Monitoring Virgin Olive Oil Shelf-Life by Fluorescence Spectroscopy and Sensory Characteristics: A Multidimensional Study Carried Out under Simulated Market Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Storage Experiment
2.3. Quality Parameters
2.4. Sensory Assessment
2.5. Phenol Content
2.6. α-Tocopherol Content
2.7. Pigment Analysis
2.8. Fluorescence Measurements
2.9. Statistical Analysis
3. Results and Discussion
3.1. Physical–Chemical Characterization
3.2. Changes of Fluorescence Excitation–Emission Matrices during the Storage
3.3. Multivariate Analysis of VOO Excitation–Emission Fluorescence Spectra
3.4. Sensory Quality Changes in the Samples Analyzed by Fluorescence Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- International Olive Council. World Olive Oil and Table Olive Figures. World Olive Oil Consumption; International Olive Council: Madrid, Spain, 2019. [Google Scholar]
- Aparicio-Ruiz, R.; Tena, N.; Romero, I.; Aparicio, R.; García-González, D.L.; Morales, M.T. Predicting extra virgin olive oil freshness during storage by fluorescence spectroscopy. Grasas Aceites 2017, 68, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Sánchez, N.; Lleó, L.; Ammari, F.; Cuadrado, T.R.; Roger, J.M. Fast fluorescence spectroscopy methodology to monitor the evolution of extra virgin olive oils under illumination. Food Bioprocess. Technol. 2017, 10, 949–961. [Google Scholar] [CrossRef]
- Sikorska, E.; Khmelinskii, I.; Sikorski, M.; Caponio, F.; Bilancia, M.T.; Pasqualone, A.; Gomes, T. Fluorescence spectroscopy in monitoring of extra virgin olive oil during storage. Int. J. Food Sci. Technol. 2008, 43, 52–61. [Google Scholar] [CrossRef]
- Morales, M.T.; Aparicio-Ruiz, R.; Aparicio, R. Chromatographic methodologies: Compounds for olive oil odor issues. In Handbook of Olive Oil: Analysis and Properties; Aparicio, R., Harwood, J., Eds.; Springer: Boston, MA, USA, 2013; pp. 261–309. [Google Scholar]
- Gonçalves, T.R.; Rosa, L.N.; Torquato, A.S.; da Silva, L.F.O.; Março, P.H.; Gomes, S.T.M.; Matsushita, M.; Valderrama, P. Assessment of brazilian monovarietal olive oil in two different package systems by using data fusion and chemometrics. Food Anal. Methods 2019, 13, 86–96. [Google Scholar] [CrossRef]
- Krichene, D.; Salvador, M.D.; Fregapane, G. Stability of virgin olive oil phenolic compounds during long-term storage (18 months) at temperatures of 5–50 °C. J. Agric. Food Chem. 2015, 63, 6779–6786. [Google Scholar] [CrossRef] [PubMed]
- Lolis, A.; Badeka, A.V.; Kontominas, M.G. Effect of bag-in-box packaging material on quality characteristics of extra virgin olive oil stored under household and abuse temperature conditions. Food Packag. Shelf Life 2019, 21, 100368. [Google Scholar] [CrossRef]
- Méndez, A.I.; Falqué, E. Effect of storage time and container type on the quality of extra-virgin olive oil. Food Control. 2007, 18, 521–529. [Google Scholar] [CrossRef]
- Tena, N.; Lobo-Prieto, A.; Aparicio, R.; García-González, D.L. Storage and preservation of fats and oils. In Encyclopedia of Food Security and Sustainability; Ferranti, P., Berry, E., Jock, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 605–618. [Google Scholar]
- Trypidis, D.; García-González, D.L.; Lobo-Prieto, A.; Nenadis, N.; Tsimidou, M.Z.; Tena, N. Real time monitoring of the combined effect of chlorophyll content and light filtering packaging on virgin olive oil photo-stability using mesh cell-FTIR spectroscopy. Food Chem. 2019, 295, 94–100. [Google Scholar] [CrossRef]
- Tena, N.; Aparicio, R.; García-González, D.L. Photooxidation effect in liquid lipid matrices: Answers from an innovative FTIR spectroscopy strategy with “mesh Cell” incubation. J. Agric. Food Chem. 2018, 66, 3541–3549. [Google Scholar] [CrossRef]
- Lobo-Prieto, A.; Tena, N.; Aparicio-Ruiz, R.; Morales, M.T.; García-González, D.L. Tracking sensory characteristics of virgin olive oils during storage: Interpretation of their changes from a multiparametric perspective. Molecules 2020, 25, 1686. [Google Scholar] [CrossRef] [Green Version]
- Tena, N.; Aparicio, R.; García-González, D.L. Virgin olive oil stability study by mesh cell-FTIR spectroscopy. Talanta 2017, 167, 453–461. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission regulation (EEC) No 2568/91 of 11 July 1991 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. Offic. J. L 1991, 248, 1–83, updates. [Google Scholar]
- International Olive Council. Standard COI/BPS/Doc. No1. Best Practice Guidelines for the Storage of Olive Oils and Olive-Pomace Oils for Human Consumption; International Olive Council: Madrid, Spain, 2018. [Google Scholar]
- Velasco, J.; Dobarganes, C. Oxidative stability of virgin olive oil. Eur. J. Lipid Sci. Technol. 2002, 104, 661–676. [Google Scholar] [CrossRef]
- García-González, D.L.; Baeten, V.; Fernández Pierna, J.A.; Tena, N. Infrared, raman, and fluorescence spectroscopy: Methodologies and applications. In Handbook of Olive Oil: Analysis and Properties; Aparicio, R., Harwood, J., Eds.; Springer: Boston, MA, USA, 2013; pp. 336–383. ISBN 9781461477778. [Google Scholar]
- Sikorska, E.; Khmelinskii, I.; Sikorski, M. Vibrational and electronic spectroscopy and chemometrics in analysis of edible oils. In Methods in Food Analysis; Cruz, R.M.S., Khmelinskii, I., Vieira, M., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 201–234. [Google Scholar]
- Christensen, J.; Nørgaard, L.; Bro, R.; Engelsen, S.B. Multivariate autofluorescence of intact food systems. Chem. Rev. 2006, 106, 1979–1994. [Google Scholar] [CrossRef] [PubMed]
- Sikorska, E.; Khmelinskii, I.; Sikorski, M. Analysis of olive oils by fluorescence Spectroscopy: Methods and applications. In Olive Oil—Constituents, Quality, Health Properties and Bioconversions; Boskou, D., Ed.; IntechOpen: London, UK, 2012; pp. 63–88. [Google Scholar]
- Ammari, F.; Cordella, C.B.Y.; Boughanmi, N.; Rutledge, D.N. Independent components analysis applied to 3D-front-face fluorescence spectra of edible oils to study the antioxidant effect of Nigella sativa L. extract on the thermal stability of heated oils. Chemom. Intell. Lab. Syst. 2012, 113, 32–42. [Google Scholar] [CrossRef]
- Cabrera-Bañegil, M.; Martín-Vertedor, D.; Boselli, E.; Durán-Merás, I. Control of olive cultivar irrigation by front-face fluorescence excitation-emission matrices in combination with PARAFAC. J. Food Compos. Anal. 2018, 69, 189–196. [Google Scholar] [CrossRef]
- Sikorska, E.; Gliszczyńska-Świgło, A.; Khmelinskii, I.; Sikorski, M. Synchronous fluorescence spectroscopy of edible vegetable oils. Quantification of tocopherols. J. Agric. Food Chem. 2005, 53, 6988–6994. [Google Scholar] [CrossRef]
- Sikorska, E.; Romaniuk, A.; Khmelinskii, I.V.; Herance, R.; Bourdelande, J.L.; Sikorski, M.; Koziol, J. Characterization of edible oils using total luminescence spectroscopy. J. Fluoresc. 2004, 14, 25–35. [Google Scholar] [CrossRef]
- Squeo, G.; Caponio, F.; Paradiso, V.M.; Summo, C.; Pasqualone, A.; Khmelinskii, I.; Sikorska, E. Evaluation of total phenolic content in virgin olive oil using fluorescence excitation–emission spectroscopy coupled with chemometrics. J. Sci. Food Agric. 2019, 99, 2513–2520. [Google Scholar] [CrossRef]
- Sayago, A.; Morales, M.T.; Aparicio, R. Detection of hazelnut oil in virgin olive oil by a spectrofluorimetric method. Eur. Food Res. Technol. 2004, 218, 480–483. [Google Scholar] [CrossRef]
- Sayago, A.; García-González, D.L.; Morales, M.T.; Aparicio, R. Detection of the presence of refined hazelnut oil in refined olive oil by fluorescence spectroscopy. J. Agric. Food Chem. 2007, 55, 2068–2071. [Google Scholar] [CrossRef] [PubMed]
- Dupuy, N.; Le Dréau, Y.; Ollivier, D.; Artaud, J.; Pinatel, C.; Kister, J. Origin of french virgin olive oil registered designation of origins predicted by chemometric analysis of synchronous excitation-emission fluorescence spectra. J. Agric. Food Chem. 2005, 53, 9361–9368. [Google Scholar] [CrossRef] [PubMed]
- International Olive Council. Standard. COI/T.20/Doc. No 35/Rev.1. Determination of Peroxide Value; International Olive Council: Madrid, Spain, 2017. [Google Scholar]
- International Olive Council. Standard. COI/T.20/Doc. No 34/Rev. 1. Determination of Free Fatty Acids, Cold Method; International Olive Council: Madrid, Spain, 2017. [Google Scholar]
- International Olive Council. Standard. COI/T.20/Doc. No 19/Rev. 5. Spectrophotometric Investigation in the Ultraviolet; International Olive Council: Madrid, Spain, 2019. [Google Scholar]
- Asociación Española de Normalización. UNE-EN ISO/IEC 17025. In Requisitos Generales Para la Competencia de los Laboratorios de Ensayo y Calibración; Asociación Española de Normalización: Madrid, Spain, 2017. [Google Scholar]
- International Olive Council. Sensory Analysis of Olive Oil. Method for the Organoleptic Assessment of Virgin Olive Oil. COI/T.20/Doc. No 15/Rev. 10; International Olive Council: Madrid, Spain, 2018. [Google Scholar]
- Mateos, R.; Espartero, J.L.; Trujillo, M.; Ríos, J.J.; León-Camacho, M.; Alcudia, F.; Cert, A. Determination of phenols, flavones, and lignans in virgin olive oils by solid-phase extraction and high-performance liquid chromatography with diode array ultraviolet detection. J. Agric. Food Chem. 2001, 49, 2185–2192. [Google Scholar] [CrossRef] [PubMed]
- Aparicio-Ruiz, R.; García-González, D.L.; Oliver-Pozo, C.; Tena, N.; Morales, M.T.; Aparicio, R. Phenolic profile of virgin olive oils with and without sensory defects: Oils with non-oxidative defects exhibit a considerable concentration of phenols. Eur. J. Lipid Sci. Technol. 2016, 118, 299–307. [Google Scholar] [CrossRef]
- International Organization for Standarization. Standard ISO 29841:2014/A1:2016. In Vegetable Fats and Oils—Determination of the Degradation Products of Chlorophylls a and a’ (Pheophytins a, a’ and Pyropheophytins); International Organization for Standarization: Geneva, Switzerland, 2016. [Google Scholar]
- Sievers, G.; Hynninen, P.H. Thin-layer chromatography of chlorophylls and their derivatives on cellulose layers. J. Chromatogr. 1977, 134, 359–364. [Google Scholar] [CrossRef]
- Schwartz, S.J.; Woo, S.L.; von Elbe, J.H. High-Performance Liquid Chromatography of chlorophylls and their derivatives in fresh and processed spinach. J. Agric. Food Chem. 1981, 29, 533–535. [Google Scholar] [CrossRef]
- Andersen, C.M.; Bro, R. Practical aspects of PARAFAC modeling of fluorescence excitation-emission data. J. Chemom. 2003, 17, 200–215. [Google Scholar] [CrossRef]
- Bro, R.; Kiers, H.A.L. A new efficient method for determining the number of components in PARAFAC models. J. Chemom. 2003, 17, 274–286. [Google Scholar] [CrossRef]
- Bendini, A.; Cerretani, L.; Carrasco-Pancorbo, A.; Gómez-Caravaca, A.M.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Lercker, G. Phenolic molecules in virgin olive oils: A survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade. Molecules 2007, 12, 1679–1719. [Google Scholar] [CrossRef]
- Psomiadou, E.; Tsimidou, M. Stability of virgin olive oil. 1. Autoxidation studies. J. Agric. Food Chem. 2002, 50, 716–721. [Google Scholar] [CrossRef]
- Velasco, J.; Andersen, M.L.; Skibsted, L.H. Evaluation of oxidative stability of vegetable oils by monitoring the tendency to radical formation. A comparison of electron spin resonance spectroscopy with the Rancimat method and differential scanning calorimetry. Food Chem. 2004, 85, 623–632. [Google Scholar] [CrossRef]
- Aparicio-Ruiz, R.; Roca, M.; Gandul-Rojas, B. Mathematical model to predict the formation of pyropheophytin a in virgin olive oil during storage. J. Agric. Food Chem. 2012, 60, 7040–7049. [Google Scholar] [CrossRef] [PubMed]
- Tena, N.; Aparicio, R.; García-González, D.L. Chemical changes of thermoxidized virgin olive oil determined by excitation-emission fluorescence spectroscopy (EEFS). Food Res. Int. 2012, 45, 103–108. [Google Scholar] [CrossRef]
- Galeano Díaz, T.; Durán Merás, I.; Correa, C.A.; Roldán, B.; Rodríguez Cáceres, M.I. Simultaneous fluorometric determination of chlorophylls a and b and pheophytins a and b in olive oil by partial least-squares calibration. J. Agric. Food Chem. 2003, 51, 6934–6940. [Google Scholar] [CrossRef] [PubMed]
- Cheikhousman, R.; Zude, M.; Bouveresse, D.J.R.; Léger, C.L.; Rutledge, D.N.; Birlouez-Aragon, I. Fluorescence spectroscopy for monitoring deterioration of extra virgin olive oil during heating. Anal. Bioanal. Chem. 2005, 382, 1438–1443. [Google Scholar] [CrossRef] [PubMed]
- Baltazar, P.; Hernández-Sánchez, N.; Diezma, B.; Lleó, L. Development of rapid extra virgin olive oil quality assessment procedures based on spectroscopic techniques. Agronomy 2020, 10, 41. [Google Scholar] [CrossRef] [Green Version]
- Giungato, P.; Aveni, M.; Rana, F.; Notarnicola, L. Modifications induced by extra virgin olive oil frying processes. Ind. Aliment. 2006, 45, 148–154. [Google Scholar]
- Lozano, V.A.; Muñoz de la Peña, A.; Durán-Merás, I.; Espinosa Mansilla, A.; Escandar, G.M. Four-way multivariate calibration using ultra-fast high-performance liquid chromatography with fluorescence excitation-emission detection. Application to the direct analysis of chlorophylls a and b and pheophytins a and b in olive oils. Chemom. Intell. Lab. Syst. 2013, 125, 121–131. [Google Scholar] [CrossRef]
- Díaz, G.; Pega, J.; Primrose, D.; Sancho, A.M.; Nanni, M. Effect of light exposure on functional compounds of monovarietal extra virgin olive oils and oil mixes during early storage as evaluated by fluorescence spectra. Food Anal. Methods 2019, 12, 2709–2718. [Google Scholar] [CrossRef]
- Guzmán, E.; Baeten, V.; Pierna, J.A.F.; García-Mesa, J.A. Evaluation of the overall quality of olive oil using fluorescence spectroscopy. Food Chem. 2015, 173, 927–934. [Google Scholar] [CrossRef]
- Mishra, P.; Lleó, L.; Cuadrado, T.; Ruiz-Altisent, M.; Hernández-Sánchez, N. Monitoring oxidation changes in commercial extra virgin olive oils with fluorescence spectroscopy-based prototype. Eur. Food Res. Technol. 2018, 244, 565–575. [Google Scholar] [CrossRef] [Green Version]
- Aparicio, R.; García-González, D.L. Olive oil characterization and traceability. In Handbook of Olive Oil: Analysis and Properties; Aparico, R., Harwood, J., Eds.; Springer: Boston, MA, USA, 2013; pp. 431–472. ISBN 9781461477778. [Google Scholar]
Peroxide Value (meq O2/kg) | FFA (% m/m Oleic Acid) | K270 (Absorbance Units) | K232 (Absorbance Units) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Months of Storage | VOO1 | VOO2 | VOO3 | VOO4 | VOO1 | VOO2 | VOO3 | VOO4 | VOO1 | VOO2 | VOO3 | VOO4 | VOO1 | VOO2 | VOO3 | VOO4 |
0 | 4.30 | 5.13 | 3.63 | 4.82 | 0.15 | 0.21 | 0.20 | 0.20 | 0.06 | 0.18 | 0.04 | 0.18 | 1.53 | 1.87 | 1.73 | 1.84 |
1 | 7.54 | 5.37 | 4.12 | 4.94 | 0.16 | 0.22 | 0.21 | 0.22 | 0.21 | 0.18 | 0.17 | 0.20 | 1.95 | 1.87 | 1.78 | 1.96 |
2 | 7.77 | 5.17 | 4.85 | 4.74 | 0.16 | 0.21 | 0.21 | 0.22 | 0.24 | 0.19 | 0.18 | 0.21 | 1.93 | 1.83 | 1.82 | 1.97 |
3 | 7.56 | 5.27 | 5.45 | 5.30 | 0.18 | 0.22 | 0.21 | 0.21 | 0.23 | 0.20 | 0.22 | 0.22 | 1.88 | 1.82 | 1.82 | 1.96 |
4 | 7.46 | 5.86 | 5.48 | 6.22 | 0.18 | 0.22 | 0.21 | 0.21 | 0.25 | 0.22 | 0.22 | 0.21 | 1.92 | 1.89 | 1.82 | 1.95 |
5 | 7.69 | 5.98 | 5.63 | 5.83 | 0.19 | 0.23 | 0.21 | 0.21 | 0.26 | 0.23 | 0.22 | 0.23 | 1.90 | 1.85 | 1.77 | 1.95 |
6 | 7.63 | 5.77 | 6.18 | 6.17 | 0.19 | 0.23 | 0.21 | 0.21 | 0.27 | 0.23 | 0.24 | 0.23 | 1.91 | 1.97 | 1.80 | 1.96 |
7 | 8.31 | 5.68 | 5.93 | 6.11 | 0.19 | 0.23 | 0.22 | 0.22 | 0.27 | 0.23 | 0.25 | 0.23 | 1.91 | 1.90 | 1.80 | 1.97 |
8 | 8.38 | 5.98 | 5.99 | 7.11 | 0.20 | 0.24 | 0.22 | 0.23 | 0.27 | 0.24 | 0.28 | 0.24 | 1.93 | 1.90 | 1.82 | 1.98 |
9 | 9.19 | 7.30 | 6.24 | 8.12 | 0.21 | 0.26 | 0.23 | 0.24 | 0.28 | 0.24 | 0.27 | 0.23 | 1.97 | 1.90 | 1.84 | 1.98 |
10 | 10.04 | 7.48 | 6.74 | 9.28 | 0.21 | 0.27 | 0.23 | 0.23 | 0.29 | 0.24 | 0.28 | 0.24 | 1.97 | 1.88 | 1.83 | 1.98 |
11 | 10.60 | 8.36 | 6.66 | 9.73 | 0.22 | 0.28 | 0.22 | 0.24 | 0.30 | 0.26 | 0.29 | 0.24 | 1.97 | 1.92 | 1.83 | 1.99 |
12 | 10.69 | 8.39 | 7.27 | 10.31 | 0.21 | 0.27 | 0.23 | 0.24 | 0.32 | 0.26 | 0.33 | 0.24 | 1.94 | 1.93 | 1.84 | 1.99 |
13 | 11.64 | 8.86 | 7.72 | 10.56 | 0.22 | 0.28 | 0.22 | 0.25 | 0.31 | 0.26 | 0.31 | 0.25 | 1.97 | 1.97 | 1.84 | 2.00 |
14 | 11.80 | 9.47 | 7.45 | 10.33 | 0.21 | 0.28 | 0.23 | 0.25 | 0.31 | 0.26 | 0.28 | 0.25 | 1.97 | 1.99 | 1.85 | 2.03 |
15 | 11.25 | 9.32 | 7.32 | 10.70 | 0.22 | 0.29 | 0.23 | 0.26 | 0.32 | 0.26 | 0.30 | 0.26 | 1.98 | 2.12 | 1.85 | 2.04 |
16 | 11.94 | 9.43 | 7.41 | 10.74 | 0.21 | 0.29 | 0.24 | 0.27 | 0.32 | 0.26 | 0.30 | 0.26 | 2.02 | 2.05 | 1.86 | 2.07 |
17 | 11.97 | 9.78 | 7.60 | 10.61 | 0.22 | 0.30 | 0.23 | 0.27 | 0.31 | 0.26 | 0.31 | 0.26 | 1.99 | 2.06 | 1.85 | 2.07 |
18 | 11.98 | 9.82 | 8.01 | 10.88 | 0.23 | 0.29 | 0.23 | 0.27 | 0.32 | 0.26 | 0.33 | 0.27 | 2.04 | 2.06 | 1.90 | 2.07 |
19 | 12.54 | 10.48 | 8.05 | 11.06 | 0.23 | 0.30 | 0.23 | 0.27 | 0.33 | 0.26 | 0.32 | 0.27 | 1.99 | 2.07 | 1.89 | 2.07 |
20 | 13.06 | 10.33 | 8.89 | 11.75 | 0.22 | 0.31 | 0.23 | 0.28 | 0.33 | 0.26 | 0.32 | 0.27 | 1.98 | 2.02 | 1.90 | 2.07 |
21 | 13.59 | 10.64 | 8.84 | 12.38 | 0.23 | 0.30 | 0.23 | 0.29 | 0.33 | 0.28 | 0.33 | 0.28 | 2.04 | 2.23 | 1.90 | 2.08 |
Total Phenols (mg/kg) | α-Tocopherol (mg/kg) | Pheophytin a (mg/kg) | Pyropheophytin a (mg/kg) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Months of Storage | VOO1 | VOO2 | VOO3 | VOO4 | VOO1 | VOO2 | VOO3 | VOO4 | VOO1 | VOO2 | VOO3 | VOO4 | VOO1 | VOO2 | VOO3 | VOO4 |
0 | 246.71 | 338.90 | 564.82 | 451.25 | 212.62 | 272.28 | 256.91 | 192.94 | 7.06 | 3.02 | 23.43 | 4.61 | 0.03 | 0.04 | 0.07 | 0.11 |
1 | 239.51 | 337.08 | 558.45 | 422.98 | 190.47 | 260.76 | 210.03 | 157.49 | 7.68 | 3.00 | 22.98 | 4.60 | 0.14 | 0.04 | 0.39 | 0.26 |
2 | 238.82 | 338.66 | 547.93 | 399.56 | 160.05 | 220.01 | 134.21 | 125.84 | 5.17 | 1.30 | 22.59 | 0.53 | 0.33 | 0.05 | 0.63 | 0.12 |
3 | 231.70 | 333.44 | 521.74 | 381.09 | 147.63 | 194.34 | 134.78 | 122.78 | 2.60 | 0.43 | 21.32 | 0.33 | 0.37 | 0.05 | 0.95 | 0.16 |
4 | 218.11 | 325.57 | 499.02 | 373.03 | 140.11 | 187.77 | 140.81 | 120.65 | 0.49 | 0.12 | 16.73 | 0.20 | 0.22 | 0.04 | 1.18 | 0.09 |
5 | 209.46 | 316.30 | 486.27 | 360.98 | 136.22 | 178.83 | 138.86 | 115.21 | 0.47 | 0.11 | 16.83 | 0.19 | 0.20 | 0.04 | 2.74 | 0.07 |
6 | 204.68 | 308.34 | 474.05 | 348.81 | 133.77 | 162.18 | 131.86 | 115.52 | 0.18 | 0.10 | 17.17 | 0.12 | 0.08 | 0.03 | 2.13 | 0.06 |
7 | 198.97 | 298.84 | 459.09 | 340.11 | 130.48 | 154.93 | 137.04 | 110.22 | 0.03 | 0.03 | 5.36 | 0.03 | 0.03 | 0.02 | 1.23 | 0.02 |
8 | 190.74 | 292.30 | 441.80 | 324.71 | 131.55 | 147.99 | 129.99 | 92.26 | 0.03 | 0.05 | 2.22 | 0.03 | 0.05 | 0.02 | 1.22 | 0.02 |
9 | 183.06 | 280.30 | 417.35 | 315.62 | 129.12 | 136.40 | 129.09 | 85.48 | 0.02 | 0.04 | 2.39 | 0.05 | 0.03 | 0.02 | 1.72 | 0.02 |
10 | 168.05 | 271.11 | 405.58 | 312.19 | 125.98 | 123.43 | 124.91 | 81.60 | 0.03 | 0.02 | 0.44 | 0.03 | 0.02 | 0.02 | 1.58 | 0.01 |
11 | 155.06 | 261.88 | 392.51 | 287.31 | 122.78 | 113.15 | 116.48 | 79.05 | 0.02 | 0.04 | 0.62 | 0.02 | 0.04 | 0.02 | 1.51 | 0.02 |
12 | 149.66 | 253.01 | 366.32 | 273.11 | 122.30 | 112.77 | 111.11 | 75.12 | 0.02 | 0.03 | 0.27 | 0.02 | 0.02 | 0.02 | 0.54 | 0.02 |
13 | 144.38 | 247.86 | 351.22 | 260.54 | 121.81 | 109.56 | 93.18 | 73.43 | 0.02 | 0.04 | 0.13 | 0.02 | 0.02 | 0.01 | 0.32 | 0.02 |
14 | 138.29 | 240.03 | 339.06 | 253.55 | 122.06 | 107.97 | 92.08 | 70.76 | 0.01 | nd | 0.09 | nd | 0.02 | 0.02 | 0.22 | nd |
15 | 131.43 | 231.23 | 325.29 | 235.88 | 120.36 | 103.17 | 90.44 | 60.51 | nd | nd | nd | nd | nd | 0.03 | nd | nd |
16 | 128.41 | 222.52 | 326.64 | 225.60 | 119.64 | 99.73 | 92.84 | 54.64 | nd | nd | nd | nd | nd | 0.03 | nd | nd |
17 | 124.19 | 217.34 | 314.18 | 225.25 | 114.55 | 97.04 | 93.07 | 59.10 | nd | nd | nd | nd | nd | 0.03 | nd | nd |
18 | 118.84 | 209.22 | 290.96 | 223.78 | 105.07 | 96.47 | 91.47 | 53.67 | nd | nd | nd | nd | nd | 0.03 | nd | nd |
19 | 112.45 | 203.57 | 277.17 | 205.86 | 106.30 | 96.94 | 84.28 | 50.20 | nd | nd | nd | nd | nd | 0.03 | nd | nd |
20 | 108.06 | 199.34 | 265.78 | 205.83 | 102.30 | 91.28 | 84.92 | 22.42 | nd | nd | nd | nd | nd | 0.03 | nd | nd |
21 | 106.87 | 193.95 | 252.69 | 205.76 | 102.39 | 87.47 | 85.69 | 20.38 | nd | nd | nd | nd | nd | 0.03 | nd | nd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lobo-Prieto, A.; Tena, N.; Aparicio-Ruiz, R.; García-González, D.L.; Sikorska, E. Monitoring Virgin Olive Oil Shelf-Life by Fluorescence Spectroscopy and Sensory Characteristics: A Multidimensional Study Carried Out under Simulated Market Conditions. Foods 2020, 9, 1846. https://doi.org/10.3390/foods9121846
Lobo-Prieto A, Tena N, Aparicio-Ruiz R, García-González DL, Sikorska E. Monitoring Virgin Olive Oil Shelf-Life by Fluorescence Spectroscopy and Sensory Characteristics: A Multidimensional Study Carried Out under Simulated Market Conditions. Foods. 2020; 9(12):1846. https://doi.org/10.3390/foods9121846
Chicago/Turabian StyleLobo-Prieto, Ana, Noelia Tena, Ramón Aparicio-Ruiz, Diego L. García-González, and Ewa Sikorska. 2020. "Monitoring Virgin Olive Oil Shelf-Life by Fluorescence Spectroscopy and Sensory Characteristics: A Multidimensional Study Carried Out under Simulated Market Conditions" Foods 9, no. 12: 1846. https://doi.org/10.3390/foods9121846
APA StyleLobo-Prieto, A., Tena, N., Aparicio-Ruiz, R., García-González, D. L., & Sikorska, E. (2020). Monitoring Virgin Olive Oil Shelf-Life by Fluorescence Spectroscopy and Sensory Characteristics: A Multidimensional Study Carried Out under Simulated Market Conditions. Foods, 9(12), 1846. https://doi.org/10.3390/foods9121846