Molecular Weight Distribution of Polymeric Proteins in Wheat Grains: The Rheologically Active Polymers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multilocal Trials and Plant Material
2.2. Sample Preparation, Total Protein Content Determination, and Technological Tests
2.3. Characterization of the Molecular Weight Distribution (MWD) of Grain Storage Proteins by Asymmetric Flow Field-Flow Fractionation (A4F)
2.4. Extraction and Derivatization of the Polymeric Protein-Bound Glutathione (PPSSG)
2.5. HPLC Quantification of the Polymeric Protein-Bound Glutathione (PPSSG)
2.6. Statistical Analysis
3. Results and Discussion
3.1. MWD of Polymeric Proteins Is a Key Factor for Bread-Making Quality
3.2. Polymer MWD Responded More to Growing Conditions than Genetic Factors
3.3. Allelic Diversity of Glutenins Had Limited Influence on Polymer Contents and Characteristics
3.4. RAPP Accumulation Can Be Modulated by Glutenins Redox Status Change in Response to Growing Conditions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aussenac, T.; Carceller, J.-L. Size characterization of glutenin polymers by HPSEC-MALLS. J. Cereal Sci. 2001, 33, 131–142. [Google Scholar]
- Aussenac, T.; Carceller, J.-L.; Kleiber, D. Changes in SDS solubility of glutenin polymers during dough mixing and resting. Cereal Chem. 2001, 78, 39–45. [Google Scholar] [CrossRef]
- Kasarda, D.D. Glutenin polymers: The in vitro to in vivo transition. Cereal Food World 1999, 44, 566–571. [Google Scholar]
- Stone, P.; Nicolas, M.E. Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat-stress. Aust. J. Plant Physiol. 1994, 21, 887–900. [Google Scholar] [CrossRef]
- Stone, P.; Nicolas, M.E. Effect of timing of heat stress during grain filling on two varieties differing in heat tolerance. II. Fractional protein accumulation. Aust. J. Plant Physiol. 1996, 23, 739–749. [Google Scholar] [CrossRef]
- Ciaffi, M.; Tozzi, T.; Borghi, B.; Corbellini, M.; Lafiandra, D. Effect of heat shock during grain filling on the gluten protein composition of bread wheat. J. Cereal Sci. 1994, 24, 91–100. [Google Scholar] [CrossRef]
- Carceller, J.-L.; Aussenac, T. Accumulation and changes in molecular size distribution of polymeric proteins in developing grains of hexaploid wheats: Role of the desiccation phase. Aust. J. Plant Physiol. 1999, 26, 301–310. [Google Scholar] [CrossRef]
- Carceller, J.-L.; Aussenac, T. SDS-insoluble glutenin polymer formation in developing grains of hexaploid wheat: Role of the HMW-GS/LMW-GS ratio and the drying rate during ripening. Aust. J. Plant Physiol. 2001, 28, 193–201. [Google Scholar]
- Rhazi, L.; Cazalis, R.; Aussenac, T. Sulfhydryl-disulfide Changes in Storage Proteins of Developing Wheat Grain: Influence on the SDS-unextractable Glutenin Polymer Formation. J. Cereal Sci. 2003, 38, 3–13. [Google Scholar] [CrossRef]
- Rhazi, L.; Cazalis, R.; Lemelin, E.; Aussenac, T. Changes in the glutathione thiol-disulfide status during wheat grain development. Plant Physiol. Biochem. 2003, 41, 895–902. [Google Scholar] [CrossRef]
- Lemelin, E.; Aussenac, T.; Violleau, F.; Salvo, L.; Lein, V. Impact of cultivar and environment on size characteristics of wheat proteins using asymmetrical flow field-flow fractionation and multi-angle laser light scattering. Cereal Chem. 2005, 82, 28–33. [Google Scholar] [CrossRef]
- Gupta, R.B.; Batey, I.L.; MacRitchie, F. Relationships between protein composition and functional properties of wheat flour. Cereal Chem. 1992, 69, 125–131. [Google Scholar]
- Gupta, R.B.; Khan, K.; MacRitchie, F. Biochemical basis of flour properties in bread wheats. I. Effects of variation in the quantity and size distribution of polymeric protein. J. Cereal Sci. 1993, 18, 23–41. [Google Scholar] [CrossRef]
- Gupta, R.B.; MacRitchie, F. Allelic variation at glutenin subunit and gliadin loci, Glu-1, Glu-3 and Gli-1 of common wheats. II. Biochemical basis of the allelic effects on dough properties. J. Cereal Sci. 1994, 19, 19–29. [Google Scholar] [CrossRef]
- Dachkevitch, T.; Autran, J.-C. Prediction of baking quality of bread wheats in breeding programs by size-exclusion high-performance liquid chromatography. Cereal Chem. 1989, 66, 448–456. [Google Scholar]
- MacRitchie, F.; Lafiandra, D. Structure-fonction relationships of wheat proteins. In Food Proteins and Their Applications; Marcel Dekker: New York, NY, USA, 1997; pp. 293–323. [Google Scholar]
- Gupta, R.B.; Popineau, Y.; Lefebvre, J.; Cornec, M.; MacRitchie, F. Biochemical basis of flour properties in bread wheats. II. Changes in polymeric protein formation and dough/gluten properties associated with the loss of low Mr or high Mr glutenin subunits. J. Cereal Sci. 1995, 21, 103–116. [Google Scholar] [CrossRef]
- Weegels, P.L.; Hamer, R.J.; Schofield, J.D. Critical review. Functional properties of wheat glutenin. J. Cereal Sci. 1996, 23, 1–18. [Google Scholar] [CrossRef]
- Cornec, M.; Popineau, Y.; Lefebvre, J. Characterisation of gluten subfractions by SE-HPLC and dynamic rheological analysis in shear. J. Cereal Sci. 1994, 19, 131–139. [Google Scholar] [CrossRef]
- Bangur, R.; Batey, I.L.; McKenzie, E.; MacRitchie, F. Dependance of Extensograph Parameters on Wheat Protein Composition Measured by SE-HPLC. J. Cereal Sci. 1997, 25, 237–241. [Google Scholar] [CrossRef]
- Southan, M.; MacRitchie, F. Molecular weight distribution of wheat proteins. Cereal Chem. 1999, 76, 827–836. [Google Scholar] [CrossRef]
- Bersted, B.H.; Anderson, T.G. Influence of molecular weight and molecular weight distribution on the tensile properties of amorphous polymers. J. Appl. Polym. Sci. 1990, 39, 499–514. [Google Scholar] [CrossRef]
- Branlard, G.; Faye, A.; Rhazi, L.; Tahie, A.; Lesage, V.; Aussenac, T. Genetic and Environmental Factors Associated to Glutenin Polymer Characteristics of Wheat. Foods 2020, 9, 683. [Google Scholar] [CrossRef] [PubMed]
- Altenbach, S.B.; DuPont, F.M.; Kothari, K.M.; Chan, R.; Johnson, E.L.; Lieu, D. Temperature, water and fertilizer influence the timing of key events during grain development in a US spring wheat. J. Cereal Sci. 2003, 37, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Branlard, G.; Dardevet, M.; Amiour, N.; Igrejas, G. Allelic diversity of HMW and LMW glutenin subunits and omega-gliadins in French bread wheat (Triticum aestivum L.). Genet. Resour. Crop. Evol. 2003, 50, 669–679. [Google Scholar] [CrossRef]
- AACC Association of Cereal Chemists. Approved Methods of the AACC; AACC Association of Cereal Chemists: Saint Paul, MN, USA, 1962. [Google Scholar]
- Martinant, J.-P.; Nicolas, Y.; Bouguennec, A.; Popineau, Y.; Saulnier, L.; Branlard, G. Relationships between mixograph parameters and indices of wheat grain quality. J. Cereal Sci. 1998, 27, 179–189. [Google Scholar] [CrossRef]
- Oury, F.-X.; Chiron, H.; Faye, A.; Gardet, O.; Giraud, A.; Heumez, E.; Rolland, B.; Rousset, M.; Trottet, M.; Charmet, G.; et al. The prediction of bread wheat quality: Joint use of the phenotypic information brought by technological tests and the genetic information brought by HMW and LMW glutenin subunits. Euphytica 2010, 171, 87–109. [Google Scholar] [CrossRef]
- Weegels, P.L.; Flissebaalje, T.; Hamer, R. Factors affecting the extractability of the glutenin macropolymer. Cereal Chem. 1994, 71, 308–309. [Google Scholar]
- Weegels, P.L.; Van de Pijpekamp, A.M.; Graveland, A.; Hamer, R.J.; Schofield, J.D. Depolymerisation and repolymerisation of wheat gluten during dough processing I. Relationships between GMP content and quality parameters. J. Cereal Sci. 1996, 23, 103–111. [Google Scholar] [CrossRef]
- Triboï, E.; Branlard, G.; Daniel, C.; Gallant, D.; Gautier, M.F.; Foucat, L.; Landry, J.; Lauriere, M.; Joudrier, P.; Kobrehel, K.; et al. Determinisme climatique et agronomique du poids du grain et de sa composition protéique chez le blé d’hiver. In AIP-AGRAF Pour L’élaboration de la Composition et de L’aptitude a‘ L’utilisation des Grains et des Fruits; INRA: Paris, France, 2000; pp. 7–41. [Google Scholar]
- Barneix, A.J. Physiology and biochemistry of source-regulated protein accumulation in the wheat grain. J. Plant Physiol. 2007, 164, 581–590. [Google Scholar] [CrossRef]
- Martre, P.; Porter, J.R.; Jamieson, P.D.; Triboï, E. Modelling grain nitrogen accumulation and protein composition to understand the sink/source regulations of nitrogen remobilization for wheat. Plant Physiol. 2003, 133, 1959–1967. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.Q.; Masbou, V.; Aussenac, T.; Fabre, J.L.; Debaeke, P. Effects of nitrogen fertilisation and maturation conditions on protein aggregates on the breadmaking quality of Soissons, a common wheat cultivar. Cereal Chem. 1996, 73, 123–130. [Google Scholar]
- Le Gouis, J.; Béghin, D.; Heumez, E.; Pluchard, P. Genetic differences for nitrogen uptake and nitrogen utilization efficiencies in winter wheat. Eur. J. Agron. 2000, 12, 163–173. [Google Scholar] [CrossRef]
- Lindsay, M.P.; Skerritt, J.H. Examination of the structure of the glutenin macropolymer in wheat flour and doughs by stepwise reduction. J. Agric. Food Chem. 1998, 46, 3447–3457. [Google Scholar] [CrossRef]
- Skerritt, J.H.; Hac, L.; Bekes, F. Depolymerisation of the glutenin macropolymer during dough mixing. I. Changes in levels, molecular weight distribution, and overall composition. Cereal Chem. 1999, 76, 395–401. [Google Scholar] [CrossRef]
- Veraverbeke, W.S.; Courtin, C.M.; Verbruggen, I.M.; Delcour, J.A. Factors governing levels and composition of the sodium dodecyl sulphate unextractable gutenin polymers during straight dough breadmaking. J. Cereal Sci. 1999, 29, 129–138. [Google Scholar] [CrossRef]
- Shewry, P.R.; Underwood, C.; Wan, Y.F.; Lovegrove, A.; Bhandari, D.; Toole, G.; Mills, E.N.C.; Denyer, K.; Mitchell, R.A.C. Storage product synthesis and accumulation in developing grains of wheat. J. Cereal Sci. 2009, 50, 106–112. [Google Scholar] [CrossRef]
- Ferreira, M.S.; Samson, M.F.; Bonicel, J.; Morel, M.H. Relationship between endosperm cells redox homeostasis and glutenin polymers assembly in developing durum wheat grain. Plant Physiol. Biochem. 2012, 61, 36–45. [Google Scholar] [CrossRef]
- Ferrise, R.; Bindi, M.; Martre, P. Grain filling duration and glutenin polymerization under variable nitrogen supply and environmental conditions for durum wheat. Field Crops Res. 2015, 171, 23–31. [Google Scholar] [CrossRef]
- Koga, S.; Böcker, U.; Wieser, H.; Koehler, P.; Uhlen, A.K.; Moldestad, A. Polymerisation of gluten proteins in developing wheat grain as affected by desiccation. J. Cereal Sci. 2017, 73, 122–129. [Google Scholar] [CrossRef] [Green Version]
- Gobin, P.; Ng, P.K.W.; Buchanan, B.B.; Kobrehel, K. Sulfhydryl-disulfide changes in proteins of developing wheat grain. Plant Physiol. Biochem. 1997, 35, 777–783. [Google Scholar]
- Renneberg, H. Glutathione metabolism and possible biological roles in higher plants. Phytochemistry 1982, 21, 2771–2781. [Google Scholar] [CrossRef]
- Alsher, R.G. Biosynthesis and antioxydant function of glutathione in plants. Physiol. Plantar. 1989, 77, 457–464. [Google Scholar] [CrossRef]
- Smith, I.K.; Polle, A.; Renneberg, H. Glutathione. In Stress Responses in Plants; Alsher, R.G., Cumming, J., Eds.; Wiley-Liss Inc.: New York, NY, USA, 1990; pp. 201–215. [Google Scholar]
- Chen, X.; Schofield, J.D. Determination of protein-glutathion mixed disulfides in wheat flour. J. Agric. Food Chem. 1995, 43, 2362–2368. [Google Scholar] [CrossRef]
- Jocelyn, P.C. Biochemistry of the SH Group: The Occurrence, Chemical Properties, Metabolism and Biological Function of Thiols and Disulphides; Academic Press: London, UK, 1972; p. 404. [Google Scholar]
- Gilbert, H.F.; McLean, V.; McLean, M. Molecular and cellular aspects of thiol-disulfide exchange. Adv. Enzymol. Relat. Areas Mol. Biol. 1990, 63, 169–172. [Google Scholar]
- Dhindsa, R.S. Glutathione redox status and protein synthesis during drought and subsequent rehydration. Plant Physiol. 1987, 83, 816–919. [Google Scholar] [CrossRef] [Green Version]
- De Gara, L.; Pinto, M.; Moliterni, V.; D’Egidio, M. Redox regulation and storage processes during maturation in kernels of Triticum Durum. J. Exp. Bot. 2003, 54, 249–258. [Google Scholar] [CrossRef]
- Kunert, K.J.; Foyer, C. Thiol/disulfide exchange in pants. In Sulfur Nutrition and Assimilation in Higher Pants; Dekok, L.J., Stulen, I., Rennenberg, H., Brunold, C., Rauser, W.E., Eds.; SPB Academic Publishing: The Hague, The Netherlands, 1993; pp. 139–151. [Google Scholar]
- Kranner, I.; Grill, D. Significance of thiol-disulfide exchange in resting stages of plant development. Bot. Acta 1996, 109, 8–14. [Google Scholar] [CrossRef]
- Fahey, R.C.; Di Stefano, D.L.; Meier, G.P.; Bryan, R.N. Role of hydration state and thiol-disulfide status in the control of thermal stability and protein synthesis in wheat embryo. Plant Physiol. 1980, 65, 1062–1066. [Google Scholar] [CrossRef] [Green Version]
- Kranner, I.; Grill, D. Content of low-molecular-weight thiols during the imbibition of pea seeds. Physiol. Plant 1993, 88, 557–562. [Google Scholar] [CrossRef]
- Butt, A.D.; Ohlrogge, J.B. Acyl carier protein is conjugated to glutathione in spinach seed. Plant Physiol. 1991, 96, 937–942. [Google Scholar] [CrossRef]
- Kobrehel, K.; Yee, B.C.; Buchanan, B.B. Role of the NADP/thioredoxin system in the reduction of α-amylase and trypsin inhibitor proteins. J. Biol. Chem. 1991, 266, 16135–16140. [Google Scholar] [PubMed]
- Kobrehel, K.; Wong, J.H.; Balogh, A.; Kiss, F.; Yee, B.C.; Buchanan, B.B. Specific reduction of wheat storage proteins by thioredoxin h. Plant Physiol. 1992, 99, 919–924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerna, D.; Roach, T.; Stöggl, W.; Wagner, J.; Vaccino, P.; Limonta, M.; Kranner, I. Changes in low-molecular-weight thiol-disulphide redox couples are part of bread wheat seed germination and early seedling growth. Free Radic. Res. 2017, 51, 568–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarwin, R.; Walther, C.; Laskawy, G.; Butz, B.; Grosch, W. Determination of free reduced and total glutathione in wheat flours by a radioisotope dilution assay. Z. Lebensm. Unters. Forsch. 1992, 195, 27–32. [Google Scholar] [CrossRef]
- Köhler, P.; Hüttner, S.; Wieser, H. Binding sites of glutathione in gluten proteins. In Gluten 96; Wrigley, C.W., Ed.; Royal Australian Chemical Institute: North Melbourne, Australia, 1996; pp. 137–140. [Google Scholar]
- Kerchev, P.; De Smet, B.; Waszczak, C.; Messens, J.; Van Breusegem, F. Redox Strategies for Crop Improvement. Antioxid. Redox Signal. 2015, 23, 1186–1205. [Google Scholar] [CrossRef] [PubMed]
Variables (Units) | Abbreviations | Mean Value | Minimum Value | Maximum Value |
---|---|---|---|---|
Mixogram parameters | ||||
Midline Left of Peak Width (%) | MLW | 17.3 | 3.0 | 56.1 |
Midline Peak Width (%) | MPW | 15.2 | 2.9 | 37.5 |
Midline Right of Peak Width (%) | MRW | 13.1 | 3.3 | 20.7 |
Midline Time × = 8 min Width (%) | MT × W | 12.7 | 3.8 | 26.6 |
Midline Time × = 8 min Integral (% min−1) | MT × I | 261.6 | 106.1 | 416.1 |
Alverogram parameters | ||||
Dough baking strength (10−4 Joules) | W | 214.2 | 43.0 | 563.0 |
Dough tenacity (mm) | P | 62.3 | 16.0 | 131.0 |
Dough extensibility (mm) | L | 104.1 | 36.0 | 240.0 |
Dough viscoelastic balance | P/L | 0.69 | 0.11 | 2.75 |
Parameters | Minimum Value | Maximum Value | Mean Value | σ2G/σ2R | σ2E/σ2R | σ2E/σ2G |
---|---|---|---|---|---|---|
Total protein content 1 | 8.70 | 15.10 | 11.19 | 11.41 *** | 271.58 *** | 23.80 |
Polymeric protein content 1 | 2.78 | 5.75 | 4.02 | 11.10 *** | 187.46 *** | 16.88 |
Polymeric protein Mw 2 | 1.14 | 22.97 | 7.64 | 3.37 *** | 38.97 *** | 11.56 |
Polymeric protein Mw/Mn 3 | 0.64 | 24.62 | 7.91 | 2.63 *** | 20.62 *** | 7.83 |
Polymeric protein Rw 4 | 1.80 | 70.80 | 31.42 | 5.32 *** | 42.65 *** | 8.01 |
RAPP content 5 | 0.84 | 3.11 | 1.70 | 8.90 *** | 182.00 *** | 20.45 |
PPSSG content 6 | 320.5 | 1755.8 | 935.0 | 4.40 *** | 54.67 *** | 12.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aussenac, T.; Rhazi, L.; Branlard, G. Molecular Weight Distribution of Polymeric Proteins in Wheat Grains: The Rheologically Active Polymers. Foods 2020, 9, 1675. https://doi.org/10.3390/foods9111675
Aussenac T, Rhazi L, Branlard G. Molecular Weight Distribution of Polymeric Proteins in Wheat Grains: The Rheologically Active Polymers. Foods. 2020; 9(11):1675. https://doi.org/10.3390/foods9111675
Chicago/Turabian StyleAussenac, Thierry, Larbi Rhazi, and Gérard Branlard. 2020. "Molecular Weight Distribution of Polymeric Proteins in Wheat Grains: The Rheologically Active Polymers" Foods 9, no. 11: 1675. https://doi.org/10.3390/foods9111675
APA StyleAussenac, T., Rhazi, L., & Branlard, G. (2020). Molecular Weight Distribution of Polymeric Proteins in Wheat Grains: The Rheologically Active Polymers. Foods, 9(11), 1675. https://doi.org/10.3390/foods9111675