Relationship of Compositional, Mechanical, and Textural Properties of Gluten-Free Pasta Using Different Quinoa (Chenopodium quinoa) Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Flour Preparation and Characterization
2.3. Saponin Analysis
2.4. Pasta Extrusion
2.5. Determination of Physicochemical and Mechanical Properties
2.6. Stereomicroscopy Imaging
2.7. Sensory Evaluation
2.7.1. Assessors
2.7.2. Sensory Profiling
2.8. Statistical Analysis
3. Results and Discussions
3.1. Characterization of Flours
3.2. Properties of Extruded Pasta
3.2.1. Large-Scale Structures
3.2.2. Mechanical and Physicochemical Properties
3.3. Sensory Evaluation
3.4. Principal Component Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Peregrin, T. Understanding Millennial Grocery Shoppers’ Behavior and the Role of the Registered Dietitian Nutritionist. J. Acad. Nutr. Diet. 2015, 115, 1380–1383. [Google Scholar] [CrossRef] [PubMed]
- FAOSAT Statistical Database—Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/faostat/en/#data (accessed on 20 December 2019).
- Tang, Y.; Li, X.; Zhang, B.; Chen, P.; Liu, R.; Tsao, R. Charaterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chem. 2015, 166, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Seol, H.; Sim, H.K. Quality characteristics of noodles with added germinated black quinoa powder. Korean J. Food Nutr. 2017, 30, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Schoenlechner, R.; Jurackova, K.; Berghofer, E. Pasta production from the pseudocereals amaranth, quinoa and buckwheat. In Using Cereal Science and Technology for the Benefit of Consumers. In Proceedings of the 12th International ICC Cereal and Bread Congress, Harrogate, UK, 23–26 May 2004; Cauvain, S.P., Salmon, S.S., Young, L.S., Eds.; Available online: https://app.knovel.com/hotlink/toc/id:kpUCSTBCP4/using-cereal-science/using-cereal-science (accessed on 2 December 2020).
- Schoenlechner, R.; Drausinger, J.; Ottencshlaeger, V.; Jurackova, K.; Berghofer, E. Functional Properties of Gluten-Free Pasta Produced from Amaranth, Quinoa and Buckwheat. Plant Foods Hum. Nutr. 2010, 65, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Elgeti, D.; Nordlohne, S.D.; Föste, M.; Besl, M.; Linden, M.H.; Volker, H.; Jekle, M.; Becker, T. Volume and texture improvement of gluten-free bread using quinoa white flour. J. Cereal Sci. 2014, 59, 41–47. [Google Scholar] [CrossRef]
- Suarez-Estrella, D.; Cardon, G.; Buratti, S.; Pagani, M.A.; Marti, A. Sprouting as a pre-processing for producing quinoa-enriched bread. J. Cereal Sci. 2020, 96, 103–111. [Google Scholar] [CrossRef]
- Xu, X.; Luo, Z.; Yang, Q.; Xiao, Z.; Lu, X. Effect of quinoa flour on baking performance, antioxidant properties and digestibility of wheat bread. Food Chem. 2019, 294, 87–95. [Google Scholar] [CrossRef]
- Suarez-Estrella, D.; Torri, L.; Pagani, M.A.; Marti, A. Quinoa bitterness: Causes and solutions for improving product acceptability. J. Sci. Food Agric. 2018, 98, 4033–4041. [Google Scholar] [CrossRef]
- Kahlon, T.S.; Chiu, M.-C. Teff, buckwheat, quinoa and amaranth: Ancient whole grain gluten-free egg-free pasta. Food Sci. Nutr. 2015, 6, 1460–1467. [Google Scholar] [CrossRef] [Green Version]
- Makdoud, S.; Rosentrater, K.A. Development and Testing of Gluten-Free Pasta Based on Rice, Quinoa and Amaranth Flours. J. Food Res. 2017, 6, 91–110. [Google Scholar] [CrossRef] [Green Version]
- American Association of Cereal Chemists. AACC International Approved Methods of Analysis, 11th ed.; AACC International: St. Paul, MN, USA, 2010. [Google Scholar]
- Burnouf-Radosevich, M.; Delfel, N.E.; England, R. Gas chromatography-mass spectrometry of oleanane- and ursane-type triterpenes—Application to Chenopodium quinoa triterpenes. Phytochemistry 1985, 24, 2063–2066. [Google Scholar] [CrossRef]
- Güçlü-Üstündağ, Ö.; Balsevich, J.; Mazza, G. Pressurized low polarity water extraction of saponins from cow cockle seed. J. Food Eng. 2007, 80, 619–630. [Google Scholar] [CrossRef]
- Medina-Meza, I.G.; Aluwi, N.A.; Saunders, S.R.; Ganjyal, G.M. GC–MS Profiling of Triterpenoid Saponins from 28 Quinoa Varieties (Chenopodium quinoa Willd.) Grown in Washington State. J. Agric. Food Chem. 2016, 64, 8583–8591. [Google Scholar] [CrossRef] [PubMed]
- ISO. Sensory Analysis-General Guidance for the Selection, Training and Monitoring of Assessors-Part 1: Selected Assessors; International Organization for Standardization: Geneva, Switzerland, 1993; Volume ISO 8586-1. [Google Scholar]
- Quinto, D.A.; Huaman-Condor, K.; Quispe-Solano, M.; Espinoza-Silva, C. Extracción y caracterización del almidón de tres variedades de quinua (Chenopodium quinoa Willd) negra collana, pasankalla roja y blanca junín. Rev. Soc. Quím. Perú 2015, 81, 44–54. [Google Scholar] [CrossRef]
- Nowak, V.; Du, J.; Charrondiere, R. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chem 2016, 193, 47–54. [Google Scholar] [CrossRef]
- Reguera, M.; Conesa, C.M.; Gil-Gomez, A.; Haros, C.M.; Perez-Casas, M.A.; Briones-Labarca, V.; Bolaños, L.; Bonilla, I.; Alvarez, R.; Pinto, K.; et al. The impact of different agroecological conditions on the nutritional composition of quinoa seeds. PeerJ 2018, 6, e4442. [Google Scholar] [CrossRef]
- Pulvento, C.; Riccardi, M.; Lavini, A.; Iafelice, G.; Marconi, E.; d’Andria, R. Yield and Quality Characteristics of Quinoa Grown in Open Field Under Different Saline and Non-Saline Irrigation Regimes. J. Agron. Crop. Sci. 2012, 198, 254–263. [Google Scholar] [CrossRef]
- Escribano, J.; Cabanes, J.; Jimenez-Atienzar, M.; Ibañez-Tremolada, M.; Gomez-Pando, L.R.; Garcia-Carmona, F.; Gandia-Herrero, F. Characterization of betalains, saponins and antioxidant power in differently colored quinoa (Chenopodium quinoa) varieties. Food Chem. 2017, 234, 286–294. [Google Scholar] [CrossRef]
- Caperuto, L.C.; Amaya-Farfan, J.; Camargo, C.R.O. Performance of quinoa (Chenopodium quinoa Willd) flour in the manufacture of gluten-free spaghetti. J. Sci. Food Agric. 2000, 81, 95–101. [Google Scholar] [CrossRef]
- Bouasla, A.; Wojtowicz, A.; Zidoune, M.N. Gluten-free precooked rice pasta enriched with legumes flours: Physical properties, texture, sensory attributes and microstructure. LWT Food Sci. Technol. 2017, 75, 569–577. [Google Scholar] [CrossRef]
- Larusso, A.; Verni, M.; Montemurro, M.; Cosa, R.; Gobbetti, M.; Rizzello, G.C. Use of fermented quinoa flour for pasta making and evaluation of the technological and nutritional features. LWT Food Sci. Technol. 2017, 78, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Petitot, M.; Boyer, L.; Minier, C.; Micard, V. Fortification of pasta with split pea and faba bean flours: Pasta processing. Food Res. Int. 2010, 43, 634–641. [Google Scholar] [CrossRef]
- Mastromatteo, M.; Chillo, S.; Iannetti, M.; Civica, V.; Del Nobile, M.A. Formulation optimisation of gluten-free functional spaghetti based on quinoa, maize and soy flours. Int. J. Food Sci. Technol. 2011, 46, 1201–1208. [Google Scholar] [CrossRef]
- Chillo, S.; Civica, V.; Iannetti, M.; Suriano, N.; Mastromatteo, M.; Del Nobile, M.A. Properties of quinoa and oat spaghetti loaded with carboxymethylcellulose sodium salt and pregelatinized starch as structuring agents. Carbohydr. Polym. 2009, 78, 932–937. [Google Scholar] [CrossRef]
- Sosa, M.; Califano, A.; Lorenzo, G. Influence of quinoa and zein content on the structural, rheological, and textural properties of gluten-free pasta. Eur. Food Res. Technol. 2019, 245, 343–353. [Google Scholar] [CrossRef]
- Böttcher, S.; Drusch, S. Saponins—Self-assembly and behavior at aqueous interfaces. Adv. Colloid Interface Sci. 2017, 243, 105–113. [Google Scholar] [CrossRef]
- Wu, G.; Morris, C.; Murphy, K. Evaluation of Texture Differences among varieties of Cooked Quinoa. J. Food Sci. 2014, 79, S2337–S2345. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, F. Formulation and quality attributes of quinoa food products. Food Bioproc. Tech. 2016, 9, 49–68. [Google Scholar] [CrossRef]
- Dinehart, M.E.; Hayes, J.E.; Bartoshuk, L.M.; Lanier, S.L.; Duffy, V.B. Bitter taste markers explain variability in vegetable sweetness, bitterness, and intake. Physiol. Behav. 2006, 87, 304–313. [Google Scholar] [CrossRef]
- Demir, B.; Nermin, B. Utilization of Quinoa Flour (Chenopodium Quinoa Willd.) in Gluten-Free Pasta Formulation: Effects on Nutritional and Sensory Properties. Food Sci. Technol. Int. 2020. [Google Scholar] [CrossRef]
Content (g/100 g d.m.) | ||||||||
---|---|---|---|---|---|---|---|---|
Variety | Moisture, % | Protein, % | Fiber, % | Fat *, % | Ash, % | Total Saponin Content, mg/g d.m. | D[3,2], μm | D[4,3], μm |
Kuchivila (K) | 12.3 b ± 0.7 | 13.9 b ± 0.1 | 18.8 b ± 1.5 | 7.0 | 3.9 ab ± 0.2 | 1.9 c ± 0.1 | 27.9 d ± 0.8 | 180 b ± 8.5 |
5 K | 11.0 | 3.4 | 3.5 | 1.6 | 0.10 | 81.5 | 219.6 | |
20 K | 11.4 | 5.8 | 4.1 | 1.4 | 0.38 | 73.0 | 213.4 | |
Mistura (M) | 11.2 c ± 0.6 | 12.7 c ± 0.1 | 12.5 c ± 0.9 | 6.6 | 3.6 bc ± 0.1 | 3.4 a ± 0.1 | 35.4 b ± 0.4 | 218 a ± 7.0 |
5 M | 10.9 | 3.1 | 3.5 | 1.5 | 0.17 | 81.9 | 221.5 | |
20 M | 11.2 | 4.5 | 4.0 | 1.4 | 0.68 | 74.5 | 221.0 | |
Negra collana (NC) | 10.8 c±0.6 | 15.6 a ± 0.1 | 20 a ± 1.3 | 6.7 | 3.1 d ± 0.1 | 0.34 d ± 0.02 | 20.3 e ± 0.2 | 112 d ± 4.3 |
5 NC | 11.1 | 3.4 | 3.5 | 1.5 | 0.02 | 81.1 | 216.2 | |
20 NC | 11.8 | 6.0 | 4.0 | 1.4 | 0.07 | 71.5 | 199.8 | |
Rosada taraco (RT) | 9.6 d ± 0.5 | 11.4 d ± 0.05 | 11 d ± 0.4 | 6.4 | 3.2 cd ± 0.3 | 3.4 a ± 0.2 | 29.6 d ± 0.4 | 166 c ± 4.1 |
5 RT | 10.9 | 3.0 | 3.5 | 1.5 | 0.17 | 81.6 | 218.9 | |
20 RT | 10.9 | 4.3 | 3.9 | 1.4 | 0.68 | 73.4 | 210.6 | |
Titicaca (T) | 14.9 a ± 0.3 | 15.9 a ± 0.2 | 9.5 e ± 0.4 | 7.3 | 4 a ± 0.1 | 2.7 b ± 0.2 | 31.4 c ± 0.5 | 185 b ± 7 |
5 T | 11.1 | 2.9 | 3.5 | 1.6 | 0.14 | 81.7 | 219.9 | |
20 T | 11.8 | 4.0 | 4.1 | 1.4 | 0.54 | 73.7 | 214.4 | |
Buckwheat (control) | 8.5 e ± 0.2 | 10.8e ± 0.5 | 2.6 f ± 0.3 | 3.3 | 1.4 e ± 0.4 | n.d. ** | 84.3 a ± 2.8 | 221.7 a ± 0.6 |
Variety | M-Firmness, N.mm | M-Hardness, N | M-Stickiness, N.mm | L* | a* | b* | ΔE |
---|---|---|---|---|---|---|---|
Kuchivila (K) | |||||||
5K | 7.2 b ± 1.4 | 2.9 bc ± 0.6 | 0.7 b ± 0.1 | 65.6 c ± 1.3 | 3 cd ± 1.4 | 16.1 abc ± 1.8 | 3 de ± 1.6 |
20K | 4.7 de ± 1.1 | 1.8 d ± 0.5 | 0.1 e ± 0.03 | 59.3 g ± 1 | 2.7 de ± 0.1 | 16.8 ab ± 0.7 | 7.9 a ± 1.7 |
Mistura (M) | |||||||
5 M | 3.8 e ± 0.5 | 1.5 d ± 0.2 | 0.1 e ± 0.05 | 63.4 e ± 0.9 | 3.8 b c ± 1.1 | 16.8 ab ± 2.4 | 4.3 cd ± 1.1 |
20 M | 5.3 d ± 1.4 | 1.9 d ± 0.6 | 0.3 cd ± 0.1 | 68.7 a ± 0.8 | 3.3 c d ± 2 | 17.2 a ± 1.8 | 3.6 cde ± 1.3 |
Negra collana (NC) | |||||||
5 NC | 7.1 bc ± 1.6 | 2.9 bc ± 0.8 | 0.3 cd ± 0.1 | 64.5 d ± 0.6 | 2.4 e ± 0.8 | 15.8 bc ± 0.7 | 3.6 de ± 1.9 |
20 NC | 5.7cd ± 0.9 | 2.2 cd ± 0.3 | 0.2 de ± 0.1 | 62 f ± 0.7 | 4.8 ab ± 0.8 | 12 d ± 1.4 | 6.1 b ± 1.6 |
Rosada taraco (RT) | |||||||
5RT | 7 bc ± 2.1 | 3.1 b ± 1.2 | 0.4 c ± 0.2 | 67.5 b ± 1.1 | 5 a ± 1.4 | 15.1 c ± 1.4 | 2.5 e ± 1.1 |
20RT | 9.3 a ± 1.7 | 4.2 a ± 1 | 0.9 a ± 0.3 | 68.7 a ± 1.5 | 2.7 e ± 1.2 | 16.2 abc ± 1.7 | 4.1 cd ± 1.6 |
Titicaca (T) | |||||||
5T | 10.4 a ± 2.5 | 4.9 a ± 1.6 | 0.6 b ± 0.3 | 62.3 f ± 1.1 | 3.1 cd ± 1.2 | 15.6 bc ± 1 | 5.2 bc ± 1.7 |
20T | 7.3 b ± 2.2 | 3.2 b ± 0.9 | 0.4 c ± 0.2 | 59.3 g ± 0.6 | 1.9 e ± 0.5 | 16.7 ab ± 0.6 | 8.1 a ± 2.1 |
Buckwheat (control) | 4.8 de ± 0.9 | 1.9 d ± 0.5 | 0.6 b ± 0.1 | 66.8 b ± 1.5 | 3.8 bc ± 0.8 | 15.1 c ± 1.6 |
Attribute | Evaluation Techniques | Reference | |||
---|---|---|---|---|---|
Not at All | Very | ||||
Cohesiveness | Place a strand of pasta in your mouth. Evaluate the time it takes to bite it through | Pasta S3 ** | Pasta Mega di cato® | ||
OCT: 7 min RIT: 2 min RRT: 5 min | OCT: 4 min RIT: 0 min RRT: 5 min | ||||
Firmness | Place a strand of pasta between your front teeth. Evaluate the force needed to break it | Pasta S3 ** | Pasta Mega di cato® | ||
OCT: 7 min RIT: 2 min RRT: 5 min | OCT: 4 min RIT: 0 min RRT: 5 min | ||||
Grainy | Place a strand of pasta in your mouth. Evaluate the coarseness by rubbing it between your tongue and palate | Pasta Mega di cato® | Pasta S1 * | ||
OCT: 4 min RIT: 0 min RRT: 15 min | OCT: 8 min RIT: 15 min RRT: 0 min | ||||
Smooth | Evaluate the surface smoothness by looking at a pasta strand | Pasta S1 * | Pasta Integrale Barilla® | ||
OCT: 8 min RIT: 15 min RRT: 0 min | OCT: 8 min RIT: 0 min RRT: 30 min | ||||
Stickiness | Press a strand of pasta between your index finger and thumb. Evaluate how strong it sticks to your fingers | Pasta S8 *** | Pasta Integrale Barilla® | ||
OCT: 7 min RIT: 0 min RRT: 0 min | OCT: 8 min RIT: 0 min RRT: 30 min | ||||
Overall taste | Place a strand of pasta in your mouth and evaluate the overall taste intensity during mastication | Pasta Mega di cato® | Pasta S8 *** | ||
OCT: 4 min RIT: 0 min RRT: 15 min | OCT: 7 min RIT: 0 min RRT: 0 min | ||||
Bitterness | Place a strand of pasta in your mouth and evaluate bitterness perception during mastication | Pasta Mega di cato® | Pasta S3 ** | ||
OCT: 4 min RIT: 0 min RRT: 15 min | OCT: 7 min RIT: 2 min RRT: 5 min |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos-Diaz, J.M.; Kince, T.; Sabovics, M.; Gürbüz, G.; Rauma, A.; Lampi, A.-M.; Piironen, V.; Straumite, E.; Klava, D.; Jouppila, K. Relationship of Compositional, Mechanical, and Textural Properties of Gluten-Free Pasta Using Different Quinoa (Chenopodium quinoa) Varieties. Foods 2020, 9, 1849. https://doi.org/10.3390/foods9121849
Ramos-Diaz JM, Kince T, Sabovics M, Gürbüz G, Rauma A, Lampi A-M, Piironen V, Straumite E, Klava D, Jouppila K. Relationship of Compositional, Mechanical, and Textural Properties of Gluten-Free Pasta Using Different Quinoa (Chenopodium quinoa) Varieties. Foods. 2020; 9(12):1849. https://doi.org/10.3390/foods9121849
Chicago/Turabian StyleRamos-Diaz, Jose Martin, Tatjana Kince, Martins Sabovics, Göker Gürbüz, Asta Rauma, Anna-Maija Lampi, Vieno Piironen, Evita Straumite, Dace Klava, and Kirsi Jouppila. 2020. "Relationship of Compositional, Mechanical, and Textural Properties of Gluten-Free Pasta Using Different Quinoa (Chenopodium quinoa) Varieties" Foods 9, no. 12: 1849. https://doi.org/10.3390/foods9121849
APA StyleRamos-Diaz, J. M., Kince, T., Sabovics, M., Gürbüz, G., Rauma, A., Lampi, A. -M., Piironen, V., Straumite, E., Klava, D., & Jouppila, K. (2020). Relationship of Compositional, Mechanical, and Textural Properties of Gluten-Free Pasta Using Different Quinoa (Chenopodium quinoa) Varieties. Foods, 9(12), 1849. https://doi.org/10.3390/foods9121849