Effect of Low-Temperature-High-Pressure Treatment on the Reduction of Escherichia coli in Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Culture Preparation
2.2. Preparation of E. coli-Inoculated Milk
2.3. Insulated Container
2.4. High-Pressure Treatment
2.5. Enumeration of E. coli
2.6. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) Analyses
2.7. Statistical Analysis
3. Results and Discussion
3.1. Temperature and Phase Transition in Frozen Milk during HP Treatment
3.2. Effect of LTHP Treatment on the Lethality and Injury of E. coli in Frozen Milk
3.3. Microstructure Observations of Untreated and Treated E. coli
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Oliver, S.P.; Jayarao, B.M.; Almeida, R.A. Foodborne pathogens in milk and the dairy farm environment: Food safety and public health implications. Foodborne Pathog. Dis. 2005, 2, 115–129. [Google Scholar] [CrossRef] [Green Version]
- Melini, F.; Melini, V.; Luziatelli, F.; Ruzzi, M. Raw and Heat-Treated Milk: From Public Health Risks to Nutritional Quality. Beverages 2017, 3, 54. [Google Scholar] [CrossRef] [Green Version]
- Rahaman, T.; Vasiljevic, T.; Ramchandran, L. Effect of processing on conformational changes of food proteins related to allergenicity. Trends Food Sci. Technol. 2016, 49, 24–34. [Google Scholar] [CrossRef]
- Mauron, J. Influence of Processing on Protein Quality. J. Nutr. Sci. Vitaminol. 1990, 36, S57–S69. [Google Scholar] [CrossRef] [Green Version]
- Esteghlal, S.; Gahruie, H.H.; Niakousari, M.; Barba, F.J.; Bekhit, A.E.-D.; Mallikarjunan, K.; Roohinejad, S. Bridging the Knowledge Gap for the Impact of Non-Thermal Processing on Proteins and Amino Acids. Foods 2019, 8, 262. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.Y.; Kim, S.H.; Choi, M.J.; Min, S.G.; Kwak, H.S. The Effect of High Pressure–Low Temperature Treatment on Physicochemical Properties in Milk. J. Dairy Sci. 2008, 91, 4176–4182. [Google Scholar] [CrossRef]
- Stratakos, A.C.; Inguglia, E.S.; Linton, M.; Tollerton, J.; Murphy, L.; Corcionivoschi, N.; Koidis, A.; Tiwari, B.K. Effect of high pressure processing on the safety, shelf life and quality of raw milk. Innov. Food Sci. Emerg. Technol. 2019, 52, 325–333. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kaletunç, G. Inactivation of Salmonella Enteritidis strains by combination of high hydrostatic pressure and nisin. Int. J. Food Microbiol. 2010, 140, 49–56. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Tsai, Y.-H.; Chen, S.-L.; Kung, H.-F.; Arakawa, O.; Wei, C.-I. Inactivation and Damage of Histamine-Forming Bacteria by Treatment with High Hydrostatic Pressure. Foods 2020, 9, 266. [Google Scholar] [CrossRef] [Green Version]
- Aouadhi, C.; Simonin, H.; Mejri, S.; Maaroufi, A. The combined effect of nisin, moderate heating and high hydrostatic pressure on the inactivation of Bacillus sporothermodurans spores. J. Appl. Microbiol. 2013, 115, 147–155. [Google Scholar] [CrossRef]
- Buzrul, S. Evaluation of Different Dose-Response Models for High Hydrostatic Pressure Inactivation of Microorganisms. Foods 2017, 6, 79. [Google Scholar] [CrossRef] [Green Version]
- Balasubramaniam, V.M.; Df, F.; Turek, E. Preserving Foods through High-Pressure Processing. Food Technol. 2008, 62, 32–38. [Google Scholar]
- Torres, J.A.; Velazquez, G. Commercial opportunities and research challenges in the high pressure processing of foods. J. Food Eng. 2005, 67, 95–112. [Google Scholar] [CrossRef]
- Bermúdez-Aguirre, D.; Barbosa-Cánovas, G.V. An Update on High Hydrostatic Pressure, from the Laboratory to Industrial Applications. Food Eng. Rev. 2011, 3, 44–61. [Google Scholar] [CrossRef]
- Bozoglu, F.; Alpas, H.; Kaletunç, G. Injury recovery of foodborne pathogens in high hydrostatic pressure treated milk during storage. FEMS Immunol. Med. Microbiol. 2004, 40, 243–247. [Google Scholar] [CrossRef]
- Kimura, K.; Morimatsu, K.; Inaoka, T.; Yamamoto, K. Injury and recovery of Escherichia coli ATCC25922 cells treated by high hydrostatic pressure at 400–600 MPa. J. Biosci. Bioeng. 2017, 123, 698–706. [Google Scholar] [CrossRef]
- Ramaswamy, H.S.; Riahi, E.; Idziak, E. High-Pressure Destruction Kinetics of E. coli (29055) in Apple Juice. J. Food Sci. 2003, 68, 1750–1756. [Google Scholar] [CrossRef]
- Fava, L.W.; Külkamp-Guerreiro, I.C.; Pinto, A.T. Evaluation of physico-chemical characteristics of fresh, refrigerated and frozen Lacaune ewes’ milk. Arq. Bras. Med. Vet. Zootec. 2014, 66, 1924–1930. [Google Scholar] [CrossRef] [Green Version]
- Bottiroli, R.; Zhang, C.; Aprea, E.; Fogliano, V.; Hettinga, K.; Gasperi, F. Short communication: Short-time freezing does not alter the sensory properties or the physical stability of ultra-high-temperature hydrolyzed-lactose milk. J. Dairy Sci. 2020, 103, 8822–8828. [Google Scholar] [CrossRef]
- Bridgman, P.W. Water, in the Liquid and Five Solid Forms, under Pressure. Proc. Am. Acad. Arts Sci. 1912, 47, 441–558. [Google Scholar] [CrossRef]
- Chevalier, D.; Le Bail, A.; Ghoul, M. Freezing and ice crystals formed in a cylindrical food model: Part II. Comparison between freezing at atmospheric pressure and pressure-shift freezing. J. Food Eng. 2000, 46, 287–293. [Google Scholar]
- Luscher, C.; Balasa, A.; Fröhling, A.; Ananta, E.; Knorr, D. Effect of high-pressure-induced ice I-to-ice III phase transitions on inactivation of Listeria innocua in frozen suspension. Appl. Environ. Microbiol. 2004, 70, 4021–4029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, T.; Urrutia Benet, G.; Brul, S.; Knorr, D. Influence of high-pressure–low-temperature treatment on the inactivation of Bacillus subtilis cells. Innov. Food Sci. Emerg. Technol. 2005, 6, 271–278. [Google Scholar] [CrossRef]
- Van Buggenhout, S.; Grauwet, T.; Van Loey, A.; Hendrickx, M. Effect of high-pressure induced ice I/ice III-transition on the texture and microstructure of fresh and pretreated carrots and strawberries. Food Res. Int. 2007, 40, 1276–1285. [Google Scholar] [CrossRef]
- Tholozan, J.L.; Ritz, M.; Jugiau, F.; Federighi, M.; Tissier, J.P. Physiological effects of high hydrostatic pressure treatments on Listeria monocytogenes and Salmonella typhimurium. J. Appl. Microbiol. 2000, 88, 202–212. [Google Scholar] [CrossRef]
- Bulut, S. Inactivation of Escherichia coli in milk by high pressure processing at low and subzero temperatures. High Press. Res. 2014, 34, 439–446. [Google Scholar] [CrossRef]
- Schlüter, O.; Benet, G.U.; Heinz, V.; Knorr, D. Metastable states of water and ice during pressure-supported freezing of potato tissue. Biotechnol. Prog. 2004, 20, 799–810. [Google Scholar] [CrossRef]
- Su, G.; Yu, Y.; Ramaswamy, H.S.; Hu, F.; Xu, M.; Zhu, S. Kinetics of Escherichia coli inactivation in frozen aqueous suspensions by high pressure and its application to frozen chicken meat. J. Food Eng. 2014, 142, 23–30. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, C.; Ramaswamy, H.S.; Yu, Y. Phase transitions during high pressure treatment of frozen carrot juice and influence on Escherichia coli inactivation. LWT Food Sci. Technol. 2017, 79, 119–125. [Google Scholar] [CrossRef]
- Yu, Y.; Zheng, Z.; Wang, C.; Hu, L.; Ramaswamy, H.S.; Zhu, S. Melting endothermic technique for establishing different phase diagram pathways during high pressure treatment of liquid foods. Innov. Food Sci. Emerg. Technol. 2020, 62, 102361. [Google Scholar] [CrossRef]
- Ramaswamy, H.S.; Jin, H.; Zhu, S. Effects of fat, casein and lactose on high-pressure destruction of Escherichia coli K12 (ATCC-29055) in milk. Food Bioprod. Process. 2009, 87, 1–6. [Google Scholar] [CrossRef]
- Alpas, H.; Kalchayanand, N.; Bozoglu, F.; Ray, B. Interactions of high hydrostatic pressure, pressurization temperature and pH on death and injury of pressure-resistant and pressure-sensitive strains of foodborne pathogens. Int. J. Food Microbiol. 2000, 60, 33–42. [Google Scholar] [CrossRef]
- Van Buggenhout, S.; Messagie, I.; Van der Plancken, I.; Hendrickx, M. Influence of high-pressure–low-temperature treatments on fruit and vegetable quality related enzymes. Eur. Food Res. Technol. 2006, 223, 475–485. [Google Scholar] [CrossRef]
- Van Buggenhout, S.; Messagie, I.; Maes, V.; Duvetter, T.; Van Loey, A.; Hendrickx, M. Minimizing texture loss of frozen strawberries: Effect of infusion with pectinmethylesterase and calcium combined with different freezing conditions and effect of subsequent storage/thawing conditions. Eur. Food Res. Technol. 2006, 223, 395. [Google Scholar] [CrossRef]
- Cheftel, J.C.; Levy, J.; Dumay, E. Pressure-assisted freezing and thawing: Principles and potential applications. Food Rev. Int. 2000, 16, 453–483. [Google Scholar] [CrossRef]
- Luscher, C.; Schlüter, O.; Knorr, D. High pressure–low temperature processing of foods: Impact on cell membranes, texture, color and visual appearance of potato tissue. Innov. Food Sci. Emerg. Technol. 2005, 6, 59–71. [Google Scholar] [CrossRef]
- Koseki, S.; Yamamoto, K. Recovery of Escherichia coli ATCC 25922 in phosphate buffered saline after treatment with high hydrostatic pressure. Int. J. Food Microbiol. 2006, 110, 108–111. [Google Scholar] [CrossRef]
- Black, E.P.; Huppertz, T.; Fitzgerald, G.F.; Kelly, A.L. Baroprotection of vegetative bacteria by milk constituents: A study of Listeria innocua. Int. Dairy J. 2007, 17, 104–110. [Google Scholar] [CrossRef]
- Buzrul, S.; Alpas, H.; Largeteau, A.; Demazeau, G. Efficiency of pulse pressure treatment for inactivation of Escherichia coli and Listeria innocua in whole milk. Eur. Food Res. Technol. 2009, 229, 127–131. [Google Scholar] [CrossRef]
- Donsì, G.; Ferrari, G.; Maresca, P. Pulsed high pressure treatment for the inactivation of Saccharomyces cerevisiae: The effect of process parameters. J. Food Eng. 2007, 78, 984–990. [Google Scholar] [CrossRef]
- Tomasula, P.M.; Renye, J.A.; Van Hekken, D.L.; Tunick, M.H.; Kwoczak, R.; Toht, M.; Leggett, L.N.; Luchansky, J.B.; Porto-Fett, A.C.S.; Phillips, J.G. Effect of high-pressure processing on reduction of Listeria monocytogenes in packaged Queso Fresco. J. Dairy Sci. 2014, 97, 1281–1295. [Google Scholar] [CrossRef]
- Russell, N.J. Bacterial membranes: The effects of chill storage and food processing. An overview. Int. J. Food Microbiol. 2002, 79, 27–34. [Google Scholar] [CrossRef]
- Evert-Arriagada, K.; Trujillo, A.J.; Amador-Espejo, G.G.; Hernández-Herrero, M.M. High pressure processing effect on different Listeria spp. in a commercial starter-free fresh cheese. Food Microbiol. 2018, 76, 481–486. [Google Scholar] [CrossRef]
- Ritz, M.; Tholozan, J.L.; Federighi, M.; Pilet, M.F. Morphological and Physiological Characterization of Listeria monocytogenes Subjected to High Hydrostatic Pressure. Appl. Environ. Microbiol. 2001, 67, 2240–2247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, W.P. Cold-induced lipid phase transitions. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1990, 326, 555–570. [Google Scholar]
- Erkmen, O.; Dogan, C. Effects of ultra high hydrostatic pressure on Listeria monocytogenes and natural flora in broth, milk and fruit juices. Int. J. Food Sci. Technol. 2004, 39, 91–97. [Google Scholar] [CrossRef]
- Rodriguez, E.; Arques, J.L.; Nuñez, M.; Gaya, P.; Medina, M. Combined effect of high-pressure treatments and bacteriocin-producing lactic acid bacteria on inactivation of Escherichia coli O157:H7 in raw-milk cheese. Appl. Environ. Microbiol. 2005, 71, 3399–3404. [Google Scholar] [CrossRef] [Green Version]
- Wouters, P.C.; Glaasker, E.; Smelt, J.P. Effects of High Pressure on Inactivation Kinetics and Events Related to Proton Efflux in Lactobacillus plantarum. Appl. Environ. Microbiol. 1998, 64, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-Y.; Huang, H.-W.; Hsu, C.-P.; Shyu, Y.-T.; Yang, B.B. Inactivation and morphological damage of Vibrio parahaemolyticus treated with high hydrostatic pressure. Food Control. 2013, 32, 348–353. [Google Scholar] [CrossRef]
- Marx, G.; Moody, A.; Bermúdez-Aguirre, D. A comparative study on the structure of Saccharomyces cerevisiae under nonthermal technologies: High hydrostatic pressure, pulsed electric fields and thermo-sonication. Int. J. Food Microbiol. 2011, 151, 327–337. [Google Scholar] [CrossRef]
- Edebo, L.; Hedén, C.G. Disruption of frozen bacteria as a consequence of changes in the crystal structure of ice. J. Biochem. Microbiol. Technol. Eng. 1960, 2, 113–120. [Google Scholar] [CrossRef]
- Garcia-Gonzalez, L.; Geeraerd, A.H.; Mast, J.; Briers, Y.; Elst, K.; Van Ginneken, L.; Van Impe, J.F.; Devlieghere, F. Membrane permeabilization and cellular death of Escherichia coli, Listeria monocytogenes and Saccharomyces cerevisiae as induced by high pressure carbon dioxide treatment. Food Microbiol. 2010, 27, 541–549. [Google Scholar] [CrossRef] [PubMed]
Treatments | Lethality (log) | Injury (log) | ||
---|---|---|---|---|
Frozen or Not | Cycles | Pressure (MPa) | ||
Unfrozen | 1 | 400 | 2.19 ± 0.13 a | 1.62 ± 0.29 a |
2 | 400 | 2.85 ± 0.05 b | 1.60 ± 0.10 a | |
Frozen | 1 | 0.1 | 0.75 ± 0.03 c | 0.61 ± 0.18 b |
1 | 100 | 1.33 ± 0.26 df | 0.96 ± 0.35 bc | |
1 | 200 | 1.30 ± 0.14 d | 0.85 ± 0.20 b | |
1 | 300 | 2.84 ± 0.25 b | 1.56 ± 0.33 ac | |
1 | 400 | 3.43 ± 0.10 e | 1.24 ± 0.24 abc | |
2 | 100 | 1.54 ± 0.13 df | 0.97 ± 0.37 bc | |
2 | 200 | 1.77 ± 0.35 f | 1.16 ± 0.26 abc | |
2 | 300 | 3.56 ± 0.03 e | 0.92 ± 0.26 b | |
2 | 400 | 4.53 ± 0.36 g | 0.72 ± 0.23 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zheng, Z.; Zhu, S.; Ramaswamy, H.S.; Yu, Y. Effect of Low-Temperature-High-Pressure Treatment on the Reduction of Escherichia coli in Milk. Foods 2020, 9, 1742. https://doi.org/10.3390/foods9121742
Li Y, Zheng Z, Zhu S, Ramaswamy HS, Yu Y. Effect of Low-Temperature-High-Pressure Treatment on the Reduction of Escherichia coli in Milk. Foods. 2020; 9(12):1742. https://doi.org/10.3390/foods9121742
Chicago/Turabian StyleLi, Yifan, Zhuoyun Zheng, Songming Zhu, Hosahalli S. Ramaswamy, and Yong Yu. 2020. "Effect of Low-Temperature-High-Pressure Treatment on the Reduction of Escherichia coli in Milk" Foods 9, no. 12: 1742. https://doi.org/10.3390/foods9121742
APA StyleLi, Y., Zheng, Z., Zhu, S., Ramaswamy, H. S., & Yu, Y. (2020). Effect of Low-Temperature-High-Pressure Treatment on the Reduction of Escherichia coli in Milk. Foods, 9(12), 1742. https://doi.org/10.3390/foods9121742