The Effects of Pecan Shell, Roselle Flower and Red Pepper on the Quality of Beef Patties during Chilled Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Meat
2.3. Chemicals
2.4. Extract Preparation
2.5. DPPH Radical Scavenging Activity of the PSW, RS and CA Extracts
2.6. Total Polyphenol Content (TPC) of the PSW, RS and CA Extracts
2.7. Antimicrobial Capacity of the Extracts of the PSW, RS and CA
2.8. Formulations
2.8.1. Preparation of the Beef Patties with PSW, CA and RS (Powder form on a w/w Basis)
2.8.2. TBARS Assay
2.8.3. Determination of Hexanal by Headspace-Gas Chromatography Mass(HS-GC-MS)
2.8.4. Microbiological Analysis
2.8.5. pH Measurements
2.8.6. Determination of Metmyoglobin (MetMb)
2.8.7. Color Measurements
2.8.8. Water-Holding Capacity
2.8.9. Sensory Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Determination of DPPH and TPC of PSW, RS and CA Extracts
3.2. Antimicrobial Capacity of PSW, RS and CA Extracts
3.3. TBARS Assay (Meat Lipid Oxidation)
3.4. Determination of Hexanal by HS-GC-MS
3.5. Microbiological Analysis
3.6. pH
3.7. Percentage of Metmyoglobin
3.8. Color
3.9. Water-Holding Capacity (WHC)
3.10. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
PSW | Pecan shell (Carya illinoinensis) |
RS | Roselle flower (Hibiscus sabdariffa) |
CA | Red pepper (Capsicum annuum) |
TE | Trolox equivalent |
DW | Dry weight |
GAE | Gallic acid equivalent |
TPC | Total phenolic compounds |
CM | Control |
CFU | Colony-forming unit |
TBARS | Thiobarbituric acid-reactive substances |
MDA | Malondialdehyde |
BHA | Butilate hidroxianilose |
BHT | Butilate hidroxitoluene |
PUFA | Polyunsaturated fatty acids |
MUFA | Monounsaturated fatty acids |
SFA | Saturated fatty acids |
References
- Wood, J.D.; Nute, G.R.; Richardson, R.I.; Whittington, F.M.; Southwood, O.; Plastow, G.; Mansbridge, R.; Da Costa, N.; Chang, K.C. Effects of breed, diet and muscle on fat deposition and eating quality in pigs. Meat Sci. 2004, 67, 651–667. [Google Scholar] [CrossRef]
- Faustman, C.; Sun, Q.; Mancini, R.; Suman, S.P. Myoglobin and lipid oxidation interactions: Mechanistic bases and control. Meat Sci. 2010, 86, 86–94. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [Green Version]
- Hygreeva, D.; Pandey, M.C.; Radhakrishna, K. Potential applications of plant based derivatives as fat replacers, antioxidants and antimicrobials in fresh and processed meat products. Meat Sci. 2014, 98, 47–57. [Google Scholar] [CrossRef]
- Love, J.D.; Pearson, A.M. Lipid oxidation in meat and meat products-A review. J. Am. Oil Chem. Soc. 1971, 48, 547–549. [Google Scholar] [CrossRef]
- López-Romero, J.C.; Jesús Fernando Ayala-Zavala, E.A.P.-R.; Hernández, J.; González-Ríos, H. Antioxidant and antimicrobial activity of Agave angustifolia extract on overall quality and shelf life of pork patties stored under refrigeration. J. Food Sci. Technol. 2018, 55, 4413–4423. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Zahid, M.A.; Choi, J.Y.; Seo, J.-K.; Parvin, R.; Ko, J.; Yang, H.-S. Effects of clove extract on oxidative stability and sensory attributes in cooked beef patties at refrigerated storage. Meat Sci. 2020, 161, 107972. [Google Scholar] [CrossRef] [PubMed]
- Aouidi, F.; Okba, A.; Hamdi, M. Valorization of functional properties of extract and powder of olive leaves in raw and cooked minced beef meat. J. Sci. Food Agric. 2017, 97, 3195–3203. [Google Scholar] [CrossRef] [PubMed]
- Ouerfelli, M.; Villasante, J.; Ben Kaâb, L.B.; Almajano, M. Effect of Neem (Azadirachta indica L.) on Lipid Oxidation in Raw Chilled Beef Patties. Antioxidants 2019, 8, 305. [Google Scholar] [CrossRef] [Green Version]
- Villasante, J.; Girbal, M.; Meton, I.; Almajano, M.P. Effects of Pecan Nut (Carya illinoiensis) and Roselle Flower (Hibiscus sabdariffa) as Antioxidant and Antimicrobial Agents for Sardines (Sardina pilchardus). Molecules 2018, 24, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kureck, I.; de Brito Policarpi, P.; Toaldo, I.M.; Maciel, M.V.D.O.B.; Bordignon-Luiz, M.T.; Barreto, P.L.M.; Block, J.M. Chemical Characterization and Release of Polyphenols from Pecan Nut Shell [Carya illinoinensis (Wangenh) C. Koch] in Zein Microparticles for Bioactive Applications. Plant Foods Hum. Nutr. 2018, 73, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Lerma-Herrera, M.A.; Núñez-Gastélum, J.A.; Ascacio-Valdés, J.; Aguilar, C.N.; Rodrigo-García, J.; Díaz-Sánchez, A.G.; Alvarez-Parrilla, E.; de la Rosa, L.A. Estimation of the Mean Degree of Polymerization of Condensed Tannins from the Kernel and Shell of Carya illinoinensis by HPLC/MS and Spectrophotometric Methods. Food Anal. Methods 2017, 10, 3023–3031. [Google Scholar] [CrossRef]
- Porto, L.C.S.; da Silva, J.; de Barros Falcão Ferraz, A.; Corrêa, D.S.; dos Santos, M.S.; Porto, C.D.L.; Picada, J.N. Evaluation of acute and subacute toxicity and mutagenic activity of the aqueous extract of pecan shells [Carya illinoinensis (Wangenh.) K. Koch]. Food Chem. Toxicol. 2013, 59, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Do Prado, A.C.P.; da Silva, H.S.; da Silveira, S.M.; Barreto, P.L.M.; Vieira, C.R.W.; Maraschin, M.; Ferreira, S.R.S.; Block, J.M. Effect of the extraction process on the phenolic compounds profile and the antioxidant and antimicrobial activity of extracts of pecan nut [Carya illinoinensis (Wangenh) C. Koch] shell. Ind. Crop. Prod. 2014, 52, 552–561. [Google Scholar] [CrossRef]
- Mokhtar, M.; Ginestra, G.; Youcefi, F.; Filocamo, A.; Bisignano, C.; Riazi, A. Antimicrobial Activity of Selected Polyphenols and Capsaicinoids Identified in Pepper (Capsicum annuum L.) and Their Possible Mode of Interaction. Curr. Microbiol. 2017, 74, 1253–1260. [Google Scholar] [CrossRef] [PubMed]
- Carmona-Escutia, R.P.; Urías-Silvas, J.E.; García-Parra, M.D.; Ponce-Alquicira, E.; Villanueva-Rodríguez, S.J.; Escalona-Buendia, H.B. Universidad Autónoma Metropolitana Influence of paprika (capsicum annuum) on quality parameters and biogenic amines production of a ripened meat product (chorizo). Rev. Mex. Ing. Quim. 2019, 18, 949–966. [Google Scholar] [CrossRef]
- Piovesana, A.; Rodrigues, E.; Noreña, C.P.Z. Composition analysis of carotenoids and phenolic compounds and antioxidant activity from hibiscus calyces (Hibiscus sabdariffa L.) by HPLC—DAD—MS/MS. Phytochem. Anal. 2018, 30, 208–217. [Google Scholar] [CrossRef]
- López, C.; González Gallardo, C.; Guerrero Ochoa, M.J.; Mariño, G.; Jácome, B.; Beltrán Sinchiguano, E. Study of the stability of the antioxidants of the flor de jamaica’s wine (hibiscus sabdariffa) under storage estudio. LA GRANJA Rev. Cienc. Vida 2004, 29, 105–118. [Google Scholar] [CrossRef]
- Jabeur, I.; Pereira, E.; Barros, L.; Calhelha, R.C.; Soković, M.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R. Hibiscus sabdariffa L. as a source of nutrients, bioactive compounds and colouring agents. Food Res. Int. 2017. [Google Scholar] [CrossRef] [Green Version]
- Elmanama, A.A.; Alyazji, A.A.; Abu, N.A. Antibacterial, Antifungal and Synergistic Effect of Lawsonia inermis, Punica granatum and Hibiscus sabdariffica. Ann. Alquds Med. 2011, 7, 33–41. [Google Scholar] [CrossRef]
- Mohd-Esa, N.; Hern, F.S.; Ismail, A.; Yee, C.L. Antioxidant activity in different parts of roselle (Hibiscus sabdariffa L.) extracts and potential exploitation of the seeds. Food Chem. 2010, 122, 1055–1060. [Google Scholar] [CrossRef]
- Márquez-Rodríguez, A.S.; Nevárez-Baca, S.; Lerma-Hernández, J.C.; Hernández-Ochoa, L.R.; Nevárez-Moorillon, G.V.; Gutiérrez-Méndez, N.; Muñoz-Castellanos, L.N.; Salas, E. In Vitro Antibacterial Activity of Hibiscus sabdariffa L. Phenolic Extract and Its In Situ Application on Shelf-Life of Beef Meat. Foods 2020, 9, 1080. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Báez, A.J.; Camou, J.P.; Valenzuela-Melendres, M.; González-Aguilar, G.; Viuda-Martos, M.; Sebranek, J.G.; Tortoledo-Ortiz, O. Effects and interactions of roselle (Hibiscus sabdariffa L.), potato peel flour, and beef fat on quality characteristics of beef patties studied by response surface methodology. J. Food Process. Preserv. 2020, 44. [Google Scholar] [CrossRef]
- Gallego, M.G.; Gordon, M.H.; Segovia, F.J.; Skowyra, M.; Almajano, M.P. Antioxidant properties of three aromatic herbs (rosemary, thyme and lavender) in oil-in-water emulsions. JAOCS J. Am. Oil Chem. Soc. 2013, 90, 1559–1568. [Google Scholar] [CrossRef]
- Segovia, F.J.; Hidalgo, G.I.; Villasante, J.; Ramis, X.; Almajano, M.P. Avocado seed: A comparative study of antioxidant content and capacity in protecting oil models from oxidation. Molecules 2018, 23, 242. [Google Scholar] [CrossRef] [Green Version]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Azman, A.; Gallego, M.; Julià, L.; Fajari, L.; Almajano, M.P. The effect of convolvulus arvensis dried extract as a potential antioxidant in food models. Antioxidants 2015, 4, 170–184. [Google Scholar] [CrossRef] [Green Version]
- Grau, A.; Guardiola, F.; Boatella, J.; Barroeta, A.; Codony, R. Measurement of 2-Thiobarbituric Acid Values in Dark Chicken Meat through Derivative Spectrophotometry: Influence of Various Parameters. J. Agric. Food Chem. 2000, 48, 1155–1159. [Google Scholar] [CrossRef]
- Fan, X.J.; Liu, S.Z.; Li, H.H.; He, J.; Feng, J.T.; Zhang, X.; Yan, H. Effects of Portulaca oleracea L. extract on lipid oxidation and color of pork meat during refrigerated storage. Meat Sci. 2019, 147, 82–90. [Google Scholar] [CrossRef]
- AMSA Meat Color Measurement Guidelines; The American Meat Science Association: Champaign, IL, USA, 2012; p. 136. Available online: https://meatscience.org/publications-resources/printed-publications/amsa-meat-color-measurement-guidelines (accessed on 20 October 2020).
- Gallego, M.G.; Gordon, M.H.; Segovia, F.J.; Almajano, M.P. Caesalpinia decapetala Extracts as Inhibitors of Lipid Oxidation in Beef Patties. Molecules 2015, 20, 13913–13926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sensory and Tenderness Evaluation Guidelines. Available online: https://meatscience.org/publications-resources/printed-publications/sensory-and-tenderness-evaluation-guidelines (accessed on 23 October 2020).
- Skowyra, M.; Falguera, V.; Azman, N.A.M.; Segovia, F.; Almajano, M.P. The Effect of Perilla frutescens Extract on the Oxidative Stability of Model Food Emulsions. Antioxidants 2014, 3, 38–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De La Rosa, L.A.; Alvarez-Parrilla, E.; Shahidi, F. Phenolic compounds and antioxidant activity of kernels and shells of Mexican pecan (Carya illinoinensis). J. Agric. Food Chem. 2011, 59, 152–162. [Google Scholar] [CrossRef]
- Borrás-linares, I.; Fernández-arroyo, S.; Arráez-roman, D.; Palmeros-suárez, P.A. Characterization of phenolic compounds, anthocyanidin, antioxidant and antimicrobial activity of 25 varieties of Mexican Roselle (Hibiscus sabdariffa). Ind. Crop. Prod. 2015, 69, 385–394. [Google Scholar] [CrossRef]
- Hallmann, E.; Rembiałkowska, E. Characterisation of antioxidant compounds in sweet bell pepper (Capsicum annuum L.) under organic and conventional growing systems. J. Sci. Food Agric. 2012, 92, 2409–2415. [Google Scholar] [CrossRef] [PubMed]
- Farhoudi, R.; Mehrnia, M.A.; Lee, D. Antioxidant activities and bioactive compounds of five Jalopeno peppers (Capsicum annuum) cultivars. Nat. Prod. Res. 2017, 33, 871–874. [Google Scholar] [CrossRef] [PubMed]
- Flores-Córdova, M.A.; Sánchez, E.; Muñoz-Márquez, E.; Ojeda-Barrios, D.L.; Soto-Parra, J.M.; Preciado-Rangel, P. Phytochemical composition and antioxidant capacity in Mexican pecan nut. Emir. J. Food Agric. 2017, 29, 346–350. [Google Scholar] [CrossRef] [Green Version]
- Amaral, A.B.; Viana, M.; Caetano, S. Lipid oxidation in meat: Mechanisms and protective factors—A review. Food Sci. Technol. 2018, 38, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Costinescu, F.C.; Chifiriuc, M.C.; Popa, M.; Bleotu, C.; Neamtu, J.; Marina, L.; Averis, E.; Bubulica, M.V.; Simionescu, A.; Aldea, I.M.; et al. Screening of Polyphenol Content and In vitro Studies of Antioxidant, Antibacterial and Cytotoxic Activities of Capsicum Annuum Extracts. Chim. Buchar. Orig. Ed. 2015, 66, 1261–1266. [Google Scholar]
- Zhang, H.; Wu, J.; Guo, X. Effects of antimicrobial and antioxidant activities of spice extracts on raw chicken meat quality. Food Sci. Hum. Wellness 2016, 5, 39–48. [Google Scholar] [CrossRef] [Green Version]
- García-Lomillo, J.; Gonzalez-Sanjose, M.L.; Pino-García, R.D.; Ortega-Heras, M.; Mu, P. Antioxidant effect of seasonings derived from wine pomace on lipid oxidation in refrigerated and frozen beef patties. LWT Food Sci. Technol. 2017, 77, 85–91. [Google Scholar] [CrossRef]
- Rodríguez-Carpena, J.-G.; Morcuende, D.; Andrade, M.-J.; Kylli, P.; Estévez, M. Avocado (Persea americana Mill.) phenolics, in vitro antioxidant and antimicrobial activities, and inhibition of lipid and protein oxidation in porcine patties. J. Agric. Food Chem. 2011, 59, 5625–5635. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Carpena, J.G.; Morcuende, D.; Estévez, M. Avocado by-products as inhibitors of color deterioration and lipid and protein oxidation in raw porcine patties subjected to chilled storage. Meat Sci. 2011, 89, 166–173. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug Administration. Draft Guidance for Industry: Hazard Analysis and Risk-Based Preventive Controls for Human Food. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/draft-guidance-industry-hazard-analysis-and-risk-based-preventive-controls-human-food (accessed on 23 October 2020).
- Da-Costa-Rocha, I.; Bonnlaender, B.; Sievers, H.; Pischel, I.; Heinrich, M. Hibiscus sabdariffa L.—A phytochemical and pharmacological review. Food Chem. 2014, 165, 424–443. [Google Scholar] [CrossRef] [Green Version]
- Shange, N.; Gouws, P.; Ho, L.C. Changes in pH, colour and the microbiology of black wildebeest (Connochaetes gnou) longissimus thoracis et lumborum (LTL) muscle with normal and high (DFD) muscle pH. Meat Sci. 2019, 147, 13–19. [Google Scholar] [CrossRef]
- Gómez, I.; Sarriés, M.V.; Ibañez, F.C.; Beriain, M.J. Quality Characteristics of a Low-Fat Beef Patty Enriched by Polyunsaturated Fatty Acids and Vitamin D3. J. Food Sci. 2018, 83, 454–463. [Google Scholar] [CrossRef]
- Liu, F.; Xu, Q.; Dai, R.; Ni, Y. Effects of natural antioxidants on colour stability, lipid oxidation and metmyoglobin reducing activity in raw beef patties. Acta Sci. Pol. Technol. Aliment. 2015, 14, 37–44. [Google Scholar] [CrossRef]
- Steele, K.S.; Weber, M.J.; Boyle, E.A.E.; Hunt, M.C.; Lobaton-Sulabo, A.S.; Cundith, C.; Hiebert, Y.H.; Abrolat, K.A.; Attey, J.M.; Clark, S.D.; et al. Shelf life of fresh meat products under LED or fluorescent lighting. Meat Sci. 2016, 117, 75–84. [Google Scholar] [CrossRef]
- Sadeghinejad, N.; Sarteshnizi, R.A.; Gavlighi, H.A.; Barzegar, M. Pistachio green hull extract as a natural antioxidant in beef patties: Effect on lipid and protein oxidation, color deterioration, and microbial stability during chilled storage. LWT Food Sci. Technol. 2018. [Google Scholar] [CrossRef]
- do Prado, M.E.A.; Queiroz, V.A.V.; da Veiga Correia, V.T.; Neves, E.O.; Roncheti, E.F.S.; Gonçalves, A.C.A.; de Menezes, C.B.; de Oliveira, F.C.E. Physicochemical and sensorial characteristics of beef burgers with added tannin and tannin-free whole sorghum flours as isolated soy protein replacer. Meat Sci. 2018, 150, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Cooper, J.V.; Wiegand, B.R.; Koc, A.B.; Schumacher, L.; Grün, I.; Lorenzen, C.L. Impact of contemporary light sources on oxidation of fresh ground beef. J. Anim. Sci. 2016, 94, 4457–4462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angiolillo, L.; Conte, A.; Nobile, M.A. Del Technological strategies to produce functional meat burgers. LWT Food Sci. Technol. 2014, 62, 697–703. [Google Scholar] [CrossRef]
- Kim, H.; Miller, D.K.; Lee, Y.J.; Kim, Y.H.B. Effects of soy hull pectin and insoluble fi ber on physicochemical and oxidative characteristics of fresh and frozen/thawed beef patties. Meat Sci. 2016, 117, 63–67. [Google Scholar] [CrossRef] [Green Version]
- López-lópez, I.; Cofrades, S.; Yakan, A.; Solas, M.T.; Jiménez-colmenero, F. Frozen storage characteristics of low-salt and low-fat beef patties as affected by Wakame addition and replacing pork backfat with olive oil-in-water emulsion. Food Res. Int. 2010, 43, 1244–1254. [Google Scholar] [CrossRef]
- Turhan, S.; Sagir, I.; Ustun, N.S. Utilization of hazelnut pellicle in low-fat beef burgers. Meat Sci. 2005, 71, 312–316. [Google Scholar] [CrossRef]
- Gibis, M.; Weiss, J. Inhibitory effect of marinades with hibiscus extract on formation of heterocyclic aromatic amines and sensory quality of fried beef patties. Meat Sci. 2010, 85, 735–742. [Google Scholar] [CrossRef]
- Jung, E.; Joo, N. Roselle (Hibiscus sabdariffa L.) and soybean oil effects on quality characteristics of pork patties studied by response surface methodology. Meat Sci. 2013, 94, 391–401. [Google Scholar] [CrossRef]
Treatments |
---|
CM (control) (T1) |
2% Pecan Shell (PSW) (T2) |
4% PSW (T3) |
0.35% Capsicum annuum (CA) (T4) |
2% Hibiscus sabdariffa (RS) (T5) 2%PSW + 0.35% CA (T6) |
2% PSW + 0.35% CA + 2% RS (T7) 4% PSW + 0.35% CA + 2% RS (T8) 0.7% * CAMPA N.3 (A) (T9) |
Sample | TPC (mg GAE/g DW) | DPPH (μmol TE/g DW) |
---|---|---|
PSW | 96.81 ± 0.08 a | 104.63 ± 0.01 a |
RS | 15.02 ±0.01 b | 98.29 ± 0.04 b |
CA | 7.03 ± 0.0 c | 73.06 ± 0.01 c |
Sample | B. cereus | S. aureus | L. monocytogenes | M. luteus | E. coli | S. enterica |
---|---|---|---|---|---|---|
CA | − | − | ++ | ++ | − | − |
PSW | ++ | ++ | ++ | +++ | − | ++ |
RS | +++ | +++ | +++ | ++++ | +++ | ++ |
Control + Control − | ++ − | +++ − | ++++ − | − − | ++++ − | ++++ − |
Day | T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 |
---|---|---|---|---|---|---|---|---|---|
0 | 0.27 ± 0.04 a | 0.27 ± 0.04 a | 0.27 ± 0.04 a | 0.27 ± 0.04 a | 0.27 ± 0.04 a | 0.27 ± 0.04 a | 0.27 ± 0.04 a | 0.27 ± 0.04 a | 0.27 ± 0.04 a |
3 | 0.44 ± 0.07 a | 0.198 ± 0.01 b | 0.193 ± 0.03 b | 0.325 ± 0.02 ab | 0.316 ± 0.01 ab | 0.201 ± 0.01 b | 0.233 ± 0.03 b | 0.213 ± 0.01 b | 0.241 ± 0.01 b |
5 | 0.69 ± 0.08 a | 0.209 ± 0.08 bc | 0.140 ± 0.02 c | 0.269 ± 0.04 bc | 0.382 ± 0.01 b | 0.163 ± 0.01 bc | 0.285 ± 0.01 bc | 0.355 ± 0.02 bc | 0.219 ± 0.01 bc |
7 | 0.83 ± 0.07 a | 0.195 ± 0.08 c | 0.182 ± 0.01 a | 0.349 ± 0.01 bc | 0.427 ± 0.02 b | 0.155 ± 0.02 c | 0.306 ± 0.01 bc | 0.362 ± 0.03 bc | 0.214 ± 0.03 bc |
10 | 1.24 ± 0.07 a | 0.313 ± 0.02 bcd | 0.223 ± 0.01 d | 0.352 ± 0.01 bcd | 0.391 ± 0.01 bc | 0.213 ± 0.01 d | 0.432 ± 0.01 b | 0.398 ± 0.02 bc | 0.251 ± 0.01 cd |
12 | 1.31 ± 0.07 a | 0.454 ± 0.01 bcd | 0.434 ± 0.00 d | 0.633 ± 0.02 bcd | 0.351 ± 0.01 bc | 0.573 ± 0.01 d | 0.473 ± 0.01 b | 0.333 ± 0.01 bc | 0.279 ± 0.02 cd |
Sample | Hexanal (μg Hexanal/kg Meat) |
---|---|
CM (T1) | 609.3 ± 21.7 a |
0.7% CAMPA N.3 (A) (T9) | 0.0 ± 0.0 b |
2% PSW (T2) | 21.4 ± 2.0 b |
4% PSW (T3) | 43.0 ± 10.0 b |
0.35% CA (T4) | 4.0 ± 0.0 b |
2% RS (T5) | 0.0 ± 0.0 b |
2% PSW + 0.35% CA + 2% RS (T7) | 5.1 ± 0.4 b |
4% PSW + 0.35% CA+ 2% RS (T8) | 9.2 ± 0.1 b |
2% PSW + 0.35% CA (T6) | 5.0 ± 0.4 b |
Day | T1 | T9 | T2 | T3 | T4 | T5 | T6 | T7 | T8 |
---|---|---|---|---|---|---|---|---|---|
0 | 5.66 ± 0.05 cA | 5.71 ± 0.03 aA | 5.64 ± 0.05 bA | 5.64 ± 0.23 bA | 5.70 ± 0.02 bA | 5.42 ± 0.04 aA | 5.71 ± 0.02 bcA | 5.28 ± 0.08 aA | 5.20 ±0.10 aA |
6 | 5.87 ± 0.02 bA | 5.82 ± 0.06 aA | 5.77 ± 0.03 bA | 5.79 ± 0.01 bA | 5.82 ± 0.01 bcA | 5.20 ± 0.05 aA | 5.77 ± 0.04 bA | 5.27 ± 0.03 abA | 5.24 ± 0.01 aA |
13 | 7.54 ± 0.01 aA | 5.93 ± 0.07 aB | 7.31 ± 0.13 aA | 7.33 ± 0.06 aA | 7.53 ± 0.08 aA | 5.59 ± 0.28 aB | 7.45 ± 0.01 aA | 5.47 ± 0.01 aB | 5.46 ± 0.01 aB |
Days | T1 | T9 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | |
---|---|---|---|---|---|---|---|---|---|---|
Lightness (L*) A | 0 | 48.32 ± 1.79 aA | 50.54 ± 3.30 aA | 44.40 ± 3.03 aA | 42.16 ± 3.14 aA | 50.32 ± 1.68 aA | 49.03 ± 1.08 aAB | 43.38 ± 4.83 aA | 40.87 ± 2.38 aA | 38.67 ± 1.82 aA |
6 | 51.76 ± 3.77 aA | 50.03 ± 1.89 aA | 44.10 ± 5.3 aA | 38.35 ± 2.39 aA | 50.55 ± 1.35 aA | 53.02 ± 3.26 aAB | 49.77 ± 5.67 aA | 42.11 ± 5.17 aA | 43.12 ± 3.80 aA | |
13 | 44.04 ± 3.83 aA | 44.42 ± 5.93 aA | 46.95 ± 2.96 aA | 41.14 ± 1.37 aA | 45.45 ± 1.61 aA | 49.53 ± 3.52 aAB | 46.65 ± 2.14 aA | 41.84 ± 4.73 aA | 38.45 ± 1.09 bA | |
Chroma (c*) | 0 | 47.27 ± 1.23 abA | 54.93 ± 4.86 aA | 39.73 ± 3.44 bA | 27.07 ± 1.20 aA | 52.87 ± 0.70 aA | 39.30 ± 1.51 aA | 35.37 ± 2.70 aA | 32.37 ± 4.12 aA | 26.03 ± 2.04 aA |
6 | 31.14 ± 5.19 aCD | 45.02 ± 7.50 aABC | 24.63 ± 2.29 bBC | 11.22 ± 0.61 aBC | 32.77 ± 2.26 bDE | 19.31 ± 3.28 aCD | 16.29 ± 3.13 bBCD | 19.41 ± 2.71 aBC | 11.20 ± 0.97 bBC | |
13 | 33.86 ± 1.98 aBCD | 34.68 ± 6.08 aC | 17.47 ± 5.96 abC | 9.62 ± 4.14 bC | 34.22 ± 3.19 abCDE | 11.18 ± 4.41 bD | 9.16 ± 1.32 cE | 16.19 ± 2.63 bC | 7.55 ± 0.54 cC | |
Hue angle (h°) | 0 | 19.02 ± 3.87 aBC | 25.17 ± 4.60 aABC | 19.03 ± 0.38 abBCD | 11.94 ± 7.21 aA | 24.16 ± 2.17 aABC | 24.89 ± 2.23 aAB | 17.69 ± 1.41 aAB | 16.51 ± 2.80 aDE | 17.17 ± 6.20 abA |
6 | 33.02 ± 7.22 aABC | 29.99 ± 1.22 aAB | 32.58 ± 3.79 aABC | 25.19 ± 6.11 aA | 38.02 ± 4.71 aA | 45.51 ± 6.06 aA | 38.79 ± 4.12 aA | 37.60 ± 5.98 aAB | 28.90 ± 2.57 aA | |
13 | 24.09 ± 6.85 aABC | 26.11 ± 2.13 aABC | 25.03 ± 6.10 aABCD | 11.21 ± 2.11 aA | 20.97 ± 6.23 aBC | 38.54 ± 2.30 aAB | 8.24 ± 2.10 aB | 32.86 ± 3.74 aABC | 24.29 ± 6.77 aC |
Sample | Cooking Loss (%) |
---|---|
T1 | 26.10 ± 1.22 a |
T6 | 28.03 ± 1.18 a |
T7 | 28.30 ± 0.48 a |
T8 | 27.95 ± 1.38 a |
T9 | 28.10 ± 0.71 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villasante, J.; Ouerfelli, M.; Bobet, A.; Metón, I.; Almajano, M.P. The Effects of Pecan Shell, Roselle Flower and Red Pepper on the Quality of Beef Patties during Chilled Storage. Foods 2020, 9, 1692. https://doi.org/10.3390/foods9111692
Villasante J, Ouerfelli M, Bobet A, Metón I, Almajano MP. The Effects of Pecan Shell, Roselle Flower and Red Pepper on the Quality of Beef Patties during Chilled Storage. Foods. 2020; 9(11):1692. https://doi.org/10.3390/foods9111692
Chicago/Turabian StyleVillasante, Juliana, Manel Ouerfelli, Ares Bobet, Isidoro Metón, and María Pilar Almajano. 2020. "The Effects of Pecan Shell, Roselle Flower and Red Pepper on the Quality of Beef Patties during Chilled Storage" Foods 9, no. 11: 1692. https://doi.org/10.3390/foods9111692
APA StyleVillasante, J., Ouerfelli, M., Bobet, A., Metón, I., & Almajano, M. P. (2020). The Effects of Pecan Shell, Roselle Flower and Red Pepper on the Quality of Beef Patties during Chilled Storage. Foods, 9(11), 1692. https://doi.org/10.3390/foods9111692