholar]
- Riedl, J.; Esslinger, S.; Fauhl-Hassek, C. Review of validation and reporting of non-targeted fingerprinting approaches for food authentication. Anal. Chim. Acta 2015, 885, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Wadood, S.A.; Boli, G.; Xiaowen, Z.; Hussain, I.; Yimin, W. Recent development in the application of analytical techniques for the traceability and authenticity of food of plant origin. Microchem. J. 2020, 152, 104295. [Google Scholar] [CrossRef]
- Cozzolino, D. Near infrared spectroscopy and food authenticity. In Advances in Food Traceability Techniques and Technologies: Improving Quality throughout the Food Chain; Espineira, M., Santaclara, F.J., Eds.; Woodhead Publishing: Cambridge, UK, 2016; pp. 119–136. [Google Scholar]
- Esteki, M.; Shahsavari, Z.; Simal-Gandara, J. Use of spectroscopic methods in combination with linear discriminant analysis for authentication of food products. Food Control 2018, 91, 100–112. [Google Scholar] [CrossRef]
- Manley, M.; Baeten, V. Modern Techniques for Food Authentication, 2nd ed.; Sun, D.W., Ed.; Elsevier Inc.: Oxford, UK, 2018; pp. 51–102. [Google Scholar]
- Mendez, J.; Mendoza, L.; Cruz-Tirado, J.P.; Quevedo, R.; Siche, R. Trends in application of NIR and hyperspectral imaging for food authentication. Sci. Agropecu. 2019, 10, 143–161. [Google Scholar] [CrossRef]
- De Girolamo, A.; Cortese, M.; Cervellieri, S.; Lippolis, V.; Pascale, M.; Logrieco, A.F.; Suman, M. Tracing the geographical origin of durum wheat by FT-NIR spectroscopy. Foods 2019, 8, 450. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Martin, M.I.; Moncada, G.W.; Gonzalez-Perez, C.; San Martin, N.Z.; Lopez-Gonzalez, F.; Ortega, I.L.; Hernandez-Hierro, J.M. Chilean flour and wheat grain: Tracing their origin using near infrared spectroscopy and chemometrics. Food Chem. 2014, 145, 802–806. [Google Scholar] [CrossRef] [PubMed]
- Quelal-Vasconez, M.A.; Perez-Esteve, E.; Arnau-Bonachera, A.; Barat, J.M.; Talens, P. Rapid fraud detection of cocoa powder with carob flour using near infrared spectroscopy. Food Control 2018, 92, 183–189. [Google Scholar] [CrossRef]
- Teye, E.; Amuah, C.L.Y.; McGrath, T.; Elliot, C. Innovative and rapid analysis for rice authenticity using hand-held NIR spectrometry and chemiometrics. Spectrochim. Acta A 2019, 217, 147–154. [Google Scholar] [CrossRef]
- Wadood, S.A.; Guao, B.; Zhang, X.; Wei, Y. Geographical origin discrimination of wheat kernel and white flour using near-infrared reflectance spectroscopy fingerprinting coupled with chemometrics. Int. J. Food Sci. Technol. 2019, 54, 2045–2054. [Google Scholar] [CrossRef]
- Zhao, H.; Guo, B.; Wei, Y.; Zhang, B. Near infrared reflectance spectroscopy for determination of the geographical origin of wheat. Food Chem. 2013, 138, 1902–1907. [Google Scholar] [CrossRef]
- Biancolillo, A.; Santoro, A.; Firmani, P.; Marini, F. Identification and quantification of turmeric adulteration in egg-pasta by near infrared spectroscopy and chemometrics. Appl. Sci. 2020, 10, 2647. [Google Scholar] [CrossRef] [Green Version]
- De Girolamo, A.; Arroyo, M.C.; Cervellieri, S.; Cortese, M.; Pascale, M.; Logrieco, A.F.; Lippolis, V. Detection of durum wheat pasta adulteration with common wheat by infrared spectroscopy and chemometrics: A case study. LWT-Food Sci. Technol. 2020, 127, 109368. [Google Scholar] [CrossRef]
- De Girolamo, A.; Arroyo, M.C.; Lippolis, V.; Cervellieri, S.; Cortese, M.; Pascale, M.; Logrieco, A.F.; von Holst, C. A simple design for the validation of a FT-NIR screening method: Application to the detection of durum wheat pasta adulteration. Food Chem. 2020, 333, 127449. [Google Scholar] [CrossRef] [PubMed]
- Firmani, P.; La Piscopia, G.; Bucci, R.; Marini, F.; Biancolillo, A. Authentication of P.G.I. Gragnano pasta by near infrared (NIR) spectroscopy and chemometrics. Microchem. J. 2020, 152, 104339. [Google Scholar] [CrossRef]
- Firmani, P.; Nardecchia, A.; Nocente, F.; Gazza, L.; Marini, F.; Biancolillo, A. Multi-block classification of Italian semolina based on Near Infrared Spectroscopy (NIR) analysis and alveographic indices. Food Chem. 2020, 309, 125677. [Google Scholar] [CrossRef] [PubMed]
- Stuart, B.H. Spectral Analysis. In Infrared Spectroscopy: Fundamentals and Applications; John Wiley & Sons, Inc.: Chichester, UK, 2004; pp. 45–70. [Google Scholar]
- Ballabio, D.; Todeschini, R. Multivariate classification for qualitative analysis. In Infrared Spectroscopy for Food Quality Analysis and Control; Sun, D.W., Ed.; Academic Press: Burlington, MA, USA; Elsevier: Burlington, MA, USA, 2009; pp. 83–104. [Google Scholar]
- Kennard, R.W.; Stone, L.A. Computer Aided design of experiments. Technometrics 1969, 11, 137–148. [Google Scholar] [CrossRef]
- Defernez, M.; Kemsley, E.K. The use and misuse of chemometrics for treating classification problems. Trend Anal. Chem. 1997, 16, 216–221. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Learning Theory, 2nd ed.; Springer: New York, NY, USA, 1999. [Google Scholar]
- Oliveri, P.; Downey, G. Multivariate class modeling for the verification of food-authenticity claims. TRAC-Trend Anal. Chem. 2012, 35, 74–86. [Google Scholar] [CrossRef]
- Shenk, J.S.; Workman, J.J.; Westerhaus, M.O. Application of NIR Spectroscopy to Agricultural Products. In Handbook of Near-Infrared Analysis, 3rd ed.; Burns, D.A., Ciurczak, E.W., Eds.; Taylor & Francis Group: Boca Raton, FL, USA, 2008; pp. 347–386. [Google Scholar]
- Manley, M. Near-infrared spectroscopy and hyperspectral imaging: Non-destructive analysis of biological materials. Chem. Soc. Rev. 2014, 43, 8200–8214. [Google Scholar] [CrossRef] [Green Version]
- Narducci, V.; Finotti, E.; Galli, V.; Carcea, M. Lipids and fatty acids in Italian durum wheat (Triticum durum Desf.) cultivars. Foods 2019, 8, 223. [Google Scholar] [CrossRef] [Green Version]
Classes | Pasta 100% ITA Wheat | Pasta MIX Wheat |
---|---|---|
Total samples | 176 | 185 |
Training set | 120 | 118 |
Test set | 56 | 67 |
Sample Set | Classification Models | Sensitivity | Specificity | Accuracy |
---|---|---|---|---|
Training set | PC-LDA | 98% | 95% | 96% |
SVMc | 93% | 85% | 89% | |
PLS-DA | 94% | 77% | 86% | |
Test set | PC-LDA | 95% | 94% | 94% |
SVMc | 96% | 82% | 89% | |
PLS-DA | 88% | 82% | 85% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Girolamo, A.; Cervellieri, S.; Mancini, E.; Pascale, M.; Logrieco, A.F.; Lippolis, V. Rapid Authentication of 100% Italian Durum Wheat Pasta by FT-NIR Spectroscopy Combined with Chemometric Tools. Foods 2020, 9, 1551. https://doi.org/10.3390/foods9111551
De Girolamo A, Cervellieri S, Mancini E, Pascale M, Logrieco AF, Lippolis V. Rapid Authentication of 100% Italian Durum Wheat Pasta by FT-NIR Spectroscopy Combined with Chemometric Tools. Foods. 2020; 9(11):1551. https://doi.org/10.3390/foods9111551
Chicago/Turabian StyleDe Girolamo, Annalisa, Salvatore Cervellieri, Erminia Mancini, Michelangelo Pascale, Antonio Francesco Logrieco, and Vincenzo Lippolis. 2020. "Rapid Authentication of 100% Italian Durum Wheat Pasta by FT-NIR Spectroscopy Combined with Chemometric Tools" Foods 9, no. 11: 1551. https://doi.org/10.3390/foods9111551
APA StyleDe Girolamo, A., Cervellieri, S., Mancini, E., Pascale, M., Logrieco, A. F., & Lippolis, V. (2020). Rapid Authentication of 100% Italian Durum Wheat Pasta by FT-NIR Spectroscopy Combined with Chemometric Tools. Foods, 9(11), 1551. https://doi.org/10.3390/foods9111551