Effect of the Organic Production and the Harvesting Method on the Chemical Quality and the Volatile Compounds of Virgin Olive Oil over the Harvesting Season
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Samples
2.2. Chemical and Physical-Chemical Analyses of Oil
2.3. Volatile Compound Analysis
2.4. Data Analyses
3. Results and Discussion
3.1. Chemical and Physical-Chemical Parameters
3.1.1. Effect of the Organic Production (Organic vs. Conventional)
3.1.2. Effect of the Harvesting Method
3.1.3. Effect of the Harvesting Time
3.2. Volatile Compounds
3.2.1. LOX-Derived Volatile Compounds
Effect of the Organic Production (Organic vs. Conventional)
Effect of the Harvesting Method
Effect of the Harvesting Time
3.2.2. Fermentation Compounds
Effect of the Organic Production (Organic vs. Conventional).
Effect of the Harvesting Method
Effect of the Harvesting Time
3.2.3. Oxidation-Derived Volatile Compounds
Effect of the Organic Production (Organic vs. Conventional)
Effect of the Harvesting Method
Effect of the Harvesting Time
3.3. Principal Component Analysis (PCA)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Carrapiso, A.; Garcia, A.; Petron, M.; Martin, L. Effect of talc and water addition on olive oil quality and antioxidants. Eur. J. Lipid Sci. Technol. 2013, 115, 583–588. [Google Scholar] [CrossRef]
- Sanchez-Ortiz, A.; Bejaoui, M.; Quintero-Flores, A.; Jimenez, A.; Beltran, G. Biosynthesis of volatile compounds by hydroperoxide lyase enzymatic activity during virgin olive oil extraction process. Food Res. Int. 2018, 111, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Kalua, C.M.; Allen, M.S.; Bedgood, D.R., Jr.; Bishop, A.G.; Prenzler, P.D.; Robards, K. Olive oil volatile compounds, flavour development and quality: A critical review. Food Chem. 2007, 100, 273–286. [Google Scholar] [CrossRef]
- Hbaieb, R.; Kotti, F.; Gargouri, M.; Msallem, M.; Vichi, S. Ripening and storage conditions of Chetoui and Arbequina olives: Part, I. Effect on olive oils volatiles profile. Food Chem. 2016, 203, 548–558. [Google Scholar] [CrossRef]
- Angerosa, F. Influence of volatile compounds on virgin olive oil quality evaluated by analytical approaches and sensor panels. Eur. J. Lipid Sci. Technol. 2002, 104, 639–660. [Google Scholar] [CrossRef]
- Council Regulation (EC) 834/2007 of 28 June 2007 on Organic Production and Labelling of Organic Products and Repealing Regulation (EEC) No 2092/91. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32007R0834 (accessed on 22 November 2020).
- Lima, G.P.P.; Vianello, F. Review on the main differences between organic and conventional plant-based foods. Int. J. Food Sci. Technol. 2011, 46, 1–13. [Google Scholar] [CrossRef]
- Rosati, A.; Cafiero, C.; Paoletti, A.; Alfei, B.; Caporali, S.; Casciani, L.; Valentini, M. Effect of agronomical practices on carpology, fruit and oil composition, and oil sensory properties, in olive (Olea europaea L.). Food Chem. 2014, 159, 236–243. [Google Scholar] [CrossRef]
- Ninfali, P.; Bacchiocca, M.; Biagiotti, E.; Esposto, S.; Servili, M.; Rosati, A.; Montedoro, G. A 3-year study on quality, nutritional and organoleptic evaluation of organic and conventional extra-virgin olive oils. J. Am. Oil Chem. Soc. 2008, 85, 151–158. [Google Scholar] [CrossRef]
- Angerosa, F.; Servili, M.; Selvaggini, R.; Taticchi, A.; Esposto, S.; Montedoro, G. Volatile compounds in virgin olive oil: Occurrence and their relationship with the quality. J. Chromatogr. A 2004, 1054, 17–31. [Google Scholar] [CrossRef]
- Salvador, M.; Aranda, F.; Fregapane, G. Influence of fruit ripening on ‘Cornicabra’ virgin olive oil quality—A study of four successive crop seasons. Food Chem. 2001, 73, 45–53. [Google Scholar] [CrossRef]
- Sonmez, A.; Ozdikicierler, O.; Gumuskesen, A. Evaluation of olive oil quality during the ripening of the organic cultivated olives and multivariate discrimination of the variety with a chemometric approach. Riv. Ital. Delle Sostanze Grasse 2018, 95, 173–181. [Google Scholar]
- Jimenez, B.; Rivas, A.; Lorenzo, M.; Sanchez-Ortiz, A. Chemosensory characterization of virgin olive oils obtained from organic and conventional practices during fruit ripening. Flavour Fragr. J. 2017, 32, 294–304. [Google Scholar] [CrossRef]
- MAPA (Ministerio de Agricultura, Pesca y Alimentación). Anuario de Estadística 2019; MAPA (Ministerio de Agricultura, Pesca y Alimentación): Madrid, Spain, 2020.
- Uceda, M.; Aguilera, M.P.; Jiménez, A.; Beltrán, G. Chapter 4: Variedades de olivo y aceituna. Tipos de Aceites. In El Aceite de Oliva Virgen: Tesoro de Andalucía; Gutiérrez, A.F., Carretero, A.S., Eds.; Unicaja Foundation Publishing: Málaga, Spain, 2009; pp. 107–137. [Google Scholar]
- Commission Regulation 2568/91 of 11 July 1991 on the Characteristics of Olive Oil and Olive-Residue Oil and on the Relevant Methods of Analysis. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A01991R2568-20151016 (accessed on 22 November 2020).
- Montedoro, G.; Servili, M.; Baldioli, M.; Miniati, E. Simple and hydrolyzable phenolic-compounds in virgin olive oil. 1. Their extraction, separation, and quantitative and semiquantitative evaluation by HPLC. J. Agric. Food Chem. 1992, 40, 1571–1576. [Google Scholar] [CrossRef]
- Franco, M.; Galeano-Diaz, T.; Sanchez, J.; De Miguel, C.; Martin-Vertedor, D. Antioxidant capacity of the phenolic fraction and its effect on the oxidative stability of olive oil varieties grown in the southwest of Spain. Grasas Y Aceites 2014, 65. [Google Scholar] [CrossRef] [Green Version]
- Linstrom, P.J.; Mallard, W.G. NIST Chemistry WebBook, NIST Standard Reference Database Number 69; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2020. [Google Scholar]
- Hair, J.; Anderson, R.; Tatham, R.; Black, W. Multivariate Data Analysis, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- Garcia-Gonzalez, D.L.; Aparicio-Ruiz, R.; Morales, M.T. Chemical characterization of organic and non-organic virgin olive oils. OCL Oilseeds Fats Crop. Lipids 2014, 21, 501–506. [Google Scholar] [CrossRef]
- Gutierrez, F.; Arnaud, T.; Albi, M.A. Influence of ecological cultivation on virgin olive oil quality. J. Am. Oil Chem. Soc. 1999, 76, 617–621. [Google Scholar] [CrossRef]
- Fernandez-Escobar, R.; Beltran, G.; Sanchez-Zamora, M.; Garcia-Novelo, J.; Aguilera, M.; Uceda, M. Olive oil quality decreases with nitrogen over-fertilization. Hortscience 2006, 41, 215–219. [Google Scholar] [CrossRef] [Green Version]
- Kalogiouri, N.; Aalizadeh, R.; Thomaidis, N. Investigating the organic and conventional production type of olive oil with target and suspect screening by LC-QTOF-MS, a novel semi-quantification method using chemical similarity and advanced chemometrics. Anal. Bioanal. Chem. 2017, 409, 5413–5426. [Google Scholar] [CrossRef]
- Commission Regulation 61/2011 of 24 January 2011 Amending Regulation 2568/91 on the Characteristics of Olive Oil and Olive-Residue Oil and on the Relevant Methods of Analysis. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32011R0061 (accessed on 22 November 2020).
- Jimenez, A.; Aguilera, M.; Beltran, G.; Uceda, M. Application of solid-phase microextraction to virgin olive oil quality control. J. Chromatogr. A 2006, 1121, 140–144. [Google Scholar] [CrossRef]
- Vichi, S.; Romero, A.; Tous, J.; Caixach, J. The activity of healthy olive microbiota during virgin olive oil extraction influences oil chemical composition. J. Agric. Food Chem. 2011, 59, 4705–4714. [Google Scholar] [CrossRef]
- Bendini, A.; Cerretani, L.; Carrasco-Pancorbo, A.; Gomez-Caravaca, A.; Segura-Carretero, A.; Fernandez-Gutierrez, A.; Lercker, G. Phenolic molecules in virgin olive oils: A survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade. Molecules 2007, 12, 1679–1719. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Rico, A.; Salvador, M.D.; La Greca, M.; Fregapane, G. Phenolic and volatile compounds of extra virgin olive oil (Olea europaea L. cv. Cornicabra) with regard to fruit ripening and irrigation management. J. Agric. Food Chem. 2006, 54, 7130–7136. [Google Scholar] [CrossRef] [PubMed]
- Luaces, P.; Perez, A.; Sanz, C. The effect of olive fruit stoning on virgin olive oil aroma. Grasas Y Aceites 2004, 55, 174–179. [Google Scholar]
- Morales, M.; Luna, G.; Aparicio, R. Comparative study of virgin olive oil sensory defects. Food Chem. 2005, 91, 293–301. [Google Scholar] [CrossRef]
- Vichi, S.; Romero, A.; Gallardo-Chacon, J.; Tous, J.; Lopez-Tamames, E.; Buxaderas, S. Influence of Olives’ Storage Conditions on the Formation of Volatile Phenols and Their Role in Off-Odor Formation in the Oil. J. Agric. Food Chem. 2009, 57, 1449–1455. [Google Scholar] [CrossRef]
- Vichi, S.; Romero, A.; Tous, J.; Tamames, E.; Buxaderas, S. Determination of volatile phenols in virgin olive oils and their sensory significance. J. Chromatogr. A 2008, 1211, 1–7. [Google Scholar] [CrossRef]
- Genovese, A.; Caporaso, N.; Villani, V.; Paduano, A.; Sacchi, R. Olive oil phenolic compounds affect the release of aroma compounds. Food Chem. 2015, 181, 284–294. [Google Scholar] [CrossRef]
- Vichi, S.; Romero, A.; Gallardo-Chacon, J.; Tous, J.; Lopez-Tamames, E.; Buxaderas, S. Volatile phenols in virgin olive oils: Influence of olive variety on their formation during fruits storage. Food Chem. 2009, 116, 651–656. [Google Scholar] [CrossRef]
Type of Production | Harvesting Method | Harvesting Time | |
---|---|---|---|
Free acidity (%) | 0.953 | <0.001 | 0.388 |
PV (mEq O2 kg−1) | 0.026 | <0.001 | 0.006 |
K232 | 0.965 | 0.016 | 0.488 |
K270 | 0.823 | 0.024 | 0.506 |
ΔK | 0.738 | <0.001 | 0.276 |
Total phenols (mg kg−1) | 0.039 | <0.001 | 0.650 |
Oxidative stability (h) | 0.006 | <0.001 | 0.146 |
p | p | ||||||
---|---|---|---|---|---|---|---|
Prod. | Meth. | Week | Prod. | Meth. | Week | ||
Aldehydes | Alcohols | ||||||
Acetaldehyde c | 0.044 | <0.001 | 0.138 | Ethanol c | <0.001 | <0.001 | <0.001 |
2-Methylpropanal a | 0.404 | <0.001 | <0.001 | Propan-1-ol a | 0.497 | <0.001 | 0.013 |
2-Methylprop-2-enal b | 0.096 | 0.067 | 0.006 | 2-methylpropan-1-ol b | 0.534 | <0.001 | 0.001 |
Butanal a | 0.181 | 0.644 | 0.709 | Butan-1-ol a | 0.667 | <0.001 | 0.011 |
But-2-enal a | 0.400 | 0.071 | <0.001 | Pent-1-en-3-ol a | 0.008 | 0.001 | <0.001 |
3-Methylbutanal a | 0.549 | <0.001 | <0.001 | Pentan-3-ol b | 0.279 | 0.750 | 0.443 |
2-Methylbutanal a | 0.472 | 0.003 | 0.191 | 3-Methylbut-3-en-1-ol b | 0.311 | <0.001 | <0.001 |
(Z)-Pent-2-enal b | 0.006 | <0.001 | 0.046 | 3-Methylbutan-1-ol a | 0.332 | <0.001 | <0.001 |
(E)-Pent-2-enal a | 0.004 | <0.001 | 0.001 | 2-Methylbutan-1-ol a | 0.287 | <0.001 | <0.001 |
(Z)-Hex-3-enal b | 0.003 | <0.001 | <0.001 | Pentan-1-ol a | 0.779 | 0.002 | 0.203 |
Hexanal a | <0.001 | 0.797 | <0.001 | (Z)-Pent-2-en-1-ol b | 0.082 | 0.001 | <0.001 |
(E)-Hex-2-enal a | <0.001 | <0.001 | 0.001 | (Z)-Hex-3-en-1-ol a | 0.009 | <0.001 | 0.001 |
Heptanal a | 0.556 | <0.001 | 0.058 | (E)-Hex-2-en-1-ol b | 0.237 | 0.004 | 0.003 |
Hexa-2,4-dienal a | 0.025 | <0.001 | 0.001 | Hexan-1-ol a | 0.642 | <0.001 | 0.092 |
(E)-Hept-2-enal a | 0.001 | 0.002 | 0.001 | Heptan-2-ol a | 0.685 | 0.096 | 0.284 |
Benzaldehyde a | 0.688 | <0.001 | 0.006 | Phenol b | 0.336 | <0.001 | 0.065 |
Octanal a | 0.449 | <0.001 | 0.709 | Heptan-1-ol a | 0.974 | <0.001 | 0.090 |
(2E)-Oct-2-enal a | 0.011 | 0.001 | 0.826 | Oct-1-en-3-ol a | 0.478 | <0.001 | 0.063 |
(3E)-Non-3-enal b | 0.548 | <0.001 | 0.723 | Octan-3-ol b | 0.001 | <0.001 | <0.001 |
Nonanal a | 0.048 | 0.037 | 0.182 | Octan-2-ol a | 0.017 | <0.001 | <0.001 |
(E)-Non-2-enal a | 0.357 | 0.001 | 0.011 | 2-Ethylhexan-1-ol b | 0.681 | 0.081 | 0.044 |
Nona-2,4-dienal b | <0.001 | <0.001 | 0.266 | Phenylmethanol b | 0.933 | <0.001 | 0.150 |
(E)-Dec-2-enal b | 0.249 | 0.226 | 0.370 | (Z)-Oct-2-en-1-ol b | 0.971 | 0.004 | 0.570 |
(E,Z)-Deca-2,4-dienal b | 0.721 | 0.442 | 0.245 | Octan-1-ol a | 0.555 | <0.001 | 0.542 |
(E,E)-Deca-2,4-dienal b | 0.790 | 0.567 | 0.491 | Phenylethanol b | 0.959 | <0.001 | 0.008 |
Undecenal b | 0.274 | 0.657 | 0.549 | (Z)-Non-3-en-1-ol b | 0.694 | <0.001 | <0.001 |
Ketones | 2-Ethylphenol b | 0.928 | <0.001 | 0.047 | |||
Propan-2-one c | 0.004 | 0.490 | 0.038 | Nonan-1-ol a | 0.502 | <0.001 | 0.246 |
Butan-2-one a | 0.755 | <0.001 | 0.158 | Decan-1-ol b | 0.470 | 0.012 | 0.165 |
Pent-1-en-3-one a | 0.031 | 0.045 | 0.066 | 4-Ethyl-2-methoxyphenol b | 0.767 | <0.001 | 0.100 |
Pentan-2-one a | 0.675 | 0.196 | 0.320 | Acids | |||
Pentan-3-one b | 0.102 | 0.022 | <0.001 | Acetic acid a | 0.576 | 0.020 | <0.001 |
3-Hydroxybutan-2-one b | 0.410 | 0.001 | <0.001 | 2-Methylpropanoic acid a | 0.916 | 0.001 | 0.317 |
4-Methylpentan-2-one b | 0.556 | 0.026 | 0.005 | Butanoic acid a | 0.630 | <0.001 | 0.024 |
2-Methylpentan-3-one b | 0.971 | <0.001 | 0.325 | 2-Methylbutanoic acid a | 0.671 | <0.001 | 0.014 |
Hexan-2-one a | 0.851 | 0.002 | 0.338 | Hexanoic acid a | 0.570 | <0.001 | 0.094 |
Heptan-2-one a | 0.731 | <0.001 | 0.236 | Heptanoic acid a | 0.482 | 0.318 | 0.511 |
Octan-3-one a | 0.595 | <0.001 | 0.002 | Octanoic acid a | 0.376 | 0.259 | 0.040 |
Octan-2-one b | 0.728 | <0.001 | 0.213 | Nonanoic acid a | 0.779 | 0.215 | 0.607 |
Nonan-2-one b | 0.550 | <0.001 | 0.044 | Decanoic acid a | 0.272 | 0.388 | 0.525 |
Esters | Undecanoic acid b | 0.402 | 0.085 | 0.659 | |||
Methyl acetate b | 0.003 | 0.043 | <0.001 | Dodecanoic acid b | 0.681 | 0.391 | 0.632 |
Ethyl acetate b | 0.001 | <0.001 | <0.001 | Tridecanoic acid b | 0.084 | 0.647 | 0.701 |
Methyl propanoate b | 0.086 | <0.001 | <0.001 | Acyclic hydrocarbons | |||
Ethyl propanoate a | 0.508 | <0.001 | 0.018 | Pentane a | 0.015 | <0.001 | <0.001 |
Methyl butanoate a | 0.048 | <0.001 | 0.001 | 2-Methylbut-2-ene b | 0.806 | 0.597 | 0.002 |
Ethyl 2-methylpropanoate a | 0.565 | <0.001 | <0.001 | Penta-2,3-diene b | 0.015 | <0.001 | <0.001 |
Methyl 2-methylbutanoate a | 0.748 | <0.001 | 0.017 | Hexane a | <0.001 | 0.603 | 0.026 |
Methyl pentanoate a | 0.055 | 0.016 | <0.001 | 2-Methylpent-2-ene b | 0.724 | <0.001 | 0.006 |
Ethyl 2-methylbutanoate a | 0.205 | 0.085 | <0.001 | 2-methylpenta-1,3-diene b | 0.967 | <0.001 | 0.003 |
3-Methylbutyl acetate b | 0.119 | <0.001 | 0.020 | 2-Methylhexane b | 0.194 | 0.239 | 0.050 |
2-Methylbutyl acetate b | 0.040 | <0.001 | 0.011 | 5-methylhex-1-ene b | 0.021 | 0.981 | 0.685 |
2-Methylpropyl 2-methylpropanoate b | 0.145 | <0.001 | 0.006 | 3-Methylhexane b | 0.013 | 0.382 | 0.004 |
Methyl hexanoate a | 0.003 | 0.001 | 0.041 | Hept-1-ene b | 0.522 | <0.001 | 0.074 |
Methyl Hex-4-enoate b | 0.867 | 0.639 | 0.455 | Heptane a | 0.511 | 0.001 | 0.068 |
Ethyl hexanoate a | 0.001 | <0.001 | <0.001 | Oct-1-ene b | 0.706 | <0.001 | 0.006 |
(E)-Hex-3-enyl acetate b | <0.001 | 0.026 | 0.023 | Octane a | 0.335 | <0.001 | 0.003 |
Hexyl acetate b | 0.799 | <0.001 | 0.001 | (Z)-Oct-2-ene b | 0.441 | <0.001 | 0.004 |
3-Methylbutyl 2-methylpropanoate b | 0.348 | <0.001 | 0.022 | (E)-Oct-2-ene b | 0.477 | <0.001 | 0.001 |
Methyl heptanoate b | 0.091 | <0.001 | 0.554 | (E)-β-Ocimene b | 0.118 | 0.549 | 0.160 |
Methyl benzoate b | 0.224 | 0.008 | 0.777 | Alloocimene b | 0.112 | 0.497 | 0.001 |
Methyl octanoate b | 0.263 | 0.001 | 0.022 | Dodecane a | 0.617 | 0.751 | <0.001 |
Ethyl benzoate b | 0.301 | <0.001 | 0.369 | (E,E)-α-farnesene b | 0.029 | 0.513 | <0.001 |
Ethyl octanoate b | 0.812 | 0.010 | 0.352 | Cyclic hydrocarbons | |||
Methyl 2-methoxybenzoate b | 0.531 | 0.334 | 0.372 | Toluene b | 0.934 | <0.001 | 0.095 |
Others | 1,4-Dimethylbenzene b | 0.129 | <0.001 | 0.028 | |||
Diethyl ether a | 0.556 | 0.191 | 0.031 | Styrene b | 0.147 | <0.001 | 0.001 |
2-Ethoxy-2-methylpropane b | 0.819 | 0.001 | 0.039 | 1,3-Dimethylbenzene b | 0.892 | 0.001 | 0.032 |
1-Methoxyhexane b | 0.293 | <0.001 | 0.071 | 1-Ethyl-3-methylbenzene b | 0.026 | 0.200 | 0.186 |
Methoxybenzene b | 0.015 | 0.228 | 0.126 | 1,2,4-Trimethylbenzene b | 0.581 | 0.095 | 0.071 |
Dimethyl sulfide b | 0.708 | <0.001 | 0.009 | 1,3-Diethylbenzene b | 0.100 | 0.030 | <0.001 |
4-Methyl-2,3-dihydrofuran b | 0.372 | 0.482 | 0.362 | l-Limonene a | 0.691 | <0.001 | 0.010 |
Γ-Hexalactone b | 0.001 | <0.001 | 0.016 | 3-(4-Methylpent-3-enyl)furan b | 0.290 | <0.001 | 0.011 |
δ-Octalactone b | 0.153 | 0.202 | 0.012 | α-Copaene b | 0.976 | 0.359 | 0.354 |
γ-Cadinene b | 0.907 | 0.561 | 0.283 | ||||
Eremophilene b | 0.251 | <0.001 | 0.224 | ||||
α-Muurolene b | 0.843 | 0.037 | 0.391 |
Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | Week 6 | ||
---|---|---|---|---|---|---|---|
(Z)-Pent-2-enal | Organic | 0.42 | 0.45a | 0.21 | 0.50a | 0.20b | 0.26ab |
Conventional | AB0.55 | C0.3a | BC0.39 | AB0.57a | A0.61a | ABC0.48a | |
Ground | A0.31 | AB0.06b | AB0.07 | AB0.06b | B0.04c | AB0.05b | |
(E)-Pent-2-enal | Organic | A2.86ab | A2.46a | B0.77b | A2.48ab | B0.92b | B1.39b |
Conventional | AB2.97a | C1.65ab | BC2.24a | A3.20a | ABC2.51a | ABC2.42a | |
Ground | A2.04b | ABC1.19b | A2.03a | AB1.61b | C0.42c | BC0.89c | |
Pent-1-en-3-one | Organic | A3.69 | A4.4 | B0.78 | A4.82 | B1.61 | A4.04 |
Conventional | 5.50 | 1.26 | 5.44 | 7.33 | 5.15 | 7.46 | |
Ground | 1.77 | 2.18 | 0.86 | 5.86 | 5.42 | 4.24 | |
Pentan-3-one | Organic | A21.37 | C7.92b | BC11.40b | AB17.42 | C6.64b | C6.40ab |
Conventional | B13.65 | B14.48a | A19.85a | B15.94 | C9.78a | C9.34a | |
Ground | AB13.38 | AB11.57a | A15.80ab | AB12.68 | BC7.49ab | C4.99b | |
Pent-1-en-3-ol | Organic | A5.62 | B1.91 | B2.06c | AB3.16ab | B1.14c | B1.49b |
Conventional | AB3.65 | B3.12 | A4.30a | A4.58a | B2.63a | B2.78a | |
Ground | A3.37 | BC2.35 | AB3.21b | CD2.14b | DE1.43b | E0.81c | |
Pent-2-en-1-ol | Organic | A7.49 | AB3.48 | B2.97 | AB3.95ab | B1.82 | B2.65ab |
Conventional | 4.76 | 4.11 | 4.94 | 5.40a | 3.61 | 4.18a | |
Ground | 4.67 | 3.52 | 2.85 | 3.14b | 1.67 | 1.62b | |
(Z)-Hex-3-enal | Organic | A10.42ab | A11.29a | BC5.63a | B7.29a | C5.14b | BC6.75b |
Conventional | A16.88a | B8.08a | B5.31a | B9.65a | AB11.07a | AB11.28a | |
Ground | A3.51b | B1.06b | B0.72b | B0.74b | B0.07b | B0.20c | |
Hexanal | Organic | AB28.56 | BC20.80b | C11.60b | A35.69b | BC18.16b | AB26.3b |
Conventional | BC31.70 | C28.62ab | BC32.26a | A43.36a | ABC36.47a | AB38.49a | |
Ground | AB41.49 | ABC33.82a | ABC35.81a | A43.29a | C24.69b | BC28.51b | |
(E)-Hex-2-enal | Organic | A63.33b | A61.55a | B23.52c | A56.35b | B24.73b | B33.97b |
Conventional | AB82.37a | B68.07a | AB85.02a | A100.50a | AB83.06a | AB83.54a | |
Ground | A74.71ab | B41.51b | B38.57b | B42.47c | C6.32c | C13.78c | |
(Z)-Hex-3-en-1-ol | Organic | AB73.07a | D44.12 | BC67.15a | A85.86a | CD55.31a | BC63.62a |
Conventional | 54.92b | 56.64 | 64.12a | 59.07b | 47.84a | 49.89b | |
Ground | A55.38b | AB46.14 | AB44.90b | BC42.64c | CD31.74b | D27.31c | |
(E)-Hex-2-en-1-ol | Organic | A22.64b | C4.86c | B12.95b | B12.53 | C4.23c | C4.09c |
Conventional | B10.04a | A17.57b | A23.03a | B10.69 | B8.78b | B9.49a | |
Ground | B27.97b | A36.20a | C21.11a | D12.87 | C20.85a | D7.37b | |
1-Hexanol | Organic | 35.13a | 17.65b | 29.85b | 35.39ab | 24.9b | 28.71b |
Conventional | 24.03b | 33.22a | 35.56b | 26.40b | 22.30b | 23.05b | |
Ground | 35.13a | 39.87a | 52.68a | 41.82a | 52.49a | 36.18a | |
Hexyl acetate | Organic | 0.33 | 0.31 | 0.40b | 0.56b | 0.35b | 0.51b |
Conventional | B0.26 | AB0.49 | A0.72b | AB0.44b | B0.30b | AB0.34b | |
Ground | C0.72 | BC0.81 | A1.58a | AB1.35a | ABC1.06a | ABC1.20a |
Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | Week 6 | ||
---|---|---|---|---|---|---|---|
2-Methylpropanal | Organic | CD0.56 | D0.31 | CD0.66b | A1.72 | BC1.03 | AB1.45a |
Conventional | B0.46 | B0.42 | AB1.09b | A1.35 | AB0.74 | AB0.64b | |
Ground | B1.35 | B1.09 | A3.65a | AB2.63 | AB1.70 | AB1.90a | |
2-Methylprop-2-enal | Organic | AB 0.38b | AB 0.35 | B0.07c | AB 0.32b | AB0.18b | A0.48 |
Conventional | AB0.46b | B0.26 | AB0.40b | A0.66b | AB0.47a | AB0.45 | |
Ground | AB1.06a | C0.46 | BC0.59a | A1.17a | C0.05b | C0.40 | |
3-Methylbutanal | Organic | C0.99b | C0.65b | C0.79b | A4.67b | B2.43b | B2.99a |
Conventional | BC1.43b | C1.27b | A3.90a | A3.52c | B1.96c | BC1.88b | |
Ground | BC4.13a | CD2.60a | AB5.40a | A6.37a | CD3.30a | D1.89b | |
2-Methylbutanal | Organic | 2.68 | 0.91 | 2.69 | 4.81 | 3.79 | 6.41 |
Conventional | 2.62 | 2.79 | 3.95 | 2.19 | 3.06 | 3.43 | |
Ground | 4.45 | 3.83 | 7.05 | 8.13 | 5.65 | 3.56 | |
Ethanol | Organic | D59.14a | E43.79a | C91.84a | B112.40a | AB121.59a | A126.34b |
Conventional | D15.30 | D21.38b | C52.41b | A89.89b | A80.90b | B69.13c | |
Ground | C60.28a | C49.84a | A120.13a | B84.87b | C55.72c | A139.93a | |
2-Methylpropan-1-ol | Organic | B1.06b | B0.53b | A2.64b | A2.81b | A2.05b | A2.25b |
Conventional | C0.80b | C1.02b | A2.71b | B1.90c | C1.01c | C1.05c | |
Ground | C6.05a | C6.39a | A16.34a | AB11.92a | BC8.54a | C5.69a | |
Butan-1-ol | Organic | 0.43 | 0.73 | 0.35 | 0.49 | 1.17 | 0.96 |
Conventional | 0.35 | 0.22 | 0.76 | 0.74 | 0.87 | 0.70 | |
Ground | 0.60 | 0.98 | 1.71 | 1.26 | 2.45 | 1.14 | |
3-Methylbutan-1-ol | Organic | C3.36b | C1.96b | AB9.87b | A11.85b | B8.47b | AB10.13b |
Conventional | C3.00b | C4.14b | A10.42b | B7.09b | C4.14c | C4.45c | |
Ground | B19.83a | B20.58a | A50.92a | A40.31a | B25.83a | B26.33a | |
2-Methylbutan-1-ol | Organic | D1.54b | D0.79b | C4.01b | A6.04b | BC4.60b | AB5.29b |
Conventional | C1.12b | C1.89b | A5.80b | B3.18c | C1.78c | C1.93c | |
Ground | C8.53a | C9.58a | A23.3a | AB17.81a | BC14.48a | C10.87a | |
Acetic acid | Organic | C3.25 | B17.76a | A64.99a | AB9.35 | AB6.6a | AB9.45a |
Conventional | B24.18 | B19.54a | A38.92b | C4.26 | C3.9b | C5.94b | |
Ground | 2.04 | 3.98b | 8.43c | 5.77 | 4.21b | 8.43ab | |
2-Methylpropanoic acid | Organic | 0.16 | 0.11b | 0.22b | 0.24b | 0.10 | 0.24b |
Conventional | 0.12 | 0.19b | 0.31b | 0.05b | 0.00 | 0.12c | |
Ground | 0.51 | 0.62a | 1.16a | 0.80a | 4.12 | 2.74a | |
Butanoic acid | Organic | 0.29 | 0.04b | 0.28b | 0.39b | 0.09b | 0.94 |
Conventional | B0.00 | B0.19b | A0.77b | B0.23b | B0.05b | B0.18 | |
Ground | B0.44 | B1.31a | A2.89a | AB1.66a | B1.28a | B0.66 | |
2-Methylbutanoic acid | Organic | B0.00b | B0.01b | A0.29b | B0.00 | AB0.12b | AB0.11b |
Conventional | 0.08b | 0.00b | 0.00b | 0.11 | 0.07b | 0.13b | |
Ground | B0.37a | AB0.59a | A1.01a | AB0.76 | AB0.78a | AB0.66a | |
Phenylmethanol | Organic | 1.10b | 1.14 | 1.09 | 1.89 | 0.63b | 2.17b |
Conventional | 1.32b | 1.26 | 2.35 | 1.14 | 0.82b | 0.85b | |
Ground | 3.81a | 4.24 | 8.06 | 6.97 | 5.31a | 5.29a | |
2-Phenylethanol | Organic | 0.44b | 0.35b | 0.66b | 0.9b | 0.66b | 1.03b |
Conventional | B0.18b | B0.64b | A1.35b | AB0.8b | B0.38b | B0.57b | |
Ground | AB6.58a | AB7.37a | A9.54a | AB8.25a | B5.08a | AB7.55a | |
Phenol | Organic | 0.15b | 0.07b | 0.06 | 0.02 | 0.00b | 0.03c |
Conventional | 0.16b | 0.05b | 0.09 | 0.02 | 0.07b | 0.12b | |
Ground | BC0.26a | BC0.32a | B0.34 | C0.15 | A0.52a | B0.33a | |
2-Ethylphenol | Organic | 0.00b | 0.41b | 0.00b | 1.87b | 0.84b | 0.03b |
Conventional | B0.31b | B0.04b | A2.06b | B0.58b | B0.45b | B0.28b | |
Ground | 6.52a | 9.38a | 18.42a | 14.04a | 8.1a | 10.47a | |
4-Ethyl-2-methoxyphenol | Organic | 0.00b | 0.00b | 0.05b | 0.06b | 0.04b | 0.20b |
Conventional | 0.00b | 0.05b | 0.00b | 0.02b | 0.09b | 0.03b | |
Ground | 1.57a | 2.23a | 2.44a | 2.38a | 2.35a | 2.26a |
Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | Week 6 | ||
---|---|---|---|---|---|---|---|
Heptanal | Organic | 1.90b | 1.41 | 1.62 | 2.45ab | 2.36 | 2.69 |
Conventional | 1.81b | 2.34 | 1.77 | 2.23b | 2.31 | 2.81 | |
Ground | 3.66a | 2.48 | 3.80 | 4.38a | 4.14 | 3.05 | |
Hexa-2,4-dienal | Organic | A4.95a | BC3.68a | D1.52b | AB4.28a | D1.20b | C2.83a |
Conventional | B3.44ab | B3.33a | A5.20a | A5.34a | B3.13a | B3.04a | |
Ground | AB2.02b | ABC1.16b | A2.33b | A2.11b | C0.60b | BC0.81b | |
(E)-Hept-2-enal | Organic | AB6.64b | AB6.54b | D2.60c | A7.96b | C4.40b | BC5.91b |
Conventional | A9.16ab | B6.62b | AB7.96b | A8.87b | AB7.69a | AB8.56a | |
Ground | B11.69a | C9.62a | B12.54a | A14.92a | D4.97b | C9.43a | |
Octanal | Organic | 2.52b | 1.66 | 2.09c | 3.09 | 2.51b | 3.91 |
Conventional | 2.02b | 4.31 | 3.27b | 2.77 | 2.29b | 3.14 | |
Ground | 4.94a | 3.14 | 4.54a | 4.49 | 6.43a | 4.65 | |
(E)-Oct-2-enal | Organic | 0.79 | 0.65 | 0.40c | 0.85b | 0.69 | 0.69b |
Conventional | 0.92 | 1.27 | 1.00b | 0.76b | 0.90 | 0.83b | |
Ground | 1.23 | 1.16 | 1.42a | 1.53a | 1.03 | 1.50a | |
Nonanal | Organic | 8.75b | 6.90 | 7.90 | 10.52 | 11.86 | 13.04 |
Conventional | 10.44b | 15.90 | 9.14 | 12.88 | 10.73 | 16.36 | |
Ground | 20.33a | 12.45 | 12.61 | 15.34 | 16.57 | 15.60 | |
Nona-2,4-dienal | Organic | 0.84b | 0.95 | 0.35b | 1.06a | 0.72b | 0.91b |
Conventional | 1.10a | 1.11 | 1.32a | 1.29a | 1.15a | 1.45a | |
Ground | 0.45c | 0.27 | 0.11b | 0.12b | 0.13c | 0.03c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrapiso, A.I.; Rubio, A.; Sánchez-Casas, J.; Martín, L.; Martínez-Cañas, M.; de Miguel, C. Effect of the Organic Production and the Harvesting Method on the Chemical Quality and the Volatile Compounds of Virgin Olive Oil over the Harvesting Season. Foods 2020, 9, 1766. https://doi.org/10.3390/foods9121766
Carrapiso AI, Rubio A, Sánchez-Casas J, Martín L, Martínez-Cañas M, de Miguel C. Effect of the Organic Production and the Harvesting Method on the Chemical Quality and the Volatile Compounds of Virgin Olive Oil over the Harvesting Season. Foods. 2020; 9(12):1766. https://doi.org/10.3390/foods9121766
Chicago/Turabian StyleCarrapiso, Ana I., Aránzazu Rubio, Jacinto Sánchez-Casas, Lourdes Martín, Manuel Martínez-Cañas, and Concha de Miguel. 2020. "Effect of the Organic Production and the Harvesting Method on the Chemical Quality and the Volatile Compounds of Virgin Olive Oil over the Harvesting Season" Foods 9, no. 12: 1766. https://doi.org/10.3390/foods9121766
APA StyleCarrapiso, A. I., Rubio, A., Sánchez-Casas, J., Martín, L., Martínez-Cañas, M., & de Miguel, C. (2020). Effect of the Organic Production and the Harvesting Method on the Chemical Quality and the Volatile Compounds of Virgin Olive Oil over the Harvesting Season. Foods, 9(12), 1766. https://doi.org/10.3390/foods9121766