Value-Added Carp Products: Multi-Class Evaluation of Crisp Grass Carp by Machine Learning-Based Analysis of Blood Indexes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Fish and Sample Collection
2.2. Muscle Hardness Measurement and Sensory Evaluation
2.3. Outlier Samples Removal
2.4. Measurement of Blood Indexes
2.5. Description of the Algorithms
2.6. Classification Performance, Statistical Analysis, and Calculations
3. Results and Discussion
3.1. Removal of Outlier Samples
3.2. Blood Indexes Analysis
3.3. Natural Clustering Based on PCA Analysis
3.4. Classification and Comparing Classification Performance
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2018-Meeting the Sustainable Development Goals; Licence: CC BY-NC-SA 3.0 IGO; FAO: Rome, Italy, 2018. [Google Scholar]
- Yu, E.; Fu, B.; Wang, G.; Li, Z.; Ye, D.; Jiang, Y.; Ji, H.; Wang, X.; Yu, D.; Ehsan, H.; et al. Proteomic and metabolomic basis for improved textural quality in crisp grass carp (Ctenopharyngodon idellus C. et V) fed with a natural dietary pro-oxidant. Food Chem. 2020, 325, 126906. [Google Scholar] [CrossRef] [PubMed]
- Yu, E.M.; Zhang, H.F.; Li, Z.F.; Wang, G.J.; Wu, H.K.; Xie, J.; Yu, D.G.; Xia, Y.; Zhang, K.; Gong, W.B. Proteomic signature of muscle fibre hyperplasia in response to faba bean intake in grass carp. Sci. Rep. 2017, 7, e45950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.; Li, L.; Qi, B.; Wu, Y.; Hu, X.; Lin, W.; Hao, S.; Huang, H. Quality evaluation of crisp grass carp (Ctenopharyngodon idellus C. ET V) based on instrumental texture analysis and cluster analysis. Food Anal. Method. 2015, 8, 2107–2114. [Google Scholar] [CrossRef]
- Administration of Quality and Technology Supervision of Guangdong Province. Zhongshan Crisp Grass Carp; Standards Press of China: Beijing, China, 2010. [Google Scholar]
- Koç, H.; Vinyard, C.J.; Essick, G.K.; Foegeding, E.A. Food oral processing: Conversion of food structure to textural perception. Annu. Rev. Food Sci. 2013, 4, 237–266. [Google Scholar] [CrossRef] [PubMed]
- Du, C.J.; Sun, D.W. Learning techniques used in computer vision for food quality evaluation: A review. J. Food Eng. 2006, 72, 39–55. [Google Scholar] [CrossRef]
- Xu, J.L.; Riccioli, C.; Sun, D.W. Comparison of hyperspectral imaging and computer vision for automatic differentiation of organically and conventionally farmed salmon. J. Food Eng. 2017, 196, 170–182. [Google Scholar] [CrossRef]
- Saberioon, M.; Císař, P.; Labbé, L.; Souček, P.; Pelissier, P.; Kerneis, T. Comparative performance analysis of support vector machine, random forest, logistic regression and k-nearest neighbours in rainbow trout (Oncorhynchus mykiss) classification using image-based features. Sensors 2018, 18, 1027. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Li, D.; Duan, Q.; Han, Y.; Chen, G.; Si, X. Fish species classification by color, texture and multi-class support vector machine using computer vision. Comput. Electron. Agric. 2012, 88, 133–140. [Google Scholar] [CrossRef]
- Hernández-Serna, A.; Jiménez-Segura, L.F. Automatic identification of species with neural networks. PeerJ 2014, 2, e563. [Google Scholar]
- Rodríguez-Bermúdez, R.; Herrero-Latorre, C.; López-Alonso, M.; Losada, D.E.; Iglesias, R.; Miranda, M. Organic cattle products: Authenticating production origin by analysis of serum mineral content. Food Chem. 2018, 264, 210–217. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R; Springer: New York, NY, USA, 2013. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Bro, R.; Smilde, A.K. Principal component analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef] [Green Version]
- Varmuza, K.; Filzmoser, P. Introduction to Multivariate Statistical Analysis in Chemometrics; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: New York, NY, USA, 2009. [Google Scholar]
- Sun, R.; Wang, G.; Zhang, W.; Hsu, L.T.; Ochieng, W.Y. A gradient boosting decision tree based GPS signal reception classification algorithm. Appl. Soft Comput. 2020, 86, 105942. [Google Scholar] [CrossRef]
- Dwivedi, A.K. Artificial neural network model for effective cancer classification using microarray gene expression data. Neural Comput. Appl. 2018, 29, 1545–1554. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Fung, G.M.; Mangasarian, O.L. Multicategory proximal support vector machine classifiers. Mach. Learn. 2005, 59, 77–97. [Google Scholar] [CrossRef] [Green Version]
- Lozano, J.; Santos, J.P.; Arroyo, T.; Aznar, M.; Cabellos, J.M.; Gil, M.; del Carmen Horrillo, M. Correlating e-nose responses to wine sensorial descriptors and gas chromatography–mass spectrometry profiles using partial least squares regression analysis. Sens. Actuators B Chem. 2007, 127, 267–276. [Google Scholar] [CrossRef]
- Abdi, H. Partial least squares regression and projection on latent structure regression (PLS Regression). Comput. Stat. 2010, 2, 97–106. [Google Scholar] [CrossRef]
- Liu, B.; Blasch, E.; Chen, Y.; Shen, D.; Chen, G. Scalable sentiment classification for big data analysis using naive bayes classifier. In Proceedings of the 2013 IEEE International Conference on Big Data, Silicon Valley, CA, USA, 6–9 October 2013; pp. 99–104. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Casella, G.; Fienberg, S.; Olkin, I. An Introduction to Statistical Learning. Design; Springer: New York, NY, USA, 2006; Volume 102. [Google Scholar]
- Schwertman, N.C.; Owens, M.A.; Adnan, R. A simple more general boxplot method for identifying outliers. Comput. Stat. Data Anal. 2004, 47, 165–174. [Google Scholar] [CrossRef]
- Sim, C.H.; Gan, F.F.; Chang, T.C. Outlier labeling with boxplot procedures. J. Am. Stat. Assoc. 2005, 100, 642–652. [Google Scholar] [CrossRef]
- Ma, L.L.; Kaneko, G.; Wang, X.J.; Xie, J.; Tian, J.J.; Zhang, K.; Wang, G.J.; Yu, D.G.; Li, Z.F.; Gong, W.B.; et al. Effects of four faba bean extracts on growth parameters, textural quality, oxidative responses, and gut characteristics in grass carp. Aquaculture 2020, 516, 734620. [Google Scholar] [CrossRef]
- Mandrekar, J.N. Receiver operating characteristic curve in diagnostic test assessment. J. Thorac. Oncol. 2010, 5, 1315–1316. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Lam, M.; Pang, J.; Gao, X.; Band, C.; Mathur, P. Multimodal machine learning for automated ICD coding. In Proceedings of the Machine Learning for Healthcare Conference, Ann Arbor, MI, USA, 8–10 August 2019; pp. 197–215. [Google Scholar]
(a) GBDT model | ||||||||
---|---|---|---|---|---|---|---|---|
Target | Level 1 | Level 2 | Level 3 | Level 4 | Level 5 | Sensitivity | ASC | ASA |
level 1 | 48 | 3 | 0 | 1 | 0 | 92.31% | - | 91.80% |
level 2 | 0 | 12 | 0 | 0 | 0 | 100% | 92.00% | |
level 3 | 3 | 1 | 8 | 0 | 0 | 66.67% | ||
level 4 | 0 | 0 | 0 | 12 | 0 | 100% | ||
level 5 | 0 | 0 | 0 | 0 | 12 | 100% | ||
Specificity | 94.12% | 75.00% | 100% | 90.91% | 100% | - | - | - |
APC | - | 91.485 | - | - | - | |||
APA | 92.01% | - | - | - | ||||
(b) ANN model | ||||||||
Target | Level 1 | Level 2 | Level 3 | Level 4 | Level 5 | Sensitivity | ASC | ASA |
level 1 | 48 | 3 | 0 | 1 | 0 | 92.31% | - | 86.79% |
level 2 | 1 | 9 | 2 | 0 | 0 | 75.00% | 85.00% | |
level 3 | 0 | 2 | 10 | 0 | 0 | 83.33% | ||
level 4 | 0 | 0 | 0 | 10 | 2 | 83.33% | ||
level 5 | 0 | 0 | 0 | 0 | 12 | 100% | ||
Specificity | 97.95% | 64.26% | 83.33% | 90.91% | 85.71% | - | - | - |
APC | - | 81.05% | - | - | - | |||
APA | 84.43% | - | - | - | ||||
(c) SVM model | ||||||||
Target | Level 1 | Level 2 | Level 3 | Level 4 | Level 5 | Sensitivity | ASC | ASA |
level 1 | 49 | 2 | 0 | 1 | 0 | 94.23% | - | 85.51% |
level 2 | 0 | 8 | 3 | 0 | 0 | 66.67% | 83.00% | |
level 3 | 0 | 3 | 8 | 0 | 0 | 66.67% | ||
level 4 | 0 | 0 | 12 | 0 | 100% | |||
level 5 | 0 | 0 | 0 | 0 | 12 | 100% | ||
Specificity | 100% | 61.54% | 72.73% | 92.31% | 100% | - | - | - |
APC | - | 81.65% | - | - | - | |||
APA | 85.32% | - | - | - |
(a) PLSR model | ||||||||
---|---|---|---|---|---|---|---|---|
Target | Level 1 | Level 2 | Level 3 | Level 4 | Level 5 | Sensitivity | ASC | ASA |
level 1 | 48 | 3 | 0 | 1 | 0 | 92.31% | - | 91.79% |
level 2 | 0 | 12 | 0 | 0 | 100% | 92.00% | ||
level 3 | 3 | 0 | 9 | 0 | 0 | 75.00% | ||
level 4 | 0 | 0 | 0 | 11 | 1 | 91.66% | ||
level 5 | 0 | 0 | 0 | 0 | 12 | 100% | ||
Specificity | 94.12% | 80.00% | 100% | 91.67% | 92.31% | - | - | - |
APC | - | 91.00% | - | - | - | |||
APA | 91.62% | - | - | - | ||||
(b) NB model | ||||||||
Target | Level 1 | Level 2 | Level 3 | Level 4 | Level 5 | Sensitivity | ASC | ASA |
level 1 | 49 | 2 | 0 | 1 | 0 | 94.23% | - | 93.85% |
level 2 | 0 | 12 | 0 | 0 | 0 | 100% | 94.00% | |
level 3 | 1 | 2 | 9 | 0 | 0 | 75.00% | ||
level 4 | 0 | 0 | 0 | 12 | 0 | 100% | ||
level 5 | 0 | 0 | 0 | 0 | 12 | 100% | ||
Specificity | 98.00% | 75.00% | 100% | 92.31% | 100% | - | - | - |
APC | - | 91.83% | - | - | - | |||
APA | 93.06% | - | - | - | ||||
(c) RF model | ||||||||
Target | Level 1 | Level 2 | Level 3 | Level 4 | Level 5 | Sensitivity | ASC | ASA |
level 1 | 48 | 3 | 0 | 1 | 0 | 92.30% | - | 98.46% |
level 2 | 0 | 12 | 0 | 0 | 0 | 100% | 100% | |
level 3 | 0 | 0 | 12 | 0 | 0 | 100% | ||
level 4 | 0 | 0 | 0 | 12 | 0 | 100% | ||
level 5 | 0 | 0 | 0 | 0 | 12 | 100% | ||
Specificity | 100% | 80.00% | 100% | 92.31% | 100% | - | - | - |
APC | - | 93.08% | - | - | - | |||
APA | 94.46% | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, B.; Kaneko, G.; Xie, J.; Li, Z.; Tian, J.; Gong, W.; Zhang, K.; Xia, Y.; Yu, E.; Wang, G. Value-Added Carp Products: Multi-Class Evaluation of Crisp Grass Carp by Machine Learning-Based Analysis of Blood Indexes. Foods 2020, 9, 1615. https://doi.org/10.3390/foods9111615
Fu B, Kaneko G, Xie J, Li Z, Tian J, Gong W, Zhang K, Xia Y, Yu E, Wang G. Value-Added Carp Products: Multi-Class Evaluation of Crisp Grass Carp by Machine Learning-Based Analysis of Blood Indexes. Foods. 2020; 9(11):1615. https://doi.org/10.3390/foods9111615
Chicago/Turabian StyleFu, Bing, Gen Kaneko, Jun Xie, Zhifei Li, Jingjing Tian, Wangbao Gong, Kai Zhang, Yun Xia, Ermeng Yu, and Guangjun Wang. 2020. "Value-Added Carp Products: Multi-Class Evaluation of Crisp Grass Carp by Machine Learning-Based Analysis of Blood Indexes" Foods 9, no. 11: 1615. https://doi.org/10.3390/foods9111615
APA StyleFu, B., Kaneko, G., Xie, J., Li, Z., Tian, J., Gong, W., Zhang, K., Xia, Y., Yu, E., & Wang, G. (2020). Value-Added Carp Products: Multi-Class Evaluation of Crisp Grass Carp by Machine Learning-Based Analysis of Blood Indexes. Foods, 9(11), 1615. https://doi.org/10.3390/foods9111615