Overview of the Potential Impacts of Climate Change on the Microbial Safety of the Dairy Industry
Abstract
:1. Introduction
2. The Status Quo in the Dairy Supply Chain: From Food Safety Management to Microbial Hazards
2.1. Food Safety Management: An Overview
2.2. The Dairy Supply Chain and Introduction to Different Dairy End Products
2.3. The Microbial Hazards in the Dairy Supply Chain and its Current Controls
3. Effects of Climate Change on Raw Milk and the Dairy Supply Chain
3.1. Effects of Climate and Seasons on the Microbial Ecology of Raw Milk
3.2. Heat Stress in Cows: Influence on Microbial and Physicochemical Properties of Raw Milk
3.3. Climate Change Effects along the Dairy Supply Chain
4. Towards a Climate Change-Resilient Dairy Supply Chain: Development of Climate Responsive Mitigation Strategies in Food Safety Management
4.1. Developing QMRA Models Integrating Climate Change Effects
4.2. Food Safety Management Options as Mitigation Strategies in the Dairy Supply Chain
4.2.1. Dairy Farming Stage
4.2.2. Transportation of Raw Milk
4.2.3. Dairy Processing and Post Processing
4.2.4. Distribution and Consumption of Dairy Products
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations. United Nations Framework Convention; UN General Assembly: New York, NY, USA, 1992. [Google Scholar]
- European Environment Agency. Climate Change, Impacts and Vulnerability in Europe 2016 an Indicator Based Report; Publications Office of the European Union: Luxembourg, 2017; ISBN 978-92-9213-835-6. [Google Scholar]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Core Writing Team, Eds.; Cambridge University Press: Geneva, Switzerland, 2015; ISBN 9789291691432. [Google Scholar]
- Jia, G.; Shevliakova, E.; Artaxo, P.; De Noblet-Ducoudré, N.; Houghton, R.; House, J.; Kitajima, K.; Lennard, C.; Popp, A.; Sirin, A.; et al. Land–climate interactions. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Miraglia, M.; Marvin, H.J.P.; Kleter, G.A.; Battilani, P.; Brera, C.; Coni, E.; Cubadda, F.; Croci, L.; De Santis, B.; Dekkers, S.; et al. Climate change and food safety: An emerging issue with special focus on Europe. Food Chem. Toxicol. 2009, 47, 1009–1021. [Google Scholar] [CrossRef] [PubMed]
- Moretti, C.L.; Mattos, L.M.; Calbo, A.G.; Sargent, S.A. Climate changes and potential impacts on postharvest quality of fruit and vegetable crops: A review. Food Res. Int. 2010, 43, 1824–1832. [Google Scholar] [CrossRef]
- Slingo, J.M.; Challinor, A.J.; Hoskins, B.J.; Wheeler, T.R. Introduction: Food crops in a changing climate. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 1983–1989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tirado, M.C.; Clarke, R.; Jaykus, L.A.; McQuatters-Gollop, A.; Frank, J.M. Climate change and food safety: A review. Food Res. Int. 2010, 43, 1745–1765. [Google Scholar] [CrossRef]
- Van der Spiegel, M.; van der Fels-Klerx, H.J.; Marvin, H.J.P. Effects of climate change on food safety hazards in the dairy production chain. Food Res. Int. 2012, 46, 201–208. [Google Scholar] [CrossRef]
- Truchado, P.; Gil, M.I.; Moreno-Candel, M.; Allende, A. Impact of weather conditions, leaf age and irrigation water disinfection on the major epiphytic bacterial genera of baby spinach grown in an open field. Food Microbiol. 2019, 78, 46–52. [Google Scholar] [CrossRef]
- Bannayan, M.; Paymard, P.; Ashraf, B. Vulnerability of maize production under future climate change: Possible adaptation strategies. J. Sci. Food Agric. 2016, 96, 4465–4474. [Google Scholar] [CrossRef]
- Bartolini, S.; Massai, R.; Iacona, C.; Guerriero, R.; Viti, R. Forty-year investigations on apricot blooming: Evidences of climate change effects. Sci. Hortic. (Amsterdam) 2019, 244, 399–405. [Google Scholar] [CrossRef]
- Liu, C.; Hofstra, N.; Franz, E. Impacts of climate and management variables on the contamination of preharvest leafy greens with Escherichia coli. J. Food Prot. 2016, 79, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Wurr, D.C.E.; Fellows, J.R.; Fuller, M.P. Simulated effects of climate change on the production pattern of winter cauliflower in the UK. Sci. Hortic. (Amsterdam) 2004, 101, 359–372. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, N.; Dong, G.; Wu, W. Impact assessment of recent climate change on rice yields in the Heilongjiang reclamation area of North-East China. J. Sci. Food Agric. 2013, 93, 2698–2706. [Google Scholar] [CrossRef] [PubMed]
- Cheung, W.W.L.; Lam, V.W.Y.; Sarmiento, J.L.; Kearney, K.; Watson, R.; Zeller, D.; Pauly, D. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob. Chang. Biol. 2010, 16, 24–35. [Google Scholar] [CrossRef]
- Pragna, P.; Archana, P.R.; Aleena, J.; Sejian, V.; Krishnan, G.; Bagath, M.; Manimaran, A.; Beena, V.; Kurien, E.K.; Varma, G.; et al. Heat stress and dairy cow: Impact on both milk yield and composition. Int. J. Dairy Sci. 2017, 12, 1–11. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2014 Impacts, Adaptation, and Vulnerability Part B: Regional Aspects Working; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: New York, NY, USA, 2014; ISBN 9781107683860. [Google Scholar]
- European Parliament and Council. Regulation (EC) No 178/2002 of 28 January 2002 Laying Down the General Principles and Requirements of Food Law, Establishing the European Food Safety Authority and Laying Down Procedures in Matters of Food Safety; European Parliament and Council of the European Union: Brussels, Belgium, 2002; Volume L31, pp. 1–24. [Google Scholar]
- Casteel, M.J.; Sobsey, M.D.; Mueller, J.P. Fecal contamination of agrioultural soils before and after hurricane-associated flooding in North Carolina. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2006, 41, 173–184. [Google Scholar] [CrossRef]
- Gleason, J.A.; Fagliano, J.A. Effect of drinking water source on associations between gastrointestinal illness and heavy rainfall in New Jersey. PLoS ONE 2017, 12, e0173794. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; Chang, H.H.; Sarnat, S.E.; Levy, K. Precipitation and salmonellosis incidence in Georgia, USA: Interactions between extreme rainfall events and antecedent rainfall conditions. Environ. Health Perspect. 2019, 127, 097005. [Google Scholar] [CrossRef]
- López-Gálvez, F.; Gil, M.I.; Allende, A. Impact of relative humidity, inoculum carrier and size, and native microbiota on Salmonella ser. Typhimurium survival in baby lettuce. Food Microbiol. 2018, 70, 155–161. [Google Scholar] [CrossRef]
- Pang, H.; McEgan, R.; Mishra, A.; Micallef, S.A.; Pradhan, A.K. Identifying and modeling meteorological risk factors associated with pre-harvest contamination of Listeria species in a mixed produce and dairy farm. Food Res. Int. 2017, 102, 355–363. [Google Scholar] [CrossRef]
- Castro-Ibáñez, I.; Gil, M.I.; Tudela, J.A.; Allende, A. Microbial safety considerations of flooding in primary production of leafy greens: A case study. Food Res. Int. 2015, 68, 62–69. [Google Scholar] [CrossRef]
- Callahan, M.T.; Micallef, S.A.; Sharma, M.; Millner, P.D.; Buchanan, R.L. Metrics proposed to prevent the harvest of leafy green crops exposed to flood water contaminated with Escherichia coli. Appl. Environ. Microbiol. 2016, 82, 3746–3753. [Google Scholar] [CrossRef] [Green Version]
- Holvoet, K.; Sampers, I.; Seynnaeve, M.; Uyttendaele, M. Relationships among hygiene indicators and enteric pathogens in irrigation water, soil and lettuce and the impact of climatic conditions on contamination in the lettuce primary production. Int. J. Food Microbiol. 2014, 171, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Cevallos-Cevallos, J.M.; Danyluk, M.D.; Gu, G.; Vallad, G.E.; Van Bruggen, A.H.C. Dispersal of Salmonella Typhimurium by rain splash onto tomato plants. J. Food Prot. 2012, 75, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. Safefood The Impact of Climate Change on Dairy Production. Cork, Ireland, 2017. Available online: https://www.safefood.net/Professional/Research/Research-Reports/The-impact-of-climate-change-on-dairy-production (accessed on 20 September 2020).
- McCoy, M.K. Dairy State: Cheese Producers Wrestle with Climate Change Amid Already Struggling Industry Farmers, Experts Know Risks of Climate Change, but Questions on How to Move Forward Persist. Available online: https://www.wpr.org/dairy-state-cheese-producers-wrestle-climate-change-amid-already-struggling-industry (accessed on 6 March 2020).
- Gunn, K.M.; Holly, M.A.; Veith, T.L.; Buda, A.R.; Prasad, R.; Alan Rotz, C.; Soder, K.J.; Stoner, A.M.K. Projected heat stress challenges and abatement opportunities for U.S. Milk production. PLoS ONE 2019, 14, e0214665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mauger, G.; Bauman, Y.; Nennich, T.; Salathé, E. Impacts of Climate Change on Milk Production in the United States. Prof. Geogr. 2015, 67, 121–131. [Google Scholar] [CrossRef]
- Boué, G.; Cummins, E.; Guillou, S.; Antignac, J.P.; Le Bizec, B.; Membré, J.M. Public health risks and benefits associated with breast milk and infant formula consumption. Crit. Rev. Food Sci. Nutr. 2018, 58, 126–145. [Google Scholar] [CrossRef]
- Tunick, M.H.; Van Hekken, D.L. Dairy Products and Health: Recent Insights. J. Agric. Food Chem. 2015, 63, 9381–9388. [Google Scholar] [CrossRef]
- Membré, J.M. Hazard appraisal and critical control point (HACCP): Establishment of Performance Criteria. In Encyclopedia of Food Microbiology; Batt, C.A., Tortorello, M.L., Eds.; Academic Press: Burlington, MA, USA, 2014; Volume 2, pp. 136–141. ISBN 9780123948076. [Google Scholar]
- Luning, P.A.; Marcelis, W.J.; Rovira, J.; Van der Spiegel, M.; Uyttendaele, M.; Jacxsens, L. Systematic assessment of core assurance activities in a company specific food safety management system. Trends Food Sci. Technol. 2009, 20, 300–312. [Google Scholar] [CrossRef]
- Crossley, S.; Mortarjemi, Y. Food Safety Management Tools; ILSI Europe: Brussels, Belgium, 2011; ISBN 9789078637301. [Google Scholar]
- Cusato, S.; Gameiro, A.H.; Corassin, C.H.; Sant’ana, A.S.; Cruz, A.G.; Faria, J.D.A.F.; De Oliveira, C.A.F. Food safety systems in a small dairy factory: Implementation, major challenges, and assessment of systems’ performances. Foodborne Pathog. Dis. 2013, 10, 6–12. [Google Scholar] [CrossRef]
- Fotopoulos, C.V.; Kafetzopoulos, D.P.; Psomas, E.L. Assessing the critical factors and their impact on the effective implementation of a food safety management system. Int. J. Qual. Reliab. Manag. 2009, 26, 894–910. [Google Scholar] [CrossRef]
- Nada, S.; Ilija, D.; Igor, T.; Jelena, M.; Ruzica, G. Implication of food safety measures on microbiological quality of raw and pasteurized milk. Food Control 2012, 25, 728–731. [Google Scholar] [CrossRef]
- Gorris, L.G.M. Food safety objective: An integral part of food chain management. Food Control 2005, 16, 801–809. [Google Scholar] [CrossRef]
- ICMSF. Microorganisms in Foods 7; Springer International Publishing AF: Cham, Switzerland, 2018; ISBN 9783319684581. [Google Scholar]
- Stringer, M. Food safety objectives—Role in microbiological food safety management. Food Control 2005, 16, 775–794. [Google Scholar] [CrossRef]
- FAO; WHO. Food Safety Risk Analysis: A Guide for National Food Safety Authorities; World Health Organization: Rome, Italy, 2006; ISBN 9789251056042. [Google Scholar]
- Dagnas, S.P.; Membré, J.M. Predicting and preventing mold spoilage of food products. J. Food Prot. 2013, 76, 538–551. [Google Scholar] [CrossRef] [PubMed]
- Poschet, F.; Geeraerd, A.H.; Scheerlinck, N.; Nicolaï, B.M.; Van Impe, J.F. Monte Carlo analysis as a tool to incorporate variation on experimental data in predictive microbiology. Food Microbiol. 2003, 20, 285–295. [Google Scholar] [CrossRef]
- Bemrah, N.; Sanaa, M.; Cassin, M.H.; Griffiths, M.W.; Cerf, O. Quantitative risk assessment of human listeriosis from consumption of soft cheese made from raw milk. Prev. Vet. Med. 1998, 37, 129–145. [Google Scholar] [CrossRef]
- Latorre, A.A.; Pradhan, A.K.; Van Kessel, J.A.S.; Karns, J.S.; Boor, K.J.; Rice, D.H.; Mangione, K.J.; Grohn, Y.T.; Schukken, Y.H. Quantitative risk assessment of listeriosis due to consumption of raw milk. J. Food Prot. 2011, 74, 1268–1281. [Google Scholar] [CrossRef]
- ICMSF. Microorganisms in Foods 8. In Microorganisms in Foods 8; Springer: New York, NY, USA, 2011; pp. 3–11. ISBN 9781441993748. [Google Scholar]
- Njage, P.M.K.; Opiyo, B.; Wangoh, J.; Wambui, J. Scale of production and implementation of food safety programs influence the performance of current food safety management systems: Case of dairy processors. Food Control 2018, 85, 85–97. [Google Scholar] [CrossRef]
- Buchanan, R.L.; Whiting, R.C. Risk assessment: A means for linking HACCP plans and public health. J. Food Prot. 1998, 61, 1531–1534. [Google Scholar] [CrossRef]
- Van Asselt, E.D.; van der Fels-Klerx, H.J.; Marvin, H.J.P.; van Bokhorst-van de Veen, H.; Groot, M.N. Overview of Food Safety Hazards in the European Dairy Supply Chain. Compr. Rev. Food Sci. Food Saf. 2017, 16, 59–75. [Google Scholar] [CrossRef]
- Valeeva, N.I.; Meuwissen, M.P.M.; Oude Lansink, A.G.J.M.; Huirne, R.B.M. Improving food safety within the dairy chain: An application of conjoint analysis. J. Dairy Sci. 2005, 88, 1601–1612. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, C.A.; Patel, M.; Blok, K. From fluid milk to milk powder: Energy use and energy efficiency in the European dairy industry. Energy 2006, 31, 1984–2004. [Google Scholar] [CrossRef] [Green Version]
- ICMSF. Microorganisms in Foods in 6; Kluwer Academic: New York, NY, USA, 2005; ISBN 030648675X. [Google Scholar]
- Bishop, J.R.; Smukowski, M. Storage Temperatures Necessary to Maintain Cheese Safety. Food Prot. Trends 2006, 26, 714–724. [Google Scholar]
- Muir, D.D.; Banks, J.M. Factors affecting the shelf-life of milk and milk products. In Dairy Processing: Improving Quality; Smit, G., Ed.; Woodhead Publishing Limited: Amsterdam, The Netherlands, 2003; pp. 185–207. ISBN 978-1-85573-676-4. [Google Scholar]
- Asao, T.; Kumeda, Y.; Kawai, T.; Shibata, T.; Oda, H.; Haruki, K.; Nakazawa, H.; Kozaki, S. An extensive outbreak of staphylococcal food poisoning due to low-fat milk in Japan: Estimation of enterotoxin A in the incriminated milk and powdered skim milk. Epidemiol. Infect. 2003, 130, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Soejima, T.; Nagao, E.; Yano, Y.; Yamagata, H.; Kagi, H.; Shinagawa, K. Risk evaluation for staphylococcal food poisoning in processed milk produced with skim milk powder. Int. J. Food Microbiol. 2007, 115, 29–34. [Google Scholar] [CrossRef]
- Flint, S.; Bremer, P.; Brooks, J.; Palmer, J.; Sadiq, F.A.; Seale, B.; Teh, K.H.; Wu, S.; Md Zain, S.N. Bacterial fouling in dairy processing. Int. Dairy J. 2020, 101, 104593. [Google Scholar] [CrossRef]
- Jindal, S.; Anand, S.; Huang, K.; Goddard, J.; Metzger, L.; Amamcharla, J. Evaluation of Modified Stainless Steel Surfaces Targeted to Reduce Biofilm Formation by Common Milk Sporeformers. J. Dairy Sci. 2016, 99, 9502–9513. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, C.; Braun, P.; Hammer, P. Reservoir and routes of transmission of Enterobacter sakazakii (Cronobacter spp.) in a milk powder-producing plant. J. Dairy Sci. 2011, 94, 3801–3810. [Google Scholar] [CrossRef]
- Burgess, K. Key Requirements for Milk Quality and Safety: A Processor’s Perspective. In Improving the Safety and Quality of Milk; Griffiths, M.W., Ed.; Woodhead Publishing Limited: Amsterdam, The Netherlands, 2010; Volume 1, pp. 64–84. ISBN 9781845694388. [Google Scholar]
- Kakagianni, M.; Koutsoumanis, K.P. Mapping the risk of evaporated milk spoilage in the Mediterranean region based on the effect of temperature conditions on Geobacillus stearothermophilus growth. Food Res. Int. 2018, 111, 104–110. [Google Scholar] [CrossRef]
- Martin, N.H.; Boor, K.J.; Wiedmann, M. Symposium review: Effect of post-pasteurization contamination on fluid milk quality. J. Dairy Sci. 2018, 101, 861–870. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Caspers, M.P.M.; Metselaar, K.I.; De Boer, P.; Roeselers, G.; Moezelaar, R.; Groot, M.N.; Montijn, R.C.; Abee, T.; Korta, R. Abiotic and Microbiotic Factors Controlling Biofilm Formation by Thermophilic Sporeformers. Appl. Environ. Microbiol. 2013, 79, 5652–5660. [Google Scholar] [CrossRef] [Green Version]
- Pujol, L.; Johnson, N.B.; Magras, C.; Albert, I.; Membré, J.M. Added value of experts’ knowledge to improve a quantitative microbial exposure assessment model—Application to aseptic-UHT food products. Int. J. Food Microbiol. 2015, 211, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Franz, C.M.A.P.; Van Belkum, M.J.; Holzapfel, W.H.; Abriouel, H.; Gálvez, A. Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol. Rev. 2007, 31, 293–310. [Google Scholar] [CrossRef] [PubMed]
- Tamime, A.Y. Fermented milks: A historical food with modern applications—A review. Eur. J. Clin. Nutr. 2002, 56, S2–S15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcó, M.B.; Moineau, S.; Quiberoni, A. Bacteriophages and dairy fermentations. Bacteriophage 2012, 2, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Cocolin, L.; Gobetti, M.; Neviani, E.; Daffonchio, D. Ensuring safety in artisanal food microbiology. Nat. Microbiol. 2016, 1, 16171. [Google Scholar] [CrossRef]
- Montel, M.C.; Buchin, S.; Mallet, A.; Delbes-Paus, C.; Vuitton, D.A.; Desmasures, N.; Berthier, F. Traditional cheeses: Rich and diverse microbiota with associated benefits. Int. J. Food Microbiol. 2014, 177, 136–154. [Google Scholar] [CrossRef]
- Mounier, J.; Monnet, C.; Vallaeys, T.; Arditi, R.; Sarthou, A.S.; Hélias, A.; Irlinger, F. Microbial interactions within a cheese microbial community. Appl. Environ. Microbiol. 2008, 74, 172–181. [Google Scholar] [CrossRef] [Green Version]
- Quigley, L.; O’Sullivan, O.; Beresford, T.P.; Ross, R.P.; Fitzgerald, G.F.; Cotter, P.D. Molecular approaches to analysing the microbial composition of raw milk and raw milk cheese. Int. J. Food Microbiol. 2011, 150, 81–94. [Google Scholar] [CrossRef]
- Schornsteiner, E.; Mann, E.; Bereuter, O.; Wagner, M.; Schmitz-Esser, S. Cultivation-independent analysis of microbial communities on Austrian raw milk hard cheese rinds. Int. J. Food Microbiol. 2014, 180, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, B.E.; Button, J.E.; Santarelli, M.; Dutton, R.J. Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity. Cell 2014, 158, 422–433. [Google Scholar] [CrossRef] [Green Version]
- Coffey, R.; Cummins, E.; Ward, S. Exposure assessment of mycotoxins in dairy milk. Food Control 2009, 20, 239–249. [Google Scholar] [CrossRef]
- D’amico, D.J. Microbiological Quality and Safety Issues in Cheesemaking. Microbiol. Spectr. 2014, 2, 1–44. [Google Scholar] [CrossRef] [Green Version]
- Kure, C.F.; Skaar, I. The fungal problem in cheese industry. Curr. Opin. Food Sci. 2019, 29, 14–19. [Google Scholar] [CrossRef]
- Bernabucci, U.; Lacetera, N.; Ronchi, B.; Nardone, A. Effects of the hot season on milk protein fractions in Holstein cows. Anim. Res. 2002, 51, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Cai yun, F.; Su, D.; Tian, H.; Hu, R.; Ran, L.; Yang, Y.; Su, Y.J.; Cheng, J.B. Milk production and composition and metabolic alterations in the mammary gland of heat-stressed lactating dairy cows. J. Integr. Agric. 2019, 18, 2844–2853. [Google Scholar] [CrossRef]
- Kekana, T.W.; Nherera-Chokuda, F.V.; Muya, M.C.; Manyama, K.M.; Lehloenya, K.C. Milk production and blood metabolites of dairy cattle as influenced by thermal-humidity index. Trop. Anim. Health Prod. 2018, 50, 921–924. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Ezernieks, V.; Wang, J.; Wanni Arachchillage, N.; Garner, J.B.; Wales, W.J.; Cocks, B.G.; Rochfort, S. Heat Stress in Dairy Cattle Alters Lipid Composition of Milk. Sci. Rep. 2017, 7, 961. [Google Scholar] [CrossRef] [Green Version]
- Ozcan, T.; Yaslioglu, E.; Kilic, I.; Simsek, E. The influence of the season and milking time on the properties and the fatty acid compostiion of the milk in different dairy cattle farms. Mljekarstvo 2015, 65, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Castro-Ibáñez, I.; Gil, M.I.; Tudela, J.A.; Ivanek, R.; Allende, A. Assessment of microbial risk factors and impact of meteorological conditions during production of baby spinach in the Southeast of Spain. Food Microbiol. 2015, 49, 173–181. [Google Scholar] [CrossRef]
- Li, N.; Wang, Y.; You, C.; Ren, J.; Chen, W.; Zheng, H.; Liu, Z. Variation in Raw Milk Microbiota Throughout 12 Months and the Impact of Weather Conditions. Sci. Rep. 2018, 8, 2371. [Google Scholar] [CrossRef] [Green Version]
- Hantsis-Zacharov, E.; Halpern, M. Culturable psychrotrophic bacterial communities in raw milk and their proteolytic and lipolytic traits. Appl. Environ. Microbiol. 2007, 73, 7162–7168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallet, A.; Guéguen, M.; Kauffmann, F.; Chesneau, C.; Sesboué, A.; Desmasures, N. Quantitative and qualitative microbial analysis of raw milk reveals substantial diversity influenced by herd management practices. Int. Dairy J. 2012, 27, 13–21. [Google Scholar] [CrossRef]
- Marchand, S.; Heylen, K.; Messens, W.; Coudijzer, K.; De Vos, P.; Dewettinck, K.; Herman, L.; De Block, J.; Heyndrickx, M. Seasonal influence on heat-resistant proteolytic capacity of Pseudomonas lundensis and Pseudomonas fragi, predominant milk spoilers isolated from Belgian raw milk samples. Environ. Microbiol. 2009, 11, 467–482. [Google Scholar] [CrossRef] [PubMed]
- Metzger, S.A.; Hernandez, L.L.; Skarlupka, J.H.; Walker, T.M.; Suen, G.; Ruegg, P.L. A cohort study of the milk microbiota of healthy and inflamed bovine mammary glands from dryoff through 150 days in milk. Front. Vet. Sci. 2018, 5, 247. [Google Scholar] [CrossRef] [Green Version]
- Vithanage, N.R.; Dissanayake, M.; Bolge, G.; Palombo, E.A.; Yeager, T.R.; Datta, N. Biodiversity of culturable psychrotrophic microbiota in raw milk attributable to refrigeration conditions, seasonality and their spoilage potential. Int. Dairy J. 2016, 57, 80–90. [Google Scholar] [CrossRef]
- Porcellato, D.; Aspholm, M.; Skeie, S.B.; Monshaugen, M.; Brendehaug, J.; Mellegård, H. Microbial diversity of consumption milk during processing and storage. Int. J. Food Microbiol. 2018, 266, 21–30. [Google Scholar] [CrossRef]
- West, J.W. Effects of heat-stress on production in dairy cattle. J. Dairy Sci. 2003, 86, 2131–2144. [Google Scholar] [CrossRef]
- Lacetera, N. Impact of climate change on animal health and welfare. Anim. Front. 2019, 9, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Akineden, Ö.; Annemüller, C.; Hassan, A.A.; Lämmler, C.; Wolter, W.; Zschöck, M. Toxin genes and other characteristics of Staphylococcus aureus isolates from milk of cows with mastitis. Clin. Diagn. Lab. Immunol. 2001, 8, 959–964. [Google Scholar] [CrossRef] [Green Version]
- Lees, A.M.; Sejian, V.; Wallage, A.L.; Steel, C.C.; Mader, T.L.; Lees, J.C.; Gaughan, J.B. The impact of heat load on cattle. Animals 2019, 9, 322. [Google Scholar] [CrossRef] [Green Version]
- Gauly, M.; Bollwein, H.; Breves, G.; Brügemann, K.; Dänicke, S.; Daş, G.; Demeler, J.; Hansen, H.; Isselstein, J.; König, S.; et al. Future consequences and challenges for dairy cow production systems arising from climate change in Central Europe—A review. Animal 2013, 7, 843–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klaas, I.C.; Zadoks, R.N. An update on environmental mastitis: Challenging perceptions. Transbound. Emerg. Dis. 2018, 65, 166–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, J.; Zhang, H.; Zhang, Y.; Xiong, B.; Jiang, L. Microbiome and Metabolome Analyses of Milk From Dairy Cows With Subclinical Streptococcus agalactiae Mastitis—Potential Biomarkers. Front. Microbiol. 2019, 10, 2547. [Google Scholar] [CrossRef] [PubMed]
- Vitali, A.; Bernabucci, U.; Nardone, A.; Lacetera, N. Effect of season, month and temperature humidity index on the occurrence of clinical mastitis in dairy heifers. Adv. Anim. Biosci. 2016, 7, 250–252. [Google Scholar] [CrossRef] [Green Version]
- Archer, S.C.; Mc Coy, F.; Wapenaar, W.; Green, M.J. Association of season and herd size with somatic cell count for cows in Irish, English, and Welsh dairy herds. Vet. J. 2013, 196, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Bludau, M.J.; Maeschli, A.; Leiber, F.; Steiner, A.; Klocke, P. Mastitis in dairy heifers: Prevalence and risk factors. Vet. J. 2014, 202, 566–572. [Google Scholar] [CrossRef]
- Bobbo, T.; Ruegg, P.L.; Stocco, G.; Fiore, E.; Gianesella, M.; Morgante, M.; Pasotto, D.; Bittante, G.; Cecchinato, A. Associations between pathogen-specific cases of subclinical mastitis and milk yield, quality, protein composition, and cheese-making traits in dairy cows. J. Dairy Sci. 2017, 100, 4868–4883. [Google Scholar] [CrossRef] [Green Version]
- Le Maréchal, C.; Thiéry, R.; Vautor, E.; Le Loir, Y. Mastitis impact on technological properties of milk and quality of milk products—A review. Dairy Sci. Technol. 2011, 91, 247–282. [Google Scholar] [CrossRef] [Green Version]
- Bouraoui, R.; Lahmar, M.; Majdoub, A.; Djemali, M.; Belyea, R. The relationship of temperature-humidity index with milk production of dairy cows in a Mediterranean climate. Anim. Res. 2002, 51, 479–491. [Google Scholar] [CrossRef] [Green Version]
- Santana, M.L.; Bignardi, A.B.; Pereira, R.J.; Stefani, G.; El Faro, L. Genetics of heat tolerance for milk yield and quality in Holsteins. Animal 2017, 11, 4–14. [Google Scholar] [CrossRef] [Green Version]
- Wheelock, J.B.; Rhoads, R.P.; VanBaale, M.J.; Sanders, S.R.; Baumgard, L.H. Effects of heat stress on energetic metabolism in lactating Holstein cows. J. Dairy Sci. 2010, 93, 644–655. [Google Scholar] [CrossRef]
- Banno, A.; Wang, J.; Okada, K.; Mori, R.; Mijiti, M.; Nagaoka, S. Identification of a novel cholesterol-lowering dipeptide, phenylalanine-proline (FP), and its down-regulation of intestinal ABCA1 in hypercholesterolemic rats and Caco-2 cells. Sci. Rep. 2019, 9, 19416. [Google Scholar] [CrossRef] [Green Version]
- Nagaoka, S. Structure–function properties of hypolipidemic peptides. J. Food Biochem. 2019, 43, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Tidona, F.; Criscione, A.; Guastella, A.M.; Zuccaro, A.; Bordonaro, S.; Marletta, D. Bioactive peptides in dairy products. Ital. J. Anim. Sci. 2009, 8, 315–340. [Google Scholar] [CrossRef]
- Broyard, C.; Gaucheron, F. Modifications of structures and functions of caseins: A scientific and technological challenge. Dairy Sci. Technol. 2015, 95, 831–862. [Google Scholar] [CrossRef]
- McClements, D.J. Edible nanoemulsions: Fabrication, properties, and functional performance. Soft Matter 2011, 7, 2297–2316. [Google Scholar] [CrossRef] [Green Version]
- Kable, M.E.; Srisengfa, Y.; Laird, M.; Zaragoza, J.; McLeod, J.; Heidenreich, J.; Marco, M.L. The core and seasonal microbiota of raw bovine milk in tanker trucks and the impact of transfer to a milk processing facility. MBio 2016, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Vermeulen, S.J.; Campbell, B.M.; Ingram, J.S.I. Climate Change and Food Systems. Annu. Rev. Environ. Resour. 2012, 37, 195–222. [Google Scholar] [CrossRef] [Green Version]
- Montebello, K.; Spiteri, D.; Valdramidis, V.P. Identification and characterisation of aerobic spore-forming bacteria isolated from Maltese cows’ milk. Int. Dairy J. 2018, 84, 54–61. [Google Scholar] [CrossRef]
- Ortuzar, J.; Martinez, B.; Bianchini, A.; Stratton, J.; Rupnow, J.; Wang, B. Quantifying changes in spore-forming bacteria contamination along the milk production chain from farm to packaged pasteurized milk using systematic review and meta-analysis. Food Control 2018, 86, 319–331. [Google Scholar] [CrossRef]
- Herald, P. Flooding and Food Safety: A Two-Part Plan for Extreme Weather Season. Available online: https://foodsafetytech.com/feature_article/flooding-and-food-safety-a-two-part-plan-for-extreme-weather-season/ (accessed on 23 March 2020).
- Miller, W.A.; Lewis, D.J.; Lennox, M.; Pereira, M.G.C.; Tate, K.W.; Conrad, P.A.; Atwill, E.R. Climate and on-farm risk factors associated with Giardia duodenalis cysts in storm runoff from California coastal dairies. Appl. Environ. Microbiol. 2007, 73, 6972–6979. [Google Scholar] [CrossRef] [Green Version]
- Sutton, K.P. Handbook of food factory design. In Handbook of Food Factory Design; Baker, C.G.J., Ed.; Springer: New York, NY, USA, 2013; pp. 283–296. ISBN 9781461474500. [Google Scholar]
- Jacxsens, L.; Luning, P.A.; van der Vorst, J.G.A.J.; Devlieghere, F.; Leemans, R.; Uyttendaele, M. Simulation modelling and risk assessment as tools to identify the impact of climate change on microbiological food safety—The case study of fresh produce supply chain. Food Res. Int. 2010, 43, 1925–1935. [Google Scholar] [CrossRef]
- Janevska, D.P.; Gospavic, R.; Pacholewicz, E.; Popov, V. Application of a HACCP-QMRA approach for managing the impact of climate change on food quality and safety. Food Res. Int. 2010, 43, 1915–1924. [Google Scholar] [CrossRef]
- Selvaraju, R. Climate risk assessment and management in agriculture. In Proceedings of the Building Resilience for Adaptation to Climate Change in the Agriculture Sector, Rome, Italy, 23–24 April 2012; Meybeck, A., Lankoski, J., Redfern, S., Azzu, N., Gitz, V., Eds.; FAO/OECD: Rome, Italy, 2012; pp. 71–90. [Google Scholar]
- Miranda, R.C.; Schaffner, D.W. Farm to fork quantitative microbial risk assessment for norovirus on frozen strawberries. Microb. Risk Anal. 2018, 10, 44–53. [Google Scholar] [CrossRef]
- Pang, H.; McEgan, R.; Micallef, S.A.; Pradhan, A.K. Evaluation of meteorological factors associated with pre-harvest contamination risk of generic Escherichia coli in a mixed produce and dairy farm. Food Control 2018, 85, 135–143. [Google Scholar] [CrossRef]
- Strawn, L.K.; Fortes, E.D.; Bihn, E.A.; Nightingale, K.K.; Gröhn, Y.T.; Worobo, R.W.; Wiedmann, M.; Bergholz, P.W. Landscape and meteorological factors affecting prevalence of three food-borne pathogens in fruit and vegetable farms. Appl. Environ. Microbiol. 2013, 79, 588–600. [Google Scholar] [CrossRef] [Green Version]
- Allende, A.; Castro-Ibáñez, I.; Lindqvist, R.; Gil, M.I.; Uyttendaele, M.; Jacxsens, L. Quantitative contamination assessment of Escherichia coli in baby spinach primary production in Spain: Effects of weather conditions and agricultural practices. Int. J. Food Microbiol. 2017, 257, 238–246. [Google Scholar] [CrossRef]
- Danyluk, M.D.; Schaffner, D.W. Quantitative assessment of the microbial risk of leafy greens from farm to consumption: Preliminary framework, data, and risk estimates. J. Food Prot. 2011, 74, 700–708. [Google Scholar] [CrossRef]
- Söderqvist, K.; Rosberg, A.K.; Boqvist, S.; Alsanius, B.; Mogren, L.; Vågsholm, I. Season and species: Two possible hurdles for reducing the food safety risk of Escherichia coli O157 contamination of leafy vegetables. J. Food Prot. 2019, 82, 247–255. [Google Scholar] [CrossRef]
- Marvin, H.J.P.; Bouzembrak, Y. A system approach towards prediction of food safety hazards: Impact of climate and agrichemical use on the occurrence of food safety hazards. Agric. Syst. 2020, 178, 102760. [Google Scholar] [CrossRef]
- Bouzembrak, Y.; Marvin, H.J.P. Impact of drivers of change, including climatic factors, on the occurrence of chemical food safety hazards in fruits and vegetables: A Bayesian Network approach. Food Control 2019, 97, 67–76. [Google Scholar] [CrossRef]
- Ottoson, J.R.; Nyberg, K.; Lindqvist, R.; Albihn, A. Quantitative microbial risk assessment for Escherichia coli O157 on lettuce, based on survival data from controlled studies in a climate chamber. J. Food Prot. 2011, 74, 2000–2007. [Google Scholar] [CrossRef]
- Medina-Martínez, M.S.; Allende, A.; Barberá, G.G.; Gil, M.I. Climatic variations influence the dynamic of epiphyte bacteria of baby lettuce. Food Res. Int. 2015, 68, 54–61. [Google Scholar] [CrossRef]
- Xanthiakos, K.; Simos, D.; Angelidis, A.S.; Nychas, G.J.E.; Koutsoumanis, K. Dynamic modeling of Listeria monocytogenes growth in pasteurized milk. J. Appl. Microbiol. 2006, 100, 1289–1298. [Google Scholar] [CrossRef]
- Barker, G.C.; Goméz-Tomé, N. A Risk Assessment Model for Enterotoxigenic Staphylococcus aureus in Pasteurized Milk: A Potential Route to Source-Level Inference. Risk Anal. 2013, 33, 249–269. [Google Scholar] [CrossRef]
- Bohmanova, J.; Misztal, I.; Cole, J.B. Temperature-humidity indices as indicators of milk production losses due to heat stress. J. Dairy Sci. 2007, 90, 1947–1956. [Google Scholar] [CrossRef]
- Bava, L.; Zucali, M.; Brasca, M.; Zanini, L.; Sandrucci, A. Efficiency of cleaning procedure of milking equipment and bacterial quality of milk. Ital. J. Anim. Sci. 2009, 8, 387–389. [Google Scholar] [CrossRef]
- Zucali, M.; Bava, L.; Tamburini, A.; Brasca, M.; Vanoni, L.; Sandrucci, A. Effects of season, milking routine and cow cleanliness on bacterial and somatic cell counts of bulk tank milk. J. Dairy Res. 2011, 78, 436–441. [Google Scholar] [CrossRef]
- Garvey, M.; Curran, D.; Savage, M. Efficacy testing of teat dip solutions used as disinfectants for the dairy industry: Antimicrobial properties. Int. J. Dairy Technol. 2017, 70, 179–187. [Google Scholar] [CrossRef]
- Yu, J.; Ren, Y.; Xi, X.X.; Huang, W.; Zhang, H. A novel lactobacilli-based teat disinfectant for improving bacterial communities in the milks of cow teats with subclinical mastitis. Front. Microbiol. 2017, 8. [Google Scholar] [CrossRef]
- Perrin, F.; Tenenhaus-Aziza, F.; Michel, V.; Miszczycha, S.; Bel, N.; Sanaa, M. Quantitative Risk Assessment of Haemolytic and Uremic Syndrome Linked to O157: H7 and Non-O157: H7 Shiga-Toxin Producing Escherichia coli Strains in Raw Milk Soft Cheeses. Risk Anal. 2015, 35, 109–128. [Google Scholar] [CrossRef] [PubMed]
- Stenkamp-Strahm, C.; McConnel, C.; Rao, S.; Magnuson, R.; Hyatt, D.R.; Linke, L. Climate, lactation, and treatment factors influence faecal shedding of Escherichia coli O157 pathotypes in dairy cows. Epidemiol. Infect. 2017, 145, 115–125. [Google Scholar] [CrossRef]
- Khongdee, S.; Sripoon, S.; Chousawai, S.; Hinch, G.; Chaiyabutr, N.; Markvichitr, K.; Vajrabukka, C. The effect of modified roofing on the milk yield and reproductive performance of heat-stressed dairy cows under hot-humid conditions. Anim. Sci. J. 2010, 81, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Sigdel, A.; Abdollahi-Arpanahi, R.; Aguilar, I.; Peñagaricano, F. Whole Genome Mapping Reveals Novel Genes and Pathways Involved in Milk Production Under Heat Stress in US Holstein Cows. Front. Genet. 2019, 10, 928. [Google Scholar] [CrossRef] [PubMed]
- Marvin, H.J.P.; Kleter, G.A.; Van der Fels-Klerx, H.J.; Noordam, M.Y.; Franz, E.; Willems, D.J.M.; Boxall, A. Proactive systems for early warning of potential impacts of natural disasters on food safety: Climate-change-induced extreme events as case in point. Food Control 2013, 34, 444–456. [Google Scholar] [CrossRef]
- Deeth, H. Optimum Thermal Processing for Extended Shelf-Life (ESL) Milk. Foods 2017, 6, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabriel, A.A. Inactivation of Listeria monocytogenes in Milk by Multifrequency Power Ultrasound. J. Food Process. Preserv. 2015, 39, 846–853. [Google Scholar] [CrossRef]
- Kure, C.F.; Skaar, I.; Brendehaug, J. Mould contamination in production of semi-hard cheese. Int. J. Food Microbiol. 2004, 93, 41–49. [Google Scholar] [CrossRef]
- Pujol, L.; Albert, I.; Magras, C.; Johnson, N.B.; Membré, J.M. Probabilistic exposure assessment model to estimate aseptic-UHT product failure rate. Int. J. Food Microbiol. 2015, 192, 124–141. [Google Scholar] [CrossRef]
- Tenenhaus-Aziza, F.; Daudin, J.J.; Maffre, A.; Sanaa, M. Risk-based approach for microbiological food safety management in the dairy industry: The case of Listeria monocytogenes in soft cheese made from pasteurized milk. Risk Anal. 2014, 34, 56–74. [Google Scholar] [CrossRef]
- Schaffner, D.W.; Mcentire, J.; Duffy, S.; Montville, R.; Smith, S. Monte Carlo Simulation of the Shelf Life of Pasteurized Milk as Affected by Temperature and Initial Concentration of Spoilage Organisms. Food Prot. Trends 2003, 23, 1014–1021. [Google Scholar]
- Tiwari, U.; Cummins, E.; Valero, A.; Walsh, D.; Dalmasso, M.; Jordan, K.; Duffy, G. Farm to Fork Quantitative Risk Assessment of Listeria monocytogenes Contamination in Raw and Pasteurized Milk Cheese in Ireland. Risk Anal. 2015, 35, 1140–1153. [Google Scholar] [CrossRef] [PubMed]
- Roccato, A.; Uyttendaele, M.; Membré, J.M. Analysis of domestic refrigerator temperatures and home storage time distributions for shelf-life studies and food safety risk assessment. Food Res. Int. 2017, 96, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Martinez, V.; Velázquez, G.; de Jesús Rodríguez Altaif, R.; Fagotti, F.; Welti-Chanes, J.; Torres, J.A. Deterministic and probabilistic predictive microbiology-based indicator of the listeriosis and microbial spoilage risk of pasteurized milk stored in residential refrigerators. LWT 2020, 117, 108650. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feliciano, R.J.; Boué, G.; Membré, J.-M. Overview of the Potential Impacts of Climate Change on the Microbial Safety of the Dairy Industry. Foods 2020, 9, 1794. https://doi.org/10.3390/foods9121794
Feliciano RJ, Boué G, Membré J-M. Overview of the Potential Impacts of Climate Change on the Microbial Safety of the Dairy Industry. Foods. 2020; 9(12):1794. https://doi.org/10.3390/foods9121794
Chicago/Turabian StyleFeliciano, Rodney J., Géraldine Boué, and Jeanne-Marie Membré. 2020. "Overview of the Potential Impacts of Climate Change on the Microbial Safety of the Dairy Industry" Foods 9, no. 12: 1794. https://doi.org/10.3390/foods9121794
APA StyleFeliciano, R. J., Boué, G., & Membré, J.-M. (2020). Overview of the Potential Impacts of Climate Change on the Microbial Safety of the Dairy Industry. Foods, 9(12), 1794. https://doi.org/10.3390/foods9121794