The Antimutagenic and Antioxidant Activity of Fermented Milk Supplemented with Cudrania tricuspidata Powder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Cudrania Tricuspidata Powder
2.2. Preparation of Fermented Milk Supplemented with Cudrania tricuspidata
2.3. Assessment of Physicochemical Properties and LAB Viable Counts in the Fermented Milk
2.3.1. Soluble Solid Contents, pH, Total Acidity, and Viable LAB Counts
2.3.2. Total Phenolic and Flavonoid Compounds
2.3.3. Free Sugar and Organic Acid Contents
2.3.4. Hunter’s Color Value
2.4. Assessment of Antioxidant Activities in Fermented Milk
2.5. Assessment of the Antimutagenic Activity of Fermented Milk
2.6. Sensory Evaluation
2.7. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties and Viable Cell Count of Fermented Milk
3.2. Measuring Color Changes in Fermented Milk Supplemented with Cudrania tricuspidata
3.3. Functional Properties of Fermented Milk Supplemented with Cudrania tricuspidata
3.4. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nguyen, L.; Hwang, E.S. Quality characteristics and antioxidant activity of yogurt supplemented with aronia (Aronia melanocarpa) juice. Prev. Nutr. Food Sci. 2016, 21, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Granato, D.; Branco, G.F.; Cruz, A.G.; Faria, J.A.F.; Shah, N.P. Probiotic dairy products as functional foods. Compr. Rev. Food Sci. Food Saf. 2010, 9, 455–470. [Google Scholar] [CrossRef]
- Muniandy, P.; Shori, A.B.; Baba, A.S. Influence of green, white and black tea addition on the antioxidant activity of probiotic yogurt during refrigerated storage. Food Packag. Shelf Life 2016, 8, 1–8. [Google Scholar] [CrossRef]
- Gahruie, H.H.; Eskandari, M.H.; Mesbahi, G.; Hanifpour, M.A. Scientific and technical aspects of yogurt fortification: A review. Food Sci. Hum. Wellness 2015, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Elfahri, K.R.; Vasiljevic, T.; Yeager, T.; Donkor, O.N. Anti-colon cancer and antioxidant activities of bovine skim milk fermented by selected Lactobacillus helveticus strains. J. Dairy Sci. 2016, 99, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Perego, S.; Cosentino, S.; Fiorilli, A.; Tettamanti, G.; Ferraretto, A. Casein phosphopeptides modulate proliferation and apoptosis in HT-29 cell line through their interaction with voltage-operated L-type calcium channels. J. Nutr. Biochem. 2012, 23, 808–816. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, M.; Tang, Y.; Wang, J.; Wei, C.; Gu, F.; Lei, T.; Chen, Z.; Qin, Y. The milk-derived fusion peptide, ACFP, suppresses the growth of primary human ovarian cancer cells by regulating apoptotic gene expression and signaling pathways. BMC Cancer 2016, 16, 246. [Google Scholar] [CrossRef] [Green Version]
- Seppo, L.; Jauhiainen, T.; Poussa, T.; Korpela, R. A fermented milk high in bioactive peptides has a blood pressure–lowering effect in hypertensive subjects. Am. J. Clin. Nutr. 2003, 77, 326–330. [Google Scholar] [CrossRef]
- Beltrán-Barrientos, L.M.; González-Córdova, A.F.; Hernández-Mendoza, A.; Torres-Inguanzo, E.H.; Astiazarán-García, H.; Esparza-Romero, J.; Vallejo-Cordoba, B. Randomized double-blind controlled clinical trial of the blood pressure–lowering effect of fermented milk with Lactococcus lactis: A pilot study. J. Dairy Sci. 2018, 101, 2819–2825. [Google Scholar] [CrossRef] [Green Version]
- Barengolts, E.; Smith, E.D.; Reutrakul, S.; Tonucci, L.; Anothaisintawee, T. The effect of probiotic yogurt on glycemic control in type 2 diabetes or obesity: A meta–analysis of nine randomized controlled trials. Nutrients 2019, 11, 671. [Google Scholar] [CrossRef] [Green Version]
- Sato, J.; Kanazawa, A.; Azuma, K.; Ikeda, F.; Goto, H.; Komiya, K.; Kanno, R.; Tamura, Y.; Asahara, T.; Takahashi, T.; et al. Probiotic reduces bacterial translocation in type 2 diabetes mellitus: A randomised controlled study. Sci. Rep. 2017, 7, 12115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Hamid, M.; Romeih, E.; Huang, Z.; Enomoto, T.; Huang, L.; Li, L. Bioactive properties of probiotic set-yogurt supplemented with Siraitia grosvenorii fruit extract. Food Chem. 2020, 303, 125400. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Hyeonbin, O.; Lee, P.; Kim, Y.S. The quality characteristics, antioxidant activity, and sensory evaluation of reduced-fat yogurt and nonfat yogurt supplemented with basil seed gum as a fat substitute. J. Dairy Sci. 2020, 103, 1324–1336. [Google Scholar] [CrossRef] [PubMed]
- Yeo, S.B.; Yeo, S.H.; Park, H.D. Quality characteristics, antioxidant activity and storage properties of fermented milk added with green tea powder. Korean J. Food Preserv. 2017, 24, 576–584. [Google Scholar] [CrossRef]
- Sah, B.N.P.; Vasiljevic, T.; McKechnie, S.; Donkor, O.N. Effect of refrigerated storage on probiotic viability and the production and stability of antimutagenic and antioxidant peptides in yogurt supplemented with pineapple peel. J. Dairy Sci. 2015, 98, 5905–5916. [Google Scholar] [CrossRef] [PubMed]
- Oh, N.S.; Lee, J.Y.; Oh, S.; Joung, J.Y.; Kim, S.G.; Shin, Y.K.; Lee, K.W.; Kim, S.H.; Kim, Y. Improved functionality of fermented milk is mediated by the symbiotic interaction between Cudrania tricuspidata leaf extract and Lactobacillus gasseri strains. Appl. Microbiol. Biotechnol. 2016, 100, 5919–5932. [Google Scholar] [CrossRef]
- Li, X.; Yao, Z.; Jiang, X.; Sun, J.; Ran, G.; Yang, X.; Zhao, Y.; Yan, Y.; Chen, Z.; Tian, L.; et al. Bioactive compounds from Cudrania tricuspidata: A natural anticancer source. Crit. Rev. Food Sci. Nutr. 2020, 60, 494–514. [Google Scholar] [CrossRef]
- Lee, S.B.; Shin, J.S.; Han, H.S.; Lee, H.H.; Park, J.C.; Lee, K.T. Kaempferol 7-O-β-D-glucoside isolated from the leaves of Cudrania tricuspidata inhibits LPS-induced expression of pro-inflammatory mediators expression of pro-inflammatory mediators through inactivation of NF-ĸB, AP-1, and JAK-STAT in RAW 264.7 macrophages. Chem. Biol. Interact. 2018, 284, 101–111. [Google Scholar] [CrossRef]
- Ko, W.; Kim, K.W.; Quang, T.H.; Yoon, C.S.; Kim, N.; Lee, H.; Kim, S.C.; Woo, E.R.; Kim, Y.C.; Oh, H.; et al. Cudraflavanone B Isolated from the Root Bark of Cudrania tricuspidata Alleviates Lipopolysaccharide-induced Inflammatory Responses by Downregulating NF-ĸB and ERK MARK Signaling Pathways in RAW264.7 Macrophages and BV2 Microglia. Inflammation. 2020. Available online: http://link.springer.com/article/10.1007/s10753-020-01312-y (accessed on 6 August 2020).
- Jeon, S.M.; Lee, D.S.; Jeong, G.S. Cudraticusxanthone A isolated from the roots of Cudrania tricuspidata inhibits metastasis and induces apoptosis in breast cancer cells. J. Ethnopharmacol. 2016, 193, 57–62. [Google Scholar] [CrossRef]
- Kuang, L.; Wang, L.; Wang, Q.; Zhao, Q.; Du, B.; Li, D.; Luo, J.; Liu, M.; Hou, A.; Qian, M. Cudratricusxanthone G inhibits human colorectal carcinoma cell invasion by MMP-2 down-regulation through suppressing activator protein-1 activity. Biochem. Pharmacol. 2011, 81, 1192–1200. [Google Scholar] [CrossRef]
- An, R.B.; Sohn, D.H.; Kim, Y.C. Hepatoprotective compounds of the roots of Cudrania tricuspidata on tacrine-induced cytotoxicity in Hep G2 cells. Biol. Pharm. Bull. 2006, 29, 838–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, Y.H.; Kim, H.C.; Cui, J.M.; Kim, Y.C. Hepatoprotective constituents of Cudrania tricuspidata. Arch. Pharm. Res. 2005, 28, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Ko, W.; Yoon, C.S.; Kim, K.W.; Lee, H.; Kim, N.; Woo, E.R.; Kim, Y.C.; Kang, D.G.; Lee, H.S.; Oh, H.; et al. Neuroprotective and anti-inflammatory effects of Kuwanon C from Cudrania tricuspidata are mediated by heme oxygenase-1 in HT22 hippocampal cells, RAW264.7 macrophage, and BV2 microglia. Int. J. Mol. Sci. 2020, 21, 4839. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.; Hiep, N.T.; Kim, D.W.; Hwang, B.Y.; Lee, H.J.; Mar, W.; Lee, D. Neuroprotective xanthones from the root bark of Cudrania tricuspidata. J. Nat. Prod. 2014, 77, 1893–1901. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.; Ku, S.K.; Lee, W.; Kwak, S.; Baek, Y.D.; Min, B.W.; Jeong, G.S.; Bae, J.S. Antiplatelet, anticoagulant, and profibrinolytic activities of cudratricusxanthone A. Arch. Pharm. Res. 2014, 37, 1069–1078. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, B.W.; Kim, J.H.; Seo, W.D.; Jang, K.C.; Park, K.H. Antioxidant effects of isoflavones from the stem bark of Cudrania tricuspidata. Agric. Chem. Biotechnol. 2005, 48, 193–197. [Google Scholar]
- Seo, W.G.; Pae, H.O.; Oh, G.S.; Chai, K.Y.; Yun, Y.G.; Chung, H.T.; Jang, K.K.; Kwon, T.O. Ethyl acetate extract of the stem bark of Cudrania tricuspidata induces apoptosis in human leukemia HL-60 cells. Am. J. Chin. Med. 2001, 29, 313–320. [Google Scholar] [CrossRef]
- Han, X.H.; Hong, S.S.; Jin, Q.; Li, D.; Kim, H.K.; Lee, J.; Kwon, S.H.; Lee, D.; Lee, C.K.; Lee, M.K.; et al. Prenylated and benzylated flavonoids from the fruits of Cudrania tricuspidata. J. Nat. Prod. 2009, 72, 164–167. [Google Scholar] [CrossRef]
- Choi, J.H.; Park, S.E.; Yeo, S.H.; Kim, S. Anti-inflammatory and cytotoxicity effects of Cudrania tricuspidata fruits vinegar in a co-culture system with RAW264.7 macrophages and 3T3-L1 adipocytes. Foods 2020, 9, 1232. [Google Scholar] [CrossRef]
- Lee, J.H.; Choi, I.S. Physicochemical characteristics and consumer acceptance of puddings fortified with Cudrania tricuspidata and Aronia melanocarpa extracts. Food Sci. Nutr. 2020, 8, 4936–4943. [Google Scholar] [CrossRef]
- Kim, G.H.; Kim, E. Antioxidative activities and inhibitory effects on lipid accumulation of extracts from different parts of Morus alba and Cudrania tricuspidata. Korean J. Food Nutr. 2019, 32, 138–147. [Google Scholar]
- Kim, O.K.; Ho, J.N.; Nam, D.E.; Jun, W.; Hwang, K.T.; Kang, J.E.; Chae, O.S.; Lee, J. Hepatoprotective effect of Curdrania tricuspidata extracts against oxidative damage. J. Korean Soc. Food Sci. Nutr. 2012, 41, 7–13. [Google Scholar] [CrossRef]
- Kim, H.; Chin, K.B. Evaluation of Antioxidant Potential of Cudrania tricuspidata (CT) Leaves, Fruit Powder and CT Fruit in Pork Patties during Storage. Food Sci. Anim. Resour. 2020. Available online: https://www.kosfaj.org/archive/view_article?pid=kosfa-2020-e56 (accessed on 22 July 2020).
- Oh, N.S.; Lee, J.Y.; Joung, J.Y.; Kim, K.S.; Shin, Y.K.; Lee, K.W.; Kim, S.H.; Oh, S.; Kim, Y. Microbiological characterization and functionality of set-type yogurt fermented with potential prebiotic substrates Cudrania tricuspidata and Morus alba L. leaf extracts. J. Dairy Sci. 2016, 99, 6014–6015. [Google Scholar] [CrossRef] [PubMed]
- Sloczyńska, K.; Powroźnik, B.; Pekala, E.; Waszkielewicz, A.M. Antimutagenic compounds and their possible mechanisms of action. J. Appl. Genet. 2014, 55, 273–285. [Google Scholar] [CrossRef] [Green Version]
- Dixon, K.; Kopras, E. Genetic alterations and DNA repair in human carcinogenesis. Semin. Cancer Biol. 2004, 14, 441–448. [Google Scholar] [CrossRef]
- Ioannides, C.; Yoxall, V. Antimutagenic activity of tea: Role of polyphenols. Curr. Opin. Clin. Nutr. Metab. Care 2003, 6, 649–656. [Google Scholar] [CrossRef]
- Choi, J.S.; Park, K.Y.; Moon, S.H.; Rhee, S.H.; Young, H.S. Antimutagenic effect of plant flavonoids in the Salmonella assay system. Arch. Pharm. Res. 1994, 17, 71–75. [Google Scholar] [CrossRef]
- De Oliveira, A.P.S.; de Sousa, J.F.; da Silva, M.A.; Hilário, F.; Resende, F.A.; de Camargo, M.S.; Vilegas, W.; dos Santos, L.C.; Varanda, E.A. Estrogenic and chemopreventive activities of xanthones and flavones of Syngonanthus (Eruicaulaceae). Steroids 2013, 78, 1053–1063. [Google Scholar] [CrossRef]
- Horwitz, W. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Lee, S.B.; Park, H.D. Isolation and investigation of potential non-Saccharomyces yeasts to improve the volatile terpene compounds in Korean Muscat Bailey A wine. Microorganisms 2020, 8, 1552. [Google Scholar] [CrossRef]
- Lee, S.B.; Banda, C.; Park, H.D. Effect of inoculation strategy of non-Saccharomyces yeasts on fermentation characteristics and volatile higher alcohols and esters in Campbell Early wines. Aust. J. Grape Wine Res. 2019, 25, 384–395. [Google Scholar] [CrossRef]
- Oszmiański, J.; Wojdylo, A.; Kolniak, J. Effect of pectinase treatment on extraction of antioxidant phenols from pomace, for the production of puree-enriched cloudy apple juices. Food Chem. 2011, 127, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.H.; Kim, S.B.; Liu, Q.; Do, S.G.; Hwang, B.Y.; Lee, K.M. Comparison of pancreatic lipase inhibitory isoflavonoids from unripe and ripe fruits of Cudrania tricuspidata. PLoS ONE 2017, 12, e0172069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, S.H.; Ki, S.H.; Park, D.H.; Moon, H.S.; Lee, C.D.; Yoon, I.S.; Cho, S.S. Quantitative analysis, extraction optimization, and biological evaluation of Cudrania tricuspidata leaf and fruit extracts. Molecules 2017, 22, 1489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.W.; Lee, W.J.; Gebru, Y.A.; Choi, H.S.; Yeo, S.H.; Jeong, Y.J.; Kim, S.; Kim, Y.H.; Kim, M.K. Comparison of bioactive compounds and antioxidant activities of Maclura tricuspidata fruit extracts at different maturity stages. Molecules 2019, 24, 567. [Google Scholar] [CrossRef] [Green Version]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. 2017, 14, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Dueñas, M.; Muñoz-González, I.; Cueva, C.; Jiménez-Girón, A.; Sánchez-Patán, F.; Santos-Buelga, C.; Moreno-Arribas, M.V.; Bartolommé, B. A survey of modulation of gut microbiota by dietary polyphenols. BioMed. Res. Int. 2015, 2015, 850902. [Google Scholar] [CrossRef]
- Dimitrellou, D.; Solomakou, N.; Kokkinomagoulos, E.; Kandylis, P. Yogurts supplemented with juices from grapes and berries. Foods 2020, 9, 1158. [Google Scholar] [CrossRef]
- Xin, L.T.; Yue, S.J.; Fan, Y.C.; Wu, J.S.; Yan, D.; Guan, H.S.; Wang, C.Y. Cudrania tricuspidata: An updated review on ethnomedicine, phytochemistry and pharmacology. RSC Adv. 2017, 7, 31807–31832. [Google Scholar] [CrossRef] [Green Version]
- Anbukkarasi, K.; UmaMaheswari, T.; Hemalatha, T.; Nanda, D.K.; Singh, P.; Singh, R. Preparation of low galactose yogurt using cultures of Gal+ Streptococcus thermophilus in combination with Lactobacillus delbrueckii ssp. bulgaricus. J. Food Sci. Technol. 2014, 51, 2183–2189. [Google Scholar] [CrossRef]
- Wu, Q.; Cheung, C.K.W.; Shah, N.P. Towards galactose accumulation in dairy foods fermented by conventional starter cultures: Challenges and strategies. Trends Food Sci. Technol. 2015, 41, 24–36. [Google Scholar] [CrossRef]
- Thomas, C.J.C.; Lawless, H.T. Astringent subqualities in acids. Chem. Senses 1995, 20, 593–600. [Google Scholar] [CrossRef]
- García-Pérez, F.J.; Lario, Y.; Fernández-López, J.; Sayas, E.; Pérez-Alvarez, J.A.; Sendra, E. Effect of orange fiber addition on yogurt color during fermentation and cold storage. Color Res. Appl. 2005, 30, 457–463. [Google Scholar] [CrossRef]
- Sánchez-Bravo, P.; Zapata, P.J.; Martínez-Esplá, A.; Carbonell-Barrachina, Á.A.; Sendra, E. Antioxidant and anthocyanin content in fermented milks with sweet cherry is affected by the starter culture and the ripening stage of the cherry. Beverages 2018, 4, 57. [Google Scholar] [CrossRef] [Green Version]
- Novruzov, E.N.; Agamirov, U.M. Carotinoids of Cudrania tricuspidata fruit. Chem. Nat. Compd. 2002, 38, 468–469. [Google Scholar] [CrossRef]
- Lee, Y.; Oh, J.; Lee, H.; Lee, N.K.; Jeong, D.Y.; Jeong, Y.S. Lactic acid bacteria-mediated fermentation of Cudrania tricuspidata leaf extract improves its antioxidative activity, osteogenic effects, and anti-adipogenic effects. Biotechnol. Bioprocess Eng. 2015, 20, 861–870. [Google Scholar] [CrossRef]
- Lee, Y.; Oh, J.; Jeong, Y.S. Lactobacillus plantarum-mediated conversion of flavonoid glycosides into flavonols, quercetin, and kaempferol in Cudrania tricuspidata leaves. Food Sci. Biotechnol. 2015, 24, 1817–1821. [Google Scholar] [CrossRef]
- Oh, N.S.; Lee, J.Y.; Kim, Y. The growth kinetics and metabolic and antioxidant activities of the functional symbiotic combination of Lactobacillus gasseri 505 and Cudrania tricuspidata leaf extract. Appl. Microbiol. Biotechnol. 2016, 100, 10095–10106. [Google Scholar] [CrossRef]
- Jeong, C.H.; Choi, G.N.; Kim, J.H.; Kwak, J.H.; Heo, H.; Shim, K.; Cho, B.R.; Bae, Y.I.; Choi, J.S. In vitro antioxidative activities and phenolic composition of hot water extract from different parts of Cudrania tricuspidata. Prev. Nutr. Food Sci. 2009, 14, 283–289. [Google Scholar] [CrossRef]
- Kim, J.Y.; Chung, J.H.; Hwang, I.; Kwan, Y.S.; Chai, J.K.; Lee, K.H.; Han, T.H.; Moon, J.H. Quantification of quercetin and kaempferol contents in different parts of Cudrania tricuspidata and their processed foods. Korean J. Hortic. Sci. Technol. 2009, 27, 489–496. [Google Scholar]
- Shin, G.R.; Lee, S.; Lee, S.; Do, S.G.; Shin, E.; Lee, C.H. Maturity stage-specific metabolite profiling of Cudrania tricuspidata and its correlation with antioxidant activity. Ind. Crop. Prod. 2015, 70, 322–331. [Google Scholar] [CrossRef]
- Hosono, A.; Kashina, T.l.; Kada, T. Anti-mutagenic properties of lactic acid-cultured milk on chemical and fecal mutagens. J. Dariy Sci. 1986, 69, 2237–2242. [Google Scholar] [CrossRef]
- Hosoda, M.; Hashimoto, H.; Morita, H.; Chiba, M.; Hosono, A. Anti-mutagenicity of milk cultured with lactic acid bacteria against N-methyl-N-nitro-N-nitrosoguanidine. J. Dairy Sci. 1992, 75, 976–981. [Google Scholar] [CrossRef]
- Yoshida, S.; Ye, X.Y. The binding ability of bovine milk caseins to mutagenic heterocyclic amines. J. Dairy Sci. 1992, 75, 958–961. [Google Scholar] [CrossRef]
- Yoshida, S.; Ye, X.Y.; Nishimui, T. The binding ability of R-lactalbumin and α-lactoglobulin to mutagenic heterocyclic amines. J. Dairy Sci. 1991, 74, 3741–3745. [Google Scholar] [CrossRef]
- Van Boekel, M.A.J.S.; Weerens, C.N.J.M.; Holstra, A.; Scheidtweiler, C.E.; Alink, G.M. Antimutagenic effects of casein and its digestion products. Food Chem. Toxicol. 1993, 31, 731–737. [Google Scholar] [CrossRef]
- Matar, C.; Nadathur, S.S.; Bakalinsky, A.T.; Goulet, J. Anti-mutagenic effects of milk fermented by Lactobacillus helVeticus L89 and a protease-deficient derivative. J. Dairy Sci. 1997, 80, 1965–1970. [Google Scholar] [CrossRef]
- Geetha, T.; Malhotra, V.; Chopra, K.; Kaur, I.P. Antimutagenic and antioxidant/prooxidant activity of quercetin. Indian J. Exp. Biol. 2005, 43, 61–67. [Google Scholar]
- Horn, R.C.; Vargas, V.M.F. Antimutagenic activity of extracts of natural substances in the Salmonella/microsome assay. Mutagenesis 2003, 18, 113–118. [Google Scholar] [CrossRef] [Green Version]
Proximate Composition (%) | |
---|---|
Moisture | 80.16 ± 1.43 |
Carbohydrate | 12.40 ± 0.43 |
Crude protein | 2.40 ± 0.32 |
Crude lipid | 1.50 ± 0.04 |
Crude ash | 3.54 ± 0.44 |
Ingredient (g) | Cudrania tricuspidata Powder Content (%, w/w) | ||||
---|---|---|---|---|---|
0 | 0.5 | 1 | 2 | 3 | |
Raw milk | 930 | 925 | 920 | 910 | 900 |
Skim milk | 40 | 40 | 40 | 40 | 40 |
Bulk starter | 30 | 30 | 30 | 30 | 30 |
Cudrania tricuspidata power | 0 | 5 | 10 | 20 | 30 |
Parameter | Cudrania tricuspidata Powder Content (%, w/w) | ||||
---|---|---|---|---|---|
0 | 0.5 | 1 | 2 | 3 | |
Soluble solid (°Brix) | 9.8 ± 0.0 a | 9.8 ± 0.0 a | 9.8 ± 0.1 a | 9.8 ± 0.0 a | 9.8 ± 0.0 a |
pH | 4.51 ± 0.02 a | 4.47 ± 0.01 b | 4.40 ± 0.02 b | 4.34 ± 0.01 d | 4.30 ± 0.01 e |
Total acidity (%) | 1.11 ± 0.02 b | 1.13 ± 0.02 b | 1.19 ± 0.01 b | 1.23 ± 0.03 ab | 1.28 ± 0.02 a |
Viable LAB cell count (Log CFU/mL) | 9.01 ± 0.11 a | 9.05 ± 0.25 a | 9.08 ± 0.19 a | 9.16 ± 0.23 a | 9.21 ± 0.18 a |
Total phenolic compound (mg GE/mL) | 1.77 ± 0.04 e | 6.62 ± 0.07 d | 8.09 ± 0.29 b | 16.50 ± 0.59 b | 22.57 ± 1.03 a |
Total flavonoid content (μg QE/mL) | 5.55 ± 2.52 e | 55.81 ± 8.58 d | 80.26 ± 8.24 b | 126.13 ± 1.26 b | 167.05 ± 8.73 a |
Free sugar contents (mg/mL) | |||||
Glucose | ND | ND | 3.66 ± 0.24 c | 6.21 ± 0.19 b | 8.90 ± 0.31 a |
Fructose | ND | ND | 1.13 ± 0.08 c | 4.20 ± 0.13 b | 6.94 ± 0.25 a |
Lactose | 54.59 ± 2.31 a | 51.57 ± 2.18 ab | 48.34 ± 1.96 b | 47.75 ± 2.05 b | 47.00 ± 1.83 b |
Galactose | 4.93 ± 0.24 b | 4.84 ± 0.31 b | 5.49 ± 0.34 ab | 6.07 ± 0.41 a | 5.86 ± 0.29 a |
Organic acid contents (mg/mL) | |||||
Malic acid | 7.47 ± 0.37 c | 6.54 ± 0.56 c | 7.40 ± 0.38 c | 11.43 ± 0.52 b | 14.96 ± 0.43 a |
Lactic acid | 11.85 ± 0.21 b | 11.75 ± 0.28 b | 11.92 ± 0.20 b | 12.32 ± 0.22 ab | 12.54 ± 0.16 a |
Color Value | Fermentation | Cudrania tricuspidata Powder Content (%, w/w) | ||||
---|---|---|---|---|---|---|
0 | 0.5 | 1 | 2 | 3 | ||
L | Before | 78.63 ± 0.13 a | 66.73 ± 0.99 b | 63.29 ± 0.24 c | 58.14 ± 0.08 d | 54.24 ± 0.06 e |
After | 75.06 ± 0.99 a | 64.61 ± 1.54 b | 61.27 ± 0.33 c | 56.58 ± 0.60 d | 53.24 ± 0.04 e | |
a | Before | −2.40 ± 0.03 e | 6.50 ± 0.17 d | 9.97 ± 0.11 c | 13.09 ± 0.13 b | 14.77 ± 0.03 a |
After | −1.72 ± 0.07 e | 6.40 ± 0.30 d | 10.40 ± 0.19 c | 15.91 ± 0.28 b | 17.77 ± 0.04 a | |
b | Before | 5.55 ± 0.25 e | 13.76 ± 0.25 d | 17.56 ± 0.25 c | 21.09 ± 0.23 b | 22.03 ± 0.01 a |
After | 7.24 ± 0.40 e | 16.14 ± 0.37 d | 21.13 ± 0.21 c | 26.62 ± 0.33 b | 28.08 ± 0.09 a |
Antioxidant Activity (μM TE/mL) | Cudrania tricuspidata Powder Content (%, w/w) | ||||
---|---|---|---|---|---|
0 | 0.5 | 1 | 2 | 3 | |
DPPH radical scavenging activity | 1.94 ± 0.12 c | 2.57 ± 0.20 b | 2.77 ± 0.14 b | 3.18 ± 0.10 a | 3.40 ± 0.11 a |
ABTS scavenging activity | 0.31 ± 0.02 c | 0.49 ± 0.03 b | 0.52 ± 0.05 ab | 0.64 ± 0.08 a | 0.67 ± 0.04 a |
FRAP activity | 0.19 ± 0.01 e | 0.40 ± 0.02 d | 0.66 ± 0.04 c | 1.20 ± 0.08 b | 1.84 ± 0.13 a |
Strain | Mutagen | Cudrania tricuspidata Powder Content (%, w/w) | ||||
---|---|---|---|---|---|---|
0 | 0.5 | 1 | 2 | 3 | ||
TA100 | MNNG | 21.23 ± 1.45 e | 39.98 ± 0.99 d | 57.88 ± 0.56 c | 70.17 ± 3.69 b | 85.81 ± 1.30 a |
NPD | 17.42 ± 1.34 e | 40.73 ± 3.15 d | 52.53 ± 3.46 c | 66.57 ± 2.04 b | 77.53 ± 2.25 a | |
TA98 | MNNG | 16.52 ± 2.32 d | 25.53 ± 4.45 c | 49.55 ± 1.78 b | 64.56 ± 2.62 a | 70.57 ± 3.55 a |
NPD | 24.76 ± 2.50 e | 44.76 ± 2.13 d | 56.19 ± 2.24 c | 74.29 ± 1.52 b | 88.57 ± 3.58 a |
Sensory Property | Cudrania tricuspidata Powder Content (%, w/w) | ||||
---|---|---|---|---|---|
0 | 0.5 | 1 | 2 | 3 | |
Color | 3.60 ± 1.28 b | 4.15 ± 1.24 b | 4.90 ± 1.70 ab | 5.50 ± 1.71 a | 5.40 ± 1.86 a |
Odor | 4.30 ± 1.23 b | 4.80 ± 0.91 ab | 4.60 ± 1.12 ab | 4.70 ± 1.29 ab | 5.20 ± 1.33 a |
Sourness | 4.40 ± 1.62 a | 4.60 ± 1.42 a | 3.75 ± 1.25 ab | 3.10 ± 1.25 bc | 2.35 ± 1.04 c |
Taste | 4.30 ± 1.25 a | 4.45 ± 1.22 a | 3.95 ± 1.22 ab | 3.50 ± 1.24 b | 3.05 ± 1.28 b |
Texture | 5.35 ± 1.41 a | 4.85 ± 1.31 a | 3.65 ± 1.19 b | 2.65 ± 1.14 c | 2.15 ± 1.01 c |
Overall preference | 4.15 ± 1.26 a | 4.30 ± 1.05 a | 3.55 ± 1.12 ab | 3.10 ± 1.25 b | 2.70 ± 1.09 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-B.; Cosmas, B.; Park, H.-D. The Antimutagenic and Antioxidant Activity of Fermented Milk Supplemented with Cudrania tricuspidata Powder. Foods 2020, 9, 1762. https://doi.org/10.3390/foods9121762
Lee S-B, Cosmas B, Park H-D. The Antimutagenic and Antioxidant Activity of Fermented Milk Supplemented with Cudrania tricuspidata Powder. Foods. 2020; 9(12):1762. https://doi.org/10.3390/foods9121762
Chicago/Turabian StyleLee, Sae-Byuk, Banda Cosmas, and Heui-Dong Park. 2020. "The Antimutagenic and Antioxidant Activity of Fermented Milk Supplemented with Cudrania tricuspidata Powder" Foods 9, no. 12: 1762. https://doi.org/10.3390/foods9121762
APA StyleLee, S. -B., Cosmas, B., & Park, H. -D. (2020). The Antimutagenic and Antioxidant Activity of Fermented Milk Supplemented with Cudrania tricuspidata Powder. Foods, 9(12), 1762. https://doi.org/10.3390/foods9121762