Legume Seeds as an Important Component of Human Diet
Funding
Conflicts of Interest
References
- Vaz Patto, M.C.; Amarowicz, R.; Aryee, A.N.A.; Boye, J.I.; Chung, H.-J.; Martín-Cabrejas, M.A.; Domoney, C. Achievements and challenges in improving the nutritional quality of food legumes. Crit. Rev. Plant. Sci. 2015, 34, 105–143. [Google Scholar] [CrossRef]
- Amarowicz, R.; Pegg, R.B. Legumes as a source of natural antioxidants. Eur. J. Lipid Sci. Technol. 2008, 110, 865–878. [Google Scholar] [CrossRef]
- Hillocks, R.J.; Maruthi, M.N. Grass pea (Lathyrus sativus): Is there a case for further crop improvement? Euphytica 2012, 186, 647–654. [Google Scholar] [CrossRef]
- Hanbury, C.D.; White, C.L.; Mullan, B.P.; Siddique, K.H.M. A review of the potential of Lathyrus sativus L. and L. cicera L. grain for use as animal feed. Anim. Feed Sci. Technol. 2000, 87, 1–27. [Google Scholar] [CrossRef]
- Mullan, B.P.; Pluske, J.R.; Trezona, M.; Harris, D.J.; Allen, J.G.; Siddique, K.H.M.; Hanbury, C.D.; van Barneveld, R.J.; Kim, J.C. Chemical composition and standardised ileal digestible amino acid contents of Lathyrus (Lathyrus cicera) as an ingredient in pig diets. Anim. Feed Sci. Technol. 2009, 150, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Pastor-Cavada, E.; Jua, R.; Pastor, J.E.; Alai, M.; Vioque, J. Protein isolates from two Mediterranean legumes: Lathyrus clymenum and Lathyrus annuus. Chemical composition, functional properties and protein characterization. Food Chem. 2010, 122, 533–538. [Google Scholar] [CrossRef]
- Kumar, S.; Bejiga, G.; Ahmed, S.; Nakkoul, H.; Sarker, A. Genetic improvement of grass pea for low neurotoxin (β-ODAP) content. Food Chem. Toxicol. 2011, 49, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Getahun, H.; Lambein, F.; Vanhoorne, M.; Van der Stuyft, P. Pattern and associated factors of the neurolathyrism epidemic in Ethiopia. Trop. Med. Int. Health 2002, 7, 118–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rybiński, W.; Karamać, M.; Sulewska, K.; Börner, A.; Amarowicz, R. Antioxidant potential of grass pea seeds from European countries. Foods 2018, 7, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limón, R.I.; Peñas, E.; Torino, M.I.; Martínez-Villaluenga, C.; Dueñas, M.; Frias, J. Fermentation enhances the content of bioactive compounds in kidney bean extracts. Food. Chem. 2015, 172, 343–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakajima, N.; Nozaki, N.; Ishihara, K.; Ishikawa, A.; Tsuji, H. Analysis of isoflavone content in tempeh, a fermented soybean, and preparation of a new isoflavone-enriched tempeh. J. Biosci. Bioeng. 2005, 100, 685–687. [Google Scholar] [CrossRef] [PubMed]
- Vital, R.J.; Bassinello, P.Z.; Cruz, Q.A.; Carvalho, R.N.; De Paiva, J.C.M.; Colombo, A.O. Production, quality, and acceptance of tempeh and white bean tempeh burgers. Foods 2018, 7, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feitosa, S.; Ralf Greiner, R.; Ann-Katrin Meinhardt, A.-K.; Alexandra Müller, A.; Deusdélia, T.; Almeida, D.T.; Clemens Posten, C. Effect of traditional household processes on iron, zinc and copper bioaccessibility in black bean (Phaseolus vulgaris L.). Foods 2018, 7, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshiara, L.Y.; Madeira, T.B.; Ribeiro, M.L.L.; Mandarino, J.M.G.; Carrão-Panizzi, M.C.; Ida, E.I. β-Glucosidase activity of soybean (Glycine max) embryonic axis germinated in the presence or absence of light. J. Food Biochem. 2011, 36, 699–705. [Google Scholar] [CrossRef]
- Yoshiara, L.Y.; Madeira, T.B.; De Camargo, A.C.; Shahidi, F.; Ida, E.I. Multistep optimization of β-glucosidase extraction from germinated soybeans (Glycine max L. Merril) and recovery of isoflavone aglycones. Foods 2018, 7, 110. [Google Scholar] [CrossRef] [Green Version]
- Felker, P.; Takeoka, G.; Dao, L. Pod mesocarp flour of north and south american species of leguminous tree Prosopis (Mesquite): Composition and food applications. Food Rev. Int. 2013, 29, 49–66. [Google Scholar] [CrossRef]
- Díaz-Batalla, L.; Hernández-Uribe, J.P.; Gutiérrez-Dorado, R.; Téllez-Jurado, A.; Castro-Rosas, J.; Pérez-Cadena, R.; Gómez-Aldapa, C.A. Nutritional characterization of prosopis laevigata legume tree (Mesquite) seed flour and the effect of extrusion cooking on its bioactive components. Foods 2018, 7, 124. [Google Scholar] [CrossRef] [Green Version]
- Carrín, M.E.; Carelli, A.A. Peanut oil: Compositional data. Eur. J. Lipid Sci. Technol. 2010, 112, 697–707. [Google Scholar] [CrossRef]
- Lusas, E.W. Food uses of peanut protein. J. Am. Oil Chem. Soc. 1979, 56, 425–430. [Google Scholar] [CrossRef] [PubMed]
- List, G.R. Processing and Food Uses of Peanut Oil and Protein. In Peanut: Genetics, Processing, and Utilization; Academic Press and AOCS Press: Washington, IL, USA, 2016; pp. 405–428. [Google Scholar]
- Smithson, S.C.; Boluwatife, D.; Fakayode, B.D.; Henderson, S.; John Nguyen, J.; Fakayode, S.O. Detection, purity analysis, and quality assurance of adulterated peanut (Arachis hypogaea) oils. Foods 2018, 7, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amarowicz, R. Legume Seeds as an Important Component of Human Diet. Foods 2020, 9, 1812. https://doi.org/10.3390/foods9121812
Amarowicz R. Legume Seeds as an Important Component of Human Diet. Foods. 2020; 9(12):1812. https://doi.org/10.3390/foods9121812
Chicago/Turabian StyleAmarowicz, Ryszard. 2020. "Legume Seeds as an Important Component of Human Diet" Foods 9, no. 12: 1812. https://doi.org/10.3390/foods9121812
APA StyleAmarowicz, R. (2020). Legume Seeds as an Important Component of Human Diet. Foods, 9(12), 1812. https://doi.org/10.3390/foods9121812