Strategies for Microbial Decontamination of Fresh Blueberries and Derived Products
Abstract
:1. Introduction
2. Methodology
3. Chemical Strategies
3.1. Chlorine Dioxide
3.2. Ozone
3.3. Peracetic Acid
3.4. Hydrogen Peroxide and Organic Acids
3.5. Edible Coatings
4. Physical Strategies
4.1. Ultraviolet Light
4.2. Pulsed Light
4.3. High Hydrostatic Pressure
4.4. Pulsed Electric Field
4.5. Cold Plasma
4.6. Ionizing Irradiation
4.7. Ultrasound
5. Biological Strategies
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CFU | colony-forming units |
COD | chemical oxygen demand |
CP | cold plasma |
EOW | electrolyzed oxidizing water |
FCV | feline calcivirus |
FDA | Food and Drug Administration |
HAV | hepatitis A virus |
HHP | high hydrostatic pressure |
HuNoV | human norovirus |
MNV | murine norovirus |
MS | manosonication |
MT | manothermal |
MTS | manothermosonication |
NTU | nephelometric turbidity unit |
PAA | peracetic acid |
PEF | pulsed electric field |
PFU | plaque forming units |
PL | pulsed light |
SDS | sodiumdodecyl sulfate |
TAB | total aerobic bacteria |
TPC | total plate count |
TS | thermosonication |
TV | tulane virus |
US | ultrasound |
UV | ultraviolet light |
WPL | water-assisted pulsed light |
WUV | water-assisted UV |
YMC | yeasts and moulds count. |
Appendix A
Strategies | Advantages | Limitations | Reference |
---|---|---|---|
Chlorine dioxide (ClO2) | Gaseous chlorine dioxide (gClO2)
| Gaseous gClO2
| [31,33,35] |
Ozone (O3) |
|
| [33,45,49] |
Peracetic acid (PAA) |
|
| [33,53] |
Hydrogen peroxide (H2O2) |
|
| [33,58] |
Organic acids |
|
| [33] |
Edible coatings |
|
| [45,66] |
Ultraviolet (UV) |
|
| [33,83] |
Pulsed light (PL) |
|
| [35,94] |
High hydrostatic pressure (HHP) |
|
| [33] |
Pulsed electric field (PEF) |
|
| [109,110] |
Cold plasma (CP) |
|
| [33,116] |
Ionizing irradiation |
|
| [33,122] |
Ultrasound (US) |
|
| [33,35] |
Biological compounds |
|
| [27,33] |
Chemical Disinfectants | Microorganisms | Treatment Conditions | Treatment Efficiency (log Reduction) | Reference |
---|---|---|---|---|
Gaseous chlorine dioxide (gClO2) | TAB, YMC, E. coli, C. acutatum | 0.3–0.35 gClO2 per pad | TAB and YMC: Storage at 20 °C: ≥1.3 log CFU/g Storage at 10 °C for 8 d: ≥1.7 log CFU/g Storage at 10 °C:
| [40] |
gClO2 | Shiga toxin-producing E. coli (STEC), Salmonella, and L. monocytogenes | Cumulative gClO2 at 1529 ppm-h | STEC, Salmonella and L. monocytogenes, respectively:
| [37] |
gClO2 | TV | gClO2 produced by acidified NaClO2 solutions ranging from 0.1–10 mg. Treatment times: 5–330 min | gClO2 (0.1 mg NaClO2):
| [39] |
gClO2 | TV | 0.63–4.40 (ppm-h/g product) | 0.63 (ppm-h/g):
| [38] |
gClO2 | S. enterica serovars | 3.55–6 (ppm/h/g product) | 5.5 (ppm/h/g):
| [32] |
gClO2 and Ozone (O3) | STEC, S. enterica, L. monocytogenes | gClO2: 0.04, 0.07, 0.15 mg ClO2/g produce for a 5.0 h exposure. | gClO2 was the best treatment:
| [51] |
Sodium hypochlorite (NaClO), ClO2 and Peracetic acid (PAA) | MNV-3 | NaClO: 50 ppm ClO2 20 ppm PAA: 85 ppm Treatment time: 1 min | With organic matter simulation:
| [42] |
ClO2 | TAB and YMC | 100 ppm for 10 min |
| [41] |
Chlorine and O3 | TPC and YMC | Chlorine spray: 100 mg/L. Aqueous ozone sprays: 1 mg/L. Treatment time: 60 s. | Chlorine was the most effective treatment after 12 months at −18 °C.
| [138] |
Electrolyzed oxidizing water (EOW), Ultraviolet light (UV), O3 and O3 + UV | E. coli O157:H7 | EOW: 46.1 mg/L of residual chlorine for 4–26 s. UV: 20 mW/cm2 for 1–10 min. O3: 4000 mg/L for 1 min O3 + UV: 7.95 mW/cm2 for 2 min + 4000 mg/L for 1 min. | On calyx and skin of blueberries, respectively:
| [52] |
EOW, Bleach solution, ozonated water and FIT® solution | E. coli O157:H7 | EOW: 30 mg/L free chlorine. Bleach solution: 100 mg/L free chlorine. Ozonated water: 1.5 mg/L O3. FIT® solution (levulinic acid). Treatment time: 1–5 min |
| [49] |
Controlled atmosphere storage or O3 | L. monocytogenes | Controlled atmosphere storage: 5% O2, 15% CO2, 80% N2. Ozone gas: 4 ppm at 4 °C or 2.5 ppm at 12 °C. Treatment time: 10 days at 4 °C or 12 °C | Ozone gas was the most effective treatment:
| [50] |
PAA, acidic EOW, near neutral EOW, bleach and lactic acid. | Strains of E. coli O157:H7, S. Typhimurium DT104, and L. monocytogenes. | PAA: 45–100 mg/L. Acidic EOW, near neutral EOW, and bleach: 100 mg/L free chlorine. Lactic acid: 2%. Treatment time: 5 min | PAA at 100 mg/L was the best treatment.
| [55] |
Chlorine and PAA | L. monocytogenes strains, TPC and YMC | Chlorine: 100 ppm. 0.4% Neo-Pure (PAA 450 ppm). Treatments with sanitizers for 2 min combined with storage at 4 °C (14 d) and at ×15 °C (28 d). | Nero-Pure treatments were more efficient than chlorine. Dip-inoculated berries:
| [56] |
Sodiumdodecyl sulfate (SDS) in combination with antimicrobial agents. | S. enterica serovar Typhimurium and YMC | Chlorine: 4–200 ppm. Lactic acid, acetic acid, and citric acid: 0.05 mg/mL or 0.5 mg/mL. H2O2: 50–200 ppm. All treatments combined or not with SDS: 50–500 ppm. Treatment time: 1 or 5 min. | 0.5 mg/mL acetic acid + 5000 ppm SDS (5 min):
| [61] |
Electro-activated solutions of weak organic acid salts | L. monocytogenes. E. coli O157:H7, Alternaria alternata, Fusarium oxysporum, and B. cinerea. | Electro-activated solutions of 3% (w/v): potassium acetate, potassium citrate, and calcium L-lactate. Treatment time: 0.5–5 min. | The reduction was dependent on the treatment time. All solutions (5 min):
| [62] |
Limonene and liposomal nanoparticles with limonene. | YMC | 50 µM limonene and liposomal nanoparticles with 50 µM limonene | Liposomes: >60% reduction of deterioration at the end of 9 weeks at 4 °C. | [79] |
Hot water | TPC and YMC | Hot water: 60–90 °C with (0.05 and 0.1%) or without Boxyl ® (atomic oxygen). Treatment time: 10–30 s. | TAB reduction increased with temperature. YMC reduction increased with temperature and contact time. 65 to 70 °C (10 to 15 s):
| [139] |
Edible coatings | TAB and YMC | Coating with 1% chitosan, 1% acetic acid, 0.75% glycerol, 0.25% Tween-20, and 0.1% to 0.5% essential oils (carvacrol, cinnamaldehyde, and trans-cinnamaldehyde). | Chitosan + 0.5% trans-cinnamaldehyde: TAB and YMC: 2–3 log CFU/g at 7 d at 10 °C. | [72] |
Edible coatings | YMC | Quinoa protein (0.62% w/v), sunflower oil (3.8% w/v), and chitosan (2% w/v) in a ratio of 1:1 (v/v). | Coating delayed YMC during 32 d at 4 °C Control samples showed an increase of YMC (1.8–3.1 log CFU/g) between 20 and 35 d of storage at 4 °C. | [73] |
Edible coatings | YMC | 2% chitosan coating. 1.5% sodium alginate coating. 1.5% chitosan and 1% sodium alginate coating | After 45 d at 0 °C: Chitosan coating (both cultivars):
| [63] |
Edible coatings | Botrytis cinerea artificially inoculated and YMC | Chitosan or chitosan coating + Aloe vera. 0.5% (w/v) chitosan, 0.5% (v/v) glycerol, 0.1% (w/v) Tween 80, and 0.5% (v/v) Aloe vera liquid fraction. | After 25 days at 5 °C: YMC in non-inoculated blueberries:
| [74] |
Edible coatings | YMC | 2% chitosan coating. 1.5% sodium alginate coating. 1.5% chitosan and 1% sodium alginate coating. | After 45 days at 0 °C: Chitosan edible coating was the best treatment:
| [70] |
Technology | Microorganisms | Food Matrix | Treatment Conditions | Treatment Efficiency (log Reduction) | Reference |
---|---|---|---|---|---|
Water-assisted UV (WUV) | MNV-1 | Fresh blueberries | UV dose: 12.000 J/m2. Treatment time: 1–5 min. Treatments under different conditions of organic load. | Small scale clear water/2 min:
| [83] |
WUV | Strains of E. coli O157:H7 and Salmonella enterica | Fresh blueberries | UV: 7.9 mW/cm2 WUV: 4.6 mW/cm2 Treatment time: 2–10 min. 100 ppm of SDS, chlorinated water (10 ppm free chlorine), or 0.5% levulinic acid for 10 min with or without WUV (7.9 W/cm2). | WUV treatment > efficiency than UV (average >1.4 log CFU/g for spot-inoculated blueberries). UV treatments < efficiency (<2 log CFU/g for dip inoculated blueberries). Non-significant effect of added chemicals in dip-inoculated on blueberries. | [87] |
WUV | Salmonella enterica strains | Fresh blueberry | UV in turbid tap water with or without 10 ppm free chlorine, 80 ppm PAA and 1% or 2% H2O2. UV intensity: 23 and 28 mW/cm2. Treatment time: 2 min | WUV-Chlorine and WUV-PAA were the best treatments. Large-scale study WUV-PAA and WUV-chlorine:
| [88] |
WUV | Salmonella enterica strains | Blueberries | Submersible intensity: 4 mW/cm2 Treatment time: 2 min | 1.8–2.0 log CFU/g | [85] |
WUV | Salmonella enterica strains | Blueberries | Larger-scale study: Intensity WUV: 2–29 mW/cm2 Treatment time: 1 or 10 min | 10-min WUV (29 mW/cm2) Spot and Dip inoculated products:
| [86] |
UV | E. coli O157:H7, serovars of Salmonella enterica, L. monocytogenes, Enterococcus faecium, E. coli P1, Listeria innocua, MS2 bacteriophage HAV, and MNV. | Fresh and frozen blueberries. | 20 s (212 ± 25 mJ/cm2) 60 s (650 ± 71 mJ/cm2) 120 s (1331 ± 103 mJ/cm2) | HAV and MNV:
| [84] |
UV-TiO2 photocatalysis | Escherichia coli K12 | Fresh blueberries | UV-TiO2 photocatalysis: 4.5 mW/cm2. UV: 6.0 mW/cm2. Treatment time: 0–10 min | UV-TiO2 photocatalysis > efficiency UV.
| [91] |
405-nm monochromatic blue light | TV | Fresh blueberries | Intensity: 4.2 mW/cm2. Treatment time: 5–30 min | Treatment times resulted in a reduction of <0.2 log PFU/mL.
| [140] |
Water-assisted pulsed light (WPL) | YMC, strains of E. coli O157:H7 and Salmonella enterica. | Fresh blueberries | Intensity: 5.0–56.1 J/cm2 Treatment time: 5–60 s | The inactivation was time-dependent
WPL achieved a limited reduction of YMC. | [23] |
WPL | Strains of Salmonella enterica. | Fresh blueberries | PL combined or not with 1% H2O2 and under different organic loading conditions. High PL: 0.225–0.298 J/cm2-pulse. Low PL: 0.102–0.140 J/cm2-pulse. Treatment time: 0.5–1 min. | No significant differences between the low and high creep PL treatments. WPL + 1% H2O2 (1 min) > efficiency for reducing Salmonella in clear water by >5.6 log CFU/g. The high organic load condition did not affect the efficacy of the WPL-H2O2 for 1 min. | [99] |
WPL | Salmonella enterica serotypes and YMC | Fresh blueberries | PL dose: 6 J/cm2 (30 s). WPL dose: 9 J/cm2 (45 s). | WPL was the most effective treatment:
| [98] |
Pulsed light (PL) | MNV-1, Escherichia coli O157:H7 and Salmonella Newport | Fresh blueberries | Intensity: 5.9–22.5 J/cm2 Treatment time: 6–24 s. | Increasing PL fluence yielded significantly higher reductions for Salmonella.
| [97] |
WPL and WUV | Strains of Salmonella | Blueberry | WUV: ~13 or 28 mW/cm2. WPL: ~0.15 or 0.30 J/cm2 per pulse. Treatment time: 1 or 2 min | Spot-inoculated:
| [100] |
High hydrostatic pressure (HHP) | HuNoV GI.1 | Fresh blueberries | Intensity: 400–600 MPa (wet-state samples) and 600 MPa (dry-state samples). Pressure treatments: 1 or 21 °C for 2 min. | Pressure inactivation was more effective at lower temperature and when blueberries were surrounded by water.
| [103] |
HHP | TV and MNV-1 | Fresh blueberries | Intensity: 250–600 MPa (4, 21 or 35 °C). Treatment time: 2 min. Specific pressure units according to virus and sample. | Dry state blueberries:
| [104] |
High-Pressure Homogenization | MNV-1, feline calicivirus-F9 and bacteriophage MS2 | Blueberry juice | Intensity: 100–300 MPa. Treatment time: <2 s |
| [141] |
HHP | HuNoV GI.1 and GII.4 | Strawberries, blueberries, raspberries, and their purees | Intensity: 250 to 650 MPa (0 °C). Treatment time: 2 min | Highest reduction observed in blueberries:
| [102] |
HHP | O157 and Non-O157 Serogroups of Shiga Toxin-Producing E. coli | Blueberry juice | Intensity: 450 Mpa at 4 and 45 °C with or without antimicrobials and habituated strains for 3-days. After habituation at 4 °C: 0.5% of carvacrol and caprylic acid. After habituation at 45 °C: 0.1% of carvacrol and caprylic acid. Treatment time: 1–7 min | Effects of habituation and antimicrobials at 45 °C were less pronounced than at 4 °C. 450 MPa at 4 °C for 7 min
| [105] |
Pulsed electric field (PEF) | E. coli K12 and Listeria innocua inoculated and natural microbiota | Fresh blueberries | PEF: 2 kV/cm, 1 µs pulse width and 100 pulses per second, alone or in combination with 0.25–0.5% PAA. Treatment time: 2–4 min. | Increased efficiency of PEF + PAA.
| [110] |
PEF | S. cerevisiae, E. coli, and S. aureus | Blueberry juice | Voltage: 100–500 V. Pulse duration: 50–250 μs. Pulse number: 20–100 pulses. | Increased efficiency with voltage, pulse duration and pulse number. 500 V for 200 μs and 80 pulses:
| [109] |
Cold Plasma (CP) | TPC and YMC | Fresh blueberries | Atmospheric CP: 15–120 s |
| [115] |
CP | TV and MNV-1 | Fresh blueberries | Cold plasma alone with 4 cubic feet/minute (cfm) or with 7 cfm of ambient-temperature air. Treatment time: 15–120 s | Virus inactivation was dependent on treatment time. Addition of 7 cfm of ambient air:
| [116] |
CP | TPC | Fresh blueberries | Microwave power: 9, 7, and 5 W; argon flow of 7 L/min. Treatment time: 15–60 s | At 5 and 7 W (30 s): >1 log. | [142] |
CP | Bacillus sp. | Blueberry juice | CP at 11 kV and 1000 Hz Oxygen: 0, 0.5% and 1% Treatment time: 2–6 min | 7.2 log (6 min y O2 1%) | [119] |
Ionizing radiation | YMC, strains of Salmonella enterica and Listeria monocytogenes. | Fresh blueberries (Vaccinium corymbosum cv. Bluecrop) | Gamma irradiation: 0.4 kGy | Irradiation did not significantly affect YMC.
| [123] |
Ionizing radiation | Toxoplasma gondii oocysts | Fresh blueberries | Gamma radiation: 0.2–0.6 kGy at 4 °C. | All treatments produced reductions of 4 log PFU/g beyond the detection limit of 1 log PFU/g. | [124] |
Ionizing radiation | E. coli K-12 | Fresh blueberries (Vaccinium corymbosum cvs. Collins, Bluecrop) | Electron-beam: 0.5–3 kGy | E. coli K-12 gradually decreased with the increased dose. With 3.13 kGy:
| [125] |
Cavitation | TPC, YMC, and Heat-resistant mould | Blueberry Puree | Heating: at 40 °C (stage 1), at 80 °C (stage 2), after 10 min holding at 80 °C (stage 3), and pasteurization from 86 to 96 °C (stage 4) (continuous or steady state with 1 to 2 min holding time). | Heat-resistant moulds were inactivated at 94 to 96 °C within 1 to 2 min holding time.
| [143] |
Ultrasound (US) | Aspergillus ochraceus, Penicillium expansum, Rhodotorula sp., Saccharomyces cerevisiae, and Alicyclobacillus acidoterrestris. | Apple, cranberry, and blueberry juice and nectar | Intensity: 20 kHz. Amplitude: 60–120 µm. Temperature: 20–60 °C. Treatment time: 3–9 min. | US treatments at 60 °C for 3, 6 and 9 min:
| [129] |
US | TPC, YMC and coliforms | Blueberry juice | Frequency: 20 kHz Flow: 24 mL/min or 93.5 mL/min. Amplitude: 40, 80, 100%. | US 93.5 mL/min/100 A:
| [144] |
Combination of US, heat, and pressure. | Escherichia coli O157:H7 | Blueberry juice | Heat: 30–80 °C (10 min). 80 °C (5–20 min). Sonication: 280–700 W, 20 °C for 10 min 280–700 W, 30–60 °C for 10 min. TS: 40 °C, 560 W. MT: 350 MPa, 40 °C. MS: 560 W, 5 min/350 MPa. MTS: 560 W, 5 min, 40 °C/350 MPa, 40 °C for 5–20 min. | Heat inactivation at 80 °C > than the other temperatures
| [130] |
US combined with antimicrobial compounds | E. coli K12 and L. innocua | Fresh blueberries | US: 1 MHz or 20 kHz alone or combined with citral 10 mM. Treatment time: 30 or 15 min | Citral + US 1 MHz (30 min):
| [130] |
Cooling | Serovars of Salmonella enterica | Southern highbush blueberries (mixture of “Farthing”, “Sweetcrisp”, and “Emerald”) | Forced-air cooling: 60–90 min. Hydrocooling with no sanitizer: 6 min. Hydrocooling with 150 ppm free chlorine: 6 min | Hydrocooling with sanitizer was the most effective treatment: >4 log CFU/g at day 0. Hydrocooling with sanitizer + 21 d storage: >5 log CFU/g. | [145] |
References
- Jimenez-Garcia, S.N.; Guevara-Gonzalez, R.G.; Miranda-Lopez, R.; Feregrino-Perez, A.A.; Torres-Pacheco, I.; Vazquez-Cruz, M.A. Functional properties and quality characteristics of bioactive compounds in berries: Biochemistry, biotechnology, and genomics. Food Res. Int. 2013, 54, 1195–1207. [Google Scholar] [CrossRef]
- Nile, S.H.; Park, S.W. Edible berries: Bioactive components and their effect on human health. Nutrition 2014, 30, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, A. Berry anthocyanin intake and cardiovascular health. Mol. Asp. Med. 2018, 61, 76–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Istek, N.; Gurbuz, O. Investigation of the impact of blueberries on metabolic factors influencing health. J. Funct. Foods 2017, 38, 298–307. [Google Scholar] [CrossRef]
- Neto, C.C. Cranberry and blueberry: Evidence for protective effects against cancer and vascular diseases. Mol. Nutr. Food Res. 2007, 51, 652–664. [Google Scholar] [CrossRef]
- Norberto, S.; Silva, S.; Meireles, M.; Faria, A.; Pintado, M.; Calhau, C. Blueberry anthocyanins in health promotion: A metabolic overview. J. Funct. Foods 2013, 5, 1518–1528. [Google Scholar] [CrossRef]
- Ryser, E.T.; Marth, E.H. Listeria, Listeriosis, and Food Safety; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Calder, L.; Simmons, G.; Thornley, C. An outbreak of hepatitis A associated with consumption of raw blueberries. Epidemiol. Infect. 2003, 131, 745–751. [Google Scholar] [CrossRef]
- Luna-Gierke, R.E.; Griffin, P.M.; Gould, L.H.; Herman, K.; Boop, C.A.; Strockbine, N.; Mody, R.K. Outbreaks of non-O157 Shiga toxin-producing Escherichia coli infection: USA. Epidemiol. Infect. 2014, 2270–2280. [Google Scholar] [CrossRef]
- National Outbreak Reporting System (NORS). Dashboard CDC. Available online: https://wwwn.cdc.gov/norsdashboard/ (accessed on 31 August 2020).
- Miller, B.D.; Rigdon, C.E.; Robinson, T.J.; Hedberg, C.; Smith, K.E. Use of Global Trade Item Numbers in the Investigation of a Salmonella Newport Outbreak Associated with Blueberries in Minnesota, 2010. J. Food Prot. 2013, 76, 762–769. [Google Scholar] [CrossRef]
- RASFF. Portal. Available online: https://webgate.ec.europa.eu/rasff-window/portal/?event=notificationDetail&NOTIF_REFERENCE=2020.0759 (accessed on 31 August 2020).
- RASFF. Portal. Available online: https://webgate.ec.europa.eu/rasff-window/portal/?event=notificationDetail&NOTIF_REFERENCE=2018.3574 (accessed on 31 August 2020).
- EFSA. Scientific Opinion on the risk posed by pathogens in food of non-animal origin. Part 2 (Salmonella and Norovirus in berries) 1. EFSA J. 2014, 12, 1–95. [Google Scholar] [CrossRef] [Green Version]
- Gazula, H.; Quansah, J.; Allen, R.; Scherm, H.; Li, C.; Takeda, F.; Chen, J. Microbial loads on selected fresh blueberry packing lines. Food Control 2019, 100, 315–320. [Google Scholar] [CrossRef]
- Quansah, J.K.; Gazula, H.; Holland, R.; Scherm, H.; Li, C.; Takeda, F.; Chen, J. Microbial quality of blueberries for the fresh market. Food Control 2019, 100, 92–96. [Google Scholar] [CrossRef]
- Eckert, J.W.; Ogawa, J.M. The Chemical Control of Postharvest Diseases: Deciduous Fruits, Berries, Vegetables and Root/Tuber Crops. Annu. Rev. Phytopathol. 1988, 26, 433–469. [Google Scholar] [CrossRef]
- Tournas, V.H.; Katsoudas, E. Mould and yeast flora in fresh berries, grapes and citrus fruits. Int. J. Food Microbiol. 2005, 105, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Chen, C.; Yin, J. Effect of allyl isothiocyanate on antioxidants and fruit decay of blueberries. Food Chem. 2010, 120, 199–204. [Google Scholar] [CrossRef]
- Forney, C.F. Postharvest issues in blueberry and cranberry and methods to improve market-life. Acta Hortic. 2009, 810, 785–798. [Google Scholar] [CrossRef]
- USHBC. Available online: Blueberries-retail-channel-w-Wild.vLogo_.pdf (accessed on 31 August 2020).
- CBI-Centre for the Promotion of Imports from Developing Countries. The European Market Potential for Fresh Blueberries. Available online: https://www.cbi.eu/market-information/fresh-fruit-vegetables/blueberries/market-potential (accessed on 31 August 2020).
- Huang, Y.; Chen, H. A novel water-assisted pulsed light processing for decontamination of blueberries. Food Microbiol. 2014, 40, 1–8. [Google Scholar] [CrossRef]
- Sy, K.V.; Watters, K.H.; Beuchat, L. Efficacy of Gaseous Chlorine Dioxide as a Sanitizer for Killing Salmonella, Yeasts, and Molds on Blueberries, Strawberries, and Raspberries. J. Food Prot. 2005, 68, 1165–1175. [Google Scholar] [CrossRef]
- Crowe, K.M.; Bushway, A.A.; Bushway, R.J.; Crowe, K.M.; Bushway, A.A. Effects of Alternative Postharvest Treatments on the Microbiological Quality of Lowbush Blueberries. Small Fruits Rev. 2005, 4, 29–39. [Google Scholar] [CrossRef]
- Lafarga, T.; Colás-medà, P.; Abadías, M.; Aguiló-aguayo, I.; Bobo, G. Strategies to reduce microbial risk and improve quality of fresh and processed strawberries: A review. Innov. Food Sci. Emerg. Technol. 2019, 52, 197–212. [Google Scholar] [CrossRef] [Green Version]
- Meireles, A.; Giaouris, E.; Simões, M. Alternative disinfection methods to chlorine for use in the fresh-cut industry. FRIN 2016, 82, 71–85. [Google Scholar] [CrossRef] [Green Version]
- Beuchat, L.R.; Pettigrew, C.A.; Tremblay, M.E.; Roselle, B.J.; Scouten, A.J. Lethality of Chlorine, Chlorine Dioxide, and a Commercial Fruit and Vegetable Sanitizer to Vegetative Cells and Spores of Bacillus cereus and Spores of Bacillus thuringiensis. J. Food Prot. 2004, 67, 1702–1708. [Google Scholar] [CrossRef] [PubMed]
- Olmez, H.; Kretzschmar, U. Potential alternative disinfection methods for organic fresh-cut industry for minimizing water consumption and environmental impact. LWT Food Sci. Technol. 2009, 42, 686–693. [Google Scholar] [CrossRef]
- Wu, V.C.H.; Kim, B. Effect of a simple chlorine dioxide method for controlling five foodborne pathogens, yeasts and molds on blueberries. Food Microbiol. 2007, 24, 794–800. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Baldwin, E.; Bai, J. Applications of gaseous chlorine dioxide on postharvest handling and storage of fruits and vegetables–A review. Food Control 2019, 95, 18–26. [Google Scholar] [CrossRef]
- Annous, B.A.; Buckley, D.; Burke, A. Evaluation of Chlorine Dioxide Gas against Four Salmonella enterica Serovars Artificially Contaminated on Whole Blueberries. J. Food Prot. 2020, 83, 412–417. [Google Scholar] [CrossRef]
- Ramos, B.; Miller, F.A.; Brandão, T.R.S.; Teixeira, P.; Silva, C.L.M. Fresh fruits and vegetables—An overview on applied methodologies to improve its quality and safety. Innov. Food Sci. Emerg. Technol. 2013, 20, 1–15. [Google Scholar] [CrossRef]
- CFR-Code of Federal Regulations Title 21. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=173.300 (accessed on 31 August 2020).
- Deng, L.Z.; Mujumdar, A.S.; Pan, Z.; Vidyarthi, S.K.; Xu, J.; Zielinska, M.; Xiao, H.-W. Emerging chemical and physical disinfection technologies of fruits and vegetables: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2020, 60, 2481–2508. [Google Scholar] [CrossRef]
- Zhang, L.; Yan, Z.; Hanson, E.J.; Ryser, E.T. Efficacy of chlorine dioxide gas and freezing rate on the microbiological quality of frozen blueberries. Food Control 2015, 47, 114–119. [Google Scholar] [CrossRef]
- Chai, H.-E.; Hwang, C.A.; Huang, L.; Wu, V.C.H.; Sheen, L.Y. Feasibility and efficacy of using gaseous chlorine dioxide generated by sodium chlorite-acid reaction for decontamination of foodborne pathogens on produce. Food Control 2020, 108, 106839. [Google Scholar] [CrossRef]
- Kingsley, D.H.; Annous, B.A. Evaluation of Steady-State Gaseous Chlorine Dioxide Treatment for the Inactivation of Tulane virus on Berry Fruits. Food Environ. Virol. 2019, 11, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Kingsley, D.H.; Pérez-pérez, R.E.; Niemira, B.A.; Fan, X. Evaluation of gaseous chlorine dioxide for the inactivation of Tulane virus. Int. J. Food Microbiol. 2018, 273, 28–32. [Google Scholar] [CrossRef]
- Sun, X.; Bai, J.; Ference, C.; Wang, Z.H.E.; Zhang, Y.; Narciso, J.A.N.; Zhou, K. Antimicrobial Activity of Controlled-Release Chlorine Dioxide Gas on Fresh Blueberries 1. J. Food Prot. 2014, 77, 1127–1132. [Google Scholar] [CrossRef]
- Chun, H.H.; Kang, J.H.; Song, K.B. Effects of aqueous chlorine dioxide treatment and cold storage on microbial growth and quality of blueberries. J. Korean Soc. Appl. Biol. Chem. 2013, 56, 309–315. [Google Scholar] [CrossRef]
- Girard, M.; Mattison, K.; Fliss, I.; Jean, J. Efficacy of oxidizing disinfectants at inactivating murine norovirus on ready-to-eat foods. Int. J. Food Microbiol. 2016, 219, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Wang, S.; Xu, J.; Liu, S.; Li, G. Effects of combined aqueous chlorine dioxide and UV-C on shelf-life quality of blueberries. Postharvest Biol. Technol. 2016, 117, 125–131. [Google Scholar] [CrossRef]
- Feliziani, E.; Lichter, A.; Smilanick, J.L.; Ippolito, A. Disinfecting agents for controlling fruit and vegetable diseases after harvest. Postharvest Biol. Technol. 2016, 122, 53–69. [Google Scholar] [CrossRef]
- Huynh, N.K.; Wilson, M.D.; Eyles, A.; Stanley, R.A. Recent advances in postharvest technologies to extend the shelf life of blueberries (Vaccinium sp.), raspberries (Rubus idaeus L.) and blackberries (Rubus sp.). J. Berry Res. 2019, 9, 687–707. [Google Scholar] [CrossRef]
- Bialka, K.L.; Demirci, A. Decontamination of Escherichia coli O157:H7 and Salmonella enterica on blueberries using ozone and pulsed UV-light. J. Food Sci. 2007, 72, 391–396. [Google Scholar] [CrossRef]
- Concha-Meyer, A.; Eifert, J.D.; Williams, R.C.; Marcy, J.E.; Welbaum, G.E. Shelf Life Determination of Fresh Blueberries (Vaccinium corymbosum) Stored under Controlled Atmosphere and Ozone. Available online: https://www.hindawi.com/journals/ijfs/2015/164143/ (accessed on 31 August 2020).
- Jaramillo-Sánchez, G.; Contigiani, E.V.; Castro, M.A.; Hodara, K.; Alzamora, S.M.; Loredo, A.G.; Nieto, A.B. Freshness Maintenance of Blueberries (Vaccinium corymbosum L.) during Postharvest Using Ozone in Aqueous Phase: Microbiological, Structure, and Mechanical issues. Food Bioprocess. Technol. 2019, 12, 2136–2147. [Google Scholar] [CrossRef]
- Pangloli, P.; Hung, Y. Reducing microbiological safety risk on blueberries through innovative washing technologies. Food Control 2013, 32, 621–625. [Google Scholar] [CrossRef]
- Concha-meyer, A.; Eifert, J.; Williams, R.; Marcy, J.; Welbaum, G. Survival of Listeria monocytogenes on Fresh Blueberries (Vaccinium corymbosum) Stored under Controlled Atmosphere and Ozone. J. Food Prot. 2014, 77, 832–836. [Google Scholar] [CrossRef] [PubMed]
- Bridges, D.F.; Rane, B.; Wu, V.C.H. The effectiveness of closed-circulation gaseous chlorine dioxide or ozone treatment against bacterial pathogens on produce. Food Control 2018, 91, 261–267. [Google Scholar] [CrossRef]
- Kim, C.; Hung, Y. Inactivation of E. coli O157: H7 on Blueberries by Electrolyzed Water, Ultraviolet Light, and Ozone. J. Food Sci. 2012, 77, M206–M211. [Google Scholar] [CrossRef] [PubMed]
- Artés, F.; Gómez, P.; Aguayo, E.; Escalona, V.; Artés-hernández, F. Sustainable sanitation techniques for keeping quality and safety of fresh-cut plant commodities. Postharvest Biol. Technol. 51 2009, 51, 287–296. [Google Scholar] [CrossRef]
- Rood, L.; Koutoulis, A.; Bowman, J.P.; Evans, D.E.; Stanley, R.A.; Kaur, M. Control of microbes on barley grains using peroxyacetic acid and electrolysed water as antimicrobial agents. Food Microbiol. 2018, 76, 103–109. [Google Scholar] [CrossRef]
- Singh, P.; Hung, Y.; Qi, H. Efficacy of Peracetic Acid in Inactivating Foodborne Pathogens on Fresh Produce Surface. J. Food Sci. 2018, 88, 432–439. [Google Scholar] [CrossRef]
- Sheng, L.; Tsai, H.; Zhu, H.; Zhu, M. Survival of Listeria monocytogenes on blueberries post-sanitizer treatments and subsequent cold storages. Food Control 2019, 100, 138–143. [Google Scholar] [CrossRef]
- Callahan, S.; Perry, J.J. Survival of Listeria innocua and Native Microflora in Sanitizer-Treated Wild Blueberries (Vaccinium angustifolium). Int. J. Fruit Sci. 2019, 1–16. [Google Scholar] [CrossRef]
- de Siqueira Oliveira, L.; Eça, K.S.; de Aquino, A.C.; Vasconcelos, L.B. Chapter 4-Hydrogen Peroxide (H2O2) for Postharvest Fruit and Vegetable Disinfection. In Postharvest Disinfection of Fruits and Vegetables; Siddiqui, M.W., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 91–99. ISBN 978-0-12-812698-1. [Google Scholar]
- Becker, B.; Dabisch-Ruthe, M.; Pfannebecker, J. Inactivation of Murine Norovirus on Fruit and Vegetable Surfaces by Vapor Phase Hydrogen Peroxide. J. Food Prot. 2020, 83, 45–51. [Google Scholar] [CrossRef]
- Rico, D.; Martín-Diana, A.B.; Barat, J.M.; Barry-Ryan, C. Extending and measuring the quality of fresh-cut fruit and vegetables: A review. Trends Food Sci. Technol. 2007, 18, 373–386. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wu, C. Enhanced inactivation of Salmonella Typhimurium from blueberries by combinations of sodium dodecyl sulfate with organic acids or hydrogen peroxide. FRIN 2013, 54, 1553–1559. [Google Scholar] [CrossRef]
- Liato, V.; Hammami, R.; Aïder, M. In fluence of electro-activated solutions of weak organic acid salts on microbial quality and overall appearance of blueberries during storage. Food Microbiol. 2017, 64, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Chiabrando, V.; Giacalone, G. Anthocyanins, phenolics and antioxidant capacity after fresh storage of blueberry treated with edible coatings. Int. J. Food Sci. Nutr. 2015, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Wu, R.; Strik, B.C.; Zhao, Y. Effect of edible coatings on the quality of fresh blueberries (Duke and Elliott) under commercial storage conditions. Postharvest Biol. Technol. 2011, 59, 71–79. [Google Scholar] [CrossRef]
- Dhall, R.K. Advances in Edible Coatings for Fresh Fruits and Vegetables: A Review. Crit. Rev. Food Sci. Nutr. 2013, 53, 435–450. [Google Scholar] [CrossRef]
- Lin, D.; Zhao, Y. Innovations in the Development and Application of Edible Coatings for Fresh and Minimally Processed Fruits and Vegetables. Compr. Rev. Food Sci. Food Saf. 2007, 6, 60–75. [Google Scholar] [CrossRef]
- Rabea, E.I.; Stevens, C.V.; Smagghe, G.; Steurbaut, W. Chitosan as Antimicrobial Agent: Applications and Mode of Action. Biomacromolecules 2003, 4, 1457–1465. [Google Scholar] [CrossRef]
- Hosseinnejad, M.; Jafari, S.M. Evaluation of different factors affecting antimicrobial properties of chitosan. Int. J. Biol. Macromol. 2016, 85, 467–475. [Google Scholar] [CrossRef]
- Abugoch, L.E.; Tapia, C.; Villamán, M.C.; Yazdani-Pedram, M.; Díaz-Dosque, M. Characterization of quinoa protein–chitosan blend edible films. Food Hydrocoll. 2011, 25, 879–886. [Google Scholar] [CrossRef]
- Chiabrando, V.; Giacalone, G. Quality evaluation of blueberries coated with chitosan and sodium alginate during postharvest storage. Int. Food Res. J. 2017, 24, 1553–1561. [Google Scholar]
- Jiang, H.; Sun, Z.; Jia, R.; Wang, X.; Huang, J. Efect of Chitosan as an Antifungal and Preservative Agent on Postharvest Blueberry. J. Food Qual. 2016, 39, 516–523. [Google Scholar] [CrossRef]
- Sun, X.; Narciso, J.; Wang, Z.; Ference, C.; Bai, J.; Zhou, K. Effects of Chitosan-Essential Oil Coatings on Safety and Quality of Fresh Blueberries. J. Food Sci. 2014, 79, 955–960. [Google Scholar] [CrossRef]
- Abugoch, L.; Tapia, C.; Plasencia, D.; Pastor, A.; Castro-Mandujano, O.; López, L.; Escalona, V.H. Shelf-life of fresh blueberries coated with quinoa protein/chitosan/sunflower oil edible film. J. Sci. Food Agric. 2015, 96, 619–626. [Google Scholar] [CrossRef]
- Vieira, J.M.; Flores-lópez, M.L.; Jasso de Rodríguez, D.; Sousa, M.C.; Vicente, A.A.; Martins, J.T. Effect of chitosan–Aloe vera coating on postharvest quality of blueberry (Vaccinium corymbosum) fruit. Postharvest Biol. Technol. 2016, 116, 88–97. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, M.V.; Ponce, A.G.; Moreira, M.R. Influence of polysaccharide-based edible coatings as carriers of prebiotic fibers on quality attributes of ready-to-eat fresh blueberries. J. Sci. Food Agric. 2018, 98, 2587–2597. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Yue, J.; Gong, X.; Qian, B.; Wang, H.; Deng, Y.; Zhao, Y. Blueberry leaf extracts incorporated chitosan coatings for preserving postharvest quality of fresh blueberries. Postharvest Biol. Technol. 2014, 92, 46–53. [Google Scholar] [CrossRef]
- Falcó, I.; Randazzo, W.; Sánchez, G.; López-Rubio, A.; Fabra, M.J. On the use of carrageenan matrices for the development of antiviral edible coatings of interest in berries. Food Hydrocoll. 2019, 92, 74–85. [Google Scholar] [CrossRef]
- Moreno, M.A.; Bojorges, H.; Falcó, I.; Sánchez, G.; López-Carballo, G.; López-Rubio, A.; Zampini, I.C.; Isla, M.I.; Fabra, M.J. Active properties of edible marine polysaccharide-based coatings containing Larrea nitida polyphenols enriched extract. Food Hydrocoll. 2020, 102, 105595. [Google Scholar] [CrossRef]
- Umagiliyage, A.L.; Becerra-Mora, N.; Kohli, P.; Fisher, D.J.; Choudhary, R. Antimicrobial efficacy of liposomes containing d-limonene and its effect on the storage life of blueberries. Postharvest Biol. Technol. 2017, 128, 130–137. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Wang, L.H.; Zeng, X.A.; Han, Z.; Brennan, C.S. Non-thermal technologies and its current and future application in the food industry: A review. Int. J. Food Sci. Technol. 2019, 54, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Keklik, N.M.; Krishnamurthy, K.; Demirci, A. 12-Microbial decontamination of food by ultraviolet (UV) and pulsed UV light. In Microbial Decontamination in the Food Industry; Demirci, A., Ngadi, M.O., Eds.; Woodhead Publishing: Cambridge, UK, 2012; pp. 344–369. ISBN 978-0-85709-085-0. [Google Scholar]
- Lado, B.H.; Yousef, A.E. Alternative food-preservation technologies: Efficacy and mechanisms. Microbes Infect. 2002, 4, 433–440. [Google Scholar] [CrossRef]
- Liu, C.; Li, X.; Chen, H. Application of water-assisted ultraviolet light processing on the inactivation of murine norovirus on blueberries. Int. J. Food Microbiol. 2015, 214, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Butot, S.; Cantergiani, F.; Moser, M.; Jean, J.; Lima, A.; Michot, L.; Putallaz, T.; Stroheker, T.; Zuber, S. UV-C inactivation of foodborne bacterial and viral pathogens and surrogates on fresh and frozen berries. Int. J. Food Microbiol. 2018, 275, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Chen, H. Use of 254 nm ultraviolet light for decontamination of fresh produce and wash water. Food Control 2020, 109, 106926. [Google Scholar] [CrossRef]
- Guo, S.; Huang, R.; Chen, H. Evaluating a Combined Method of UV and Washing for Sanitizing Blueberries, Tomatoes, Strawberries, Baby Spinach, and Lettuce. J. Food Prot. 2019, 82, 1879–1889. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Huang, Y.; Chen, H. Inactivation of Escherichia coli O157: H7 and Salmonella enterica on Blueberries in Water Using Ultraviolet Light. J. Food Sci. 2015. [Google Scholar] [CrossRef]
- Huang, R.; Vries, D.D.; Chen, H. Strategies to enhance fresh produce decontamination using combined treatments of ultraviolet, washing and disinfectants. Int. J. Food Microbiol. 2018, 283, 37–44. [Google Scholar] [CrossRef]
- Cho, M.; Choi, Y.; Park, H.; Kim, K.; Woo, G.J.; Park, J. Titanium dioxide/UV photocatalytic disinfection in fresh carrots. J. Food Prot. 2007, 70, 97–101. [Google Scholar] [CrossRef]
- Ramesh, T.; Nayak, B.; Amirbahman, A.; Tripp, C.P.; Mukhopadhyay, S. Application of ultraviolet light assisted titanium dioxide photocatalysis for food safety: A review. Innov. Food Sci. Emerg. Technol. 2016, 38, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Shahbaz, H.; Kim, J.; Lee, H.; Lee, D.; Park, J. Efficacy of UV-TiO 2 photocatalysis technology for inactivation of Escherichia coli K12 on the surface of blueberries and a model agar matrix and the influence of surface characteristics. Food Microbiol. 2018, 76, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Karppinen, K.; Zoratti, L.; Nguyenquynh, N.; Häggman, H.; Jaakola, L. On the developmental and environmental regulation of secondary metabolism in Vaccinium spp. Berries. Front. Plant Sci. 2016, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.Y.; Chen, C.T.; Wang, S.Y. Changes of flavonoid content and antioxidant capacity in blueberries after illumination with UV-C. Food Chem. 2009, 117, 426–431. [Google Scholar] [CrossRef]
- Bhavya, M.L.; Umesh Hebbar, H. Pulsed light processing of foods for microbial safety. Food Qual. Saf. 2017, 1, 187–201. [Google Scholar] [CrossRef] [Green Version]
- Gómez-López, V.M.; Ragaert, P.; Debevere, J.; Devlieghere, F. Pulsed light for food decontamination: A review. Trends Food Sci. Technol. 2007, 18, 464–473. [Google Scholar] [CrossRef]
- CFR-Code of Federal Regulations Title 21. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=179.41 (accessed on 1 September 2020).
- Huang, Y.; Ye, M.; Cao, X.; Chen, H. Pulsed light inactivation of murine norovirus, Tulane virus, Escherichia coli O157: H7 and Salmonella in suspension and on berry surfaces. Food Microbiol. 2017, 61, 14–17. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Huang, R.; Chen, H. Evaluation of pulsed light treatments on inactivation of Salmonella on blueberries and its impact on shelf-life and quality attributes. Int. J. Food Microbiol. 2017, 260, 17–26. [Google Scholar] [CrossRef]
- Huang, Y.; Sido, R.; Huang, R.; Chen, H. Application of water-assisted pulsed light treatment to decontaminate raspberries and blueberries from Salmonella. Int. J. Food Microbiol. 2015, 208, 43–50. [Google Scholar] [CrossRef]
- Huang, R.; Chen, H. Comparison of Water-Assisted Decontamination Systems of Pulsed Light and Ultraviolet for Salmonella Inactivation on Blueberry, Tomato, and Lettuce. J. Food Sci. 2019, 84, 1145–1150. [Google Scholar] [CrossRef]
- Huang, H.W.; Lung, H.M.; Yang, B.B.; Wang, C.Y. Responses of microorganisms to high hydrostatic pressure processing. Food Control 2014, 40, 250–259. [Google Scholar] [CrossRef]
- Huang, R.; Ye, M.; Li, X.; Ji, L.; Karwe, M.; Chen, H. Evaluation of high hydrostatic pressure inactivation of human norovirus on strawberries, blueberries, raspberries and in their purees. Int. J. Food Microbiol. 2016, 223, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Chen, H.; Kingsley, D.H. The influence of temperature, pH, and water immersion on the high hydrostatic pressure inactivation of GI. 1 and GII. 4 human noroviruses. Int. J. Food Microbiol. 2013, 167, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ye, M.; Neetoo, H.; Golovan, S.; Chen, H. Pressure inactivation of Tulane virus, a candidate surrogate for human norovirus and its potential application in food industry. Int. J. Food Microbiol. 2013, 162, 37–42. [Google Scholar] [CrossRef]
- Kabir, N.; Aras, S.; Allison, A.; Adhikari, J.; Chowdhury, S.; Fouladkhah, A. Interactions of Carvacrol, Caprylic Acid, Habituation, and Mild Heat for Pressure-Based Inactivation of O157 and Non-O157 Serogroups of Shiga Toxin-Producing Escherichia coli in Acidic Environment. Microorganisms 2019, 7, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, S.; James, C. Minimal Processing of Ready Meals, 2nd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2014; ISBN 978-0-12-411479-1. [Google Scholar]
- Odriozola-Serrano, I.; Aguiló-Aguayo, I.; Soliva-Fortuny, R.; Martín-Belloso, O. Pulsed electric fields processing effects on quality and health-related constituents of plant-based foods. Trends Food Sci. Technol. 2013, 29, 98–107. [Google Scholar] [CrossRef]
- Wouters, P.C.; Alvarez, I.; Raso, J. Critical factors determining inactivation kinetics by pulsed electric field food processing. Trends Food Sci. Technol. 2001, 12, 112–121. [Google Scholar] [CrossRef]
- Zhu, N.; Wang, Y.; Zhu, Y.; Yang, L.; Yu, N.; Wei, Y.; Zhang, H.; Sun, A. Design of a treatment chamber for low-voltage pulsed electric fi eld sterilization. Innov. Food Sci. Emerg. Technol. 2017, 42, 180–189. [Google Scholar] [CrossRef]
- Jin, T.Z.; Yu, Y.; Gurtler, J.B. Effects of pulsed electric field processing on microbial survival, quality change and nutritional characteristics of blueberries. LWT Food Sci. Technol. 2017, 77, 517–524. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Tao, X.Y.; Sun, A.D.; Wang, Y.; Liao, X.J.; Li, L.N.; Zhang, S. Influence of pulsed electric field and thermal treatments on the quality of blueberry juice. Int. J. Food Prop. 2014, 17, 1419–1427. [Google Scholar] [CrossRef]
- Zhu, N.; Yu, N.; Zhu, Y.; Wei, Y.; Hou, Y.; Zhang, H.; Sun, A.D. Identification of spoilage microorganisms in blueberry juice and their inactivation by a microchip pulsed electric field system. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef]
- Zhu, N.; Zhu, Y.; Yu, N.; Wei, Y.; Zhang, J.; Hou, Y.; Sun, A. Evaluation of microbial, physicochemical parameters and flavor of blueberry juice after microchip-pulsed electric field. Food Chem. 2019, 274, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Niemira, B.A. Cold Plasma Decontamination of Foods. Annu. Rev. Food Sci. Technol 2012, 3, 125–142. [Google Scholar] [CrossRef] [PubMed]
- Lacombe, A.; Niemira, B.A.; Gurtler, J.B.; Fan, X.; Sites, J.; Boyd, G.; Chen, H. Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Food Microbiol. 2015, 46, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Lacombe, A.; Niemira, B.A.; Gurtler, J.B.; Sites, J.; Boyd, G.; Kingsley, D.H.; Li, X.; Chen, H. Nonthermal inactivation of norovirus surrogates on blueberries using atmospheric cold plasma. Food Microbiol. 2017, 63, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, X.Y.; Yang, Y.L. A Novel Approach to Enhance Blueberry Quality during Storage Using Cold Plasma at Atmospheric Air Pressure. Food Bioprocess. Technol. 2019, 12, 1409–1421. [Google Scholar] [CrossRef]
- Pathak, N.; Bovi, G.G.; Limnaios, A.; Fröhling, A.; Brincat, J.P.; Taoukis, P.; Valdramidis, V.P.; Schlüter, O. Impact of cold atmospheric pressure plasma processing on storage of blueberries. J. Food Process. Preserv. 2020, 44, e14581. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, R.; Gan, Z.; Shao, T.; Zhang, X.; He, M.; Sun, A. Effect of cold plasma on blueberry juice quality. Food Chem. 2019, 290, 79–86. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, Z.; Tu, S.; Chen, S.; Peng, J.; Tu, K. Effects of cold plasma, UV-C or aqueous ozone treatment on Botrytis cinerea and their potential application in preserving blueberry. J. Appl. Microbiol. 2019, 127, 175–185. [Google Scholar] [CrossRef]
- Moreno, M.A.; Castell-Perez, M.E.; Gomes, C.; Silva, P.F.D.; Moreira, R.G. Quality of electron beam irradiation of blueberries (Vaccinium corymbosum L) at medium dose levels (1.0–3.2 kGy). LWT Food Sci. Technol. 2007, 40, 1123–1132. [Google Scholar] [CrossRef]
- Parish, M.E.; Beuchat, L.R.; Suslow, T.V.; Harris, L.J.; Garrett, E.H.; Farber, J.N.; Busta, F.F. Methods to Reduce/Eliminate Pathogens from Fresh and Fresh-Cut Produce. Compr. Rev. Food Sci. Food Safe 2003, 2, 161–173. [Google Scholar] [CrossRef]
- Thang, K.; Au, K.; Prakash, A. Effect of phytosanitary irradiation and methyl bromide fumigation on the physical, sensory, and microbiological quality of blueberries and sweet cherries. J. Sci. Food Agric. 2016, 96, 4382–4389. [Google Scholar] [CrossRef] [Green Version]
- Lacombe, A.; Breard, A.; Hwang, C.; Hill, D.; Fan, X.; Huang, L.; Kwon, B.; Niemira, B.A.; Gurtler, J.B.; Wu, V.C.H. Inactivation of Toxoplasma gondii on blueberries using low dose irradiation without affecting quality. Food Control 2017, 73, 981–985. [Google Scholar] [CrossRef] [Green Version]
- Kong, Q.; Wu, A.; Qi, W.; Qi, R.; Mark, J.; Rasooly, R.; He, X. Effects of electron-beam irradiation on blueberries inoculated with Escherichia coli and their nutritional quality and shelf life. Postharvest Biol. Technol. 2014, 95, 28–35. [Google Scholar] [CrossRef]
- Shahbaz, H.M.; Akram, K.; Ahn, J.J.; Kwon, J.H. Worldwide Status of Fresh Fruits Irradiation and Concerns about Quality, Safety, and Consumer Acceptance. Crit. Rev. Food Sci. Nutr. 2016, 56, 1790–1807. [Google Scholar] [CrossRef] [PubMed]
- Nambeesan, S.U.; Doyle, J.W.; Capps, H.D.; Starns, C.; Scherm, H. Effect of Electronic Cold-PasteurizationTM (ECPTM) on Fruit Quality and Postharvest Diseases during Blueberry Storage. Horticulturae 2018, 4, 25. [Google Scholar] [CrossRef] [Green Version]
- de São José, J.F.B.; de Andrade, N.J.; Mota, A.; Dantas Vanetti, M.C.; Stringheta, P.; Paes, J.B. Decontamination by ultrasound application in fresh fruits and vegetables. Food Control 2014, 45, 36–50. [Google Scholar] [CrossRef]
- Rezek, J.A.; Šimunek, M.; Evacic, S.; Markov, K.; Smoljanic, G.; Frece, J. Influence of high power ultrasound on selected moulds, yeasts and Alicyclobacillus acidoterrestris in apple, cranberry and blueberry juice and nectar. Ultrasonics 2018, 83, 3–17. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, Y.; Li, X.; Li, B.; Liu, S.; Chang, N.; Jie, D.; Ning, C.; Gao, H.; Meng, X. Combined effect of ultrasound, heat, and pressure on Escherichia coli O157: H7, polyphenol oxidase activity, and anthocyanins in blueberry (Vaccinium corymbosum) juice. Ultrason. Sonochem. 2017, 37, 251–259. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, S.; Goon, K.; Gilbert, A.; Nguyen Huu, C.; Walsh, M.; Nitin, N.; Wrenn, S.; Tikekar, R.V. Inactivation of foodborne pathogens based on synergistic effects of ultrasound and natural compounds during fresh produce washing. Ultrason. Sonochem. 2020, 64, 104983. [Google Scholar] [CrossRef]
- De Simone, N.; Pace, B.; Grieco, F.; Chimienti, M.; Tyibilika, V.; Santoro, V.; Capozzi, V.; Colelli, G.; Spano, G.; Russo, P. Botrytis cinerea and Table Grapes: A Review of the Main Physical, Chemical, and Bio-Based Control Treatments in Post-Harvest. Foods 2020, 9, 1138. [Google Scholar] [CrossRef]
- Takahashi, M.; Okakura, Y.; Takahashi, H.; Imamura, M. Heat-denatured lysozyme could be a novel disinfectant for reducing hepatitis A virus and murine norovirus on berry fruit. Int. J. Food Microbiol. 2018, 266, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Bambace, M.F.; Alvarez, M.V.; Moreira, M.D.R. Novel functional blueberries: Fructo-oligosaccharides and probiotic lactobacilli incorporated into alginate edible coatings. Food Res. Int. 2019, 122, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhang, B.; Qin, Y.; Li, F.; Yang, S.; Lu, P.; Wang, L.; Fan, J. Preparation and characterization of antifungal coating films composed of sodium alginate and cyclolipopeptides produced by Bacillus subtilis. Int. J. Biol. Macromol. 2020, 143, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Pobiega, K.; Igielska, M.; W\lodarczyk, P.; Gniewosz, M. The use of pullulan coatings with propolis extract to extend the shelf life of blueberry (Vaccinium corymbosum) fruit. Int. J. Food Sci. Technol. 2020, 1–8. [Google Scholar] [CrossRef]
- Songe, J.; Fan, L.; Forney, C.; Campbell-Palmer, L.; Fillmore, S. Effect of hexanal vapor to control postharvest decay and extend shelf-life of highbush blueberry fruit during controlled atmosphere storage. Can. J. Plant Sci. 2010, 90, 359–366. [Google Scholar] [CrossRef]
- Crowe, K.M.; Bushway, A.; Davis-dentici, K. Impact of postharvest treatments, chlorine and ozone, coupled with low-temperature frozen storage on the antimicrobial quality of lowbush blueberries (Vaccinium angustifolium). LWT Food Sci. Technol. 2012, 47, 213–215. [Google Scholar] [CrossRef]
- Kim, T.J.; Corbitt, M.P.; Silva, J.L.; Wang, D.S.; Jung, Y.; Spencer, B. Optimization of Hot Water Treatment for Removing Microbial Colonies on Fresh Blueberry Surface. J Food Sci. 2011. [Google Scholar] [CrossRef] [PubMed]
- Kingsley, D.H.; Boyd, G.; Sites, J.; Niemira, B.A. Evaluation of 405-nm monochromatic light for inactivation of Tulane virus on blueberry surfaces. J Appl. Microbiol. 2017, 1017–1022. [Google Scholar] [CrossRef]
- Horm, K.M.; Davidson, P.M.; Harte, F.M.; Souza, D.H.D. Survival and Inactivation of Human Norovirus Surrogates in Blueberry Juice by High-Pressure Homogenization. Foodborne Pathog. Dis. 2012, 9, 974–979. [Google Scholar] [CrossRef]
- Bogdanov, T.; Tsonev, I.; Marinova, P.; Benova, E.; Rusanov, K.; Rusanova, M.; Atanassov, I.; Kozáková, Z.; Krčma, F. Microwave Plasma Torch Generated in Argon for Small Berries Surface Treatment. Appl. Sci. 2018, 8, 1870. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.; Martynenko, A.; Doucette, C.; Hughes, T.; Fillmore, S. Microbial Quality and Shelf Life of Blueberry Purée Developed Using Cavitation Technology. J. Food Sci. 2018, 83, 732–739. [Google Scholar] [CrossRef] [PubMed]
- Mohideen, F.W.; Solval, K.M.; Li, J.; Zhang, J.; Chouljenko, A.; Chotiko, A.; Prudente, A.D.; Bankston, J.D.; Sathivel, S. Effect of continuous ultra-sonication on microbial counts and physico-chemical properties of blueberry (Vaccinium corymbosum) juice. LWT Food Sci. Technol. 2015, 60, 563–570. [Google Scholar] [CrossRef]
- De, J.; Sreedharan, A.; Li, Y.; Gutierrez, A.; Brecht, J.K.; Sargent, S.A.; Schneider, K.R. Comparing the Efficacy of Postharvest Cooling Methods to Enhance Fruit Quality and Reduce Salmonella in Artificially Inoculated Southern Highbush Blueberry. Hort Technol. 2019, 1. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Lavalle, L.; Carrasco, E.; Valero, A. Strategies for Microbial Decontamination of Fresh Blueberries and Derived Products. Foods 2020, 9, 1558. https://doi.org/10.3390/foods9111558
Pérez-Lavalle L, Carrasco E, Valero A. Strategies for Microbial Decontamination of Fresh Blueberries and Derived Products. Foods. 2020; 9(11):1558. https://doi.org/10.3390/foods9111558
Chicago/Turabian StylePérez-Lavalle, Liliana, Elena Carrasco, and Antonio Valero. 2020. "Strategies for Microbial Decontamination of Fresh Blueberries and Derived Products" Foods 9, no. 11: 1558. https://doi.org/10.3390/foods9111558
APA StylePérez-Lavalle, L., Carrasco, E., & Valero, A. (2020). Strategies for Microbial Decontamination of Fresh Blueberries and Derived Products. Foods, 9(11), 1558. https://doi.org/10.3390/foods9111558