Effects of Chickpea Protein on Carbohydrate Reactivity in Acrylamide Formation in Low Humidity Model Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Making Chickpea Protein Preparation
2.3. Preparation of the Model Systems
2.4. Analyses of Model Systems
2.4.1. Amino Acid Content
2.4.2. Carbohydrate Content by HPLC
2.4.3. Acrylamide Content Determination by Gas Chromatography-Mass Spectrometry with Derivatization
2.4.4. Thermal Analysis of Reducing Sugars and Sucrose by Differential Scanning Calorimetry (DSC)
2.5. Statistical Analysis
3. Results and Discussion
3.1. Effects of Baking Conditions and Chickpea Protein Preparation on Asparagine and Carbohydrate Content in Low Humidity Model systems
3.2. Effects of Reducing Sugar Type and Chickpea Protein Preparation on Acrylamide Content in Low Humidity Model Systems
3.3. Effects of Chickpea Protein Preparation on the Thermal Stability of Reducing Sugars
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Miśniakiewicz, M. Czynniki warunkujące jakość i bezpieczeństwo zdrowotne pieczywa. Zesz. Nauk. 2011, 851, 35–52. [Google Scholar]
- Jaworska, D.; Hoffman, M. Czynniki warunkujące jakość sensoryczną produktów kruchych, na przykładzie chipsów ziemniaczanych. Postępy Tech. Przetwórstwa Spożywczego 2005, 15, 21–27. [Google Scholar]
- Miśkiewicz, K.; Nebesny, E.; Oracz, J. Formation of acrylamide during baking of shortcrust cookies derived from various flours. Czech J. Food Sci. 2012, 30, 53–66. [Google Scholar] [CrossRef] [Green Version]
- Friedman, M. Chemistry, Biochemistry, and Safety of Acrylamide. A Review. J. Agric. Food Chem. 2003, 51, 4504–4526. [Google Scholar] [CrossRef]
- Friedman, M.; Levin, C.E. Review of methods for the reduction of dietary content and toxicity of acrylamide. J. Agric. Food Chem. 2008, 56, 6113–6140. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, Y.; Zhang, Y. New Research Developments on Acrylamide: Analytical Chemistry, Formation Mechanism, and Mitigation Recipes. Chem. Rev. 2009, 109, 4375–4397. [Google Scholar] [CrossRef]
- Vattem, D.A.; Shetty, K. Acrylamide in food: A model for mechanism of formation and its reduction. Innov. Food Sci. Emerg. Technol. 2003, 4, 331–338. [Google Scholar] [CrossRef]
- Weisshaar, R.; Gutsche, B. Formation of acrylamide in heated potato productssmodel experiments pointing to asparagine as precursor. Dtsch. Lebensm. Rundsch. 2002, 98, 397–400. [Google Scholar]
- Stadler, R.H.; Blank, I.; Varga, N.; Robert, F.; Hau, J.; Guy, P.A.; Robert, M.C.; Riediker, S. Food chemistry: Acrylamide from Maillard reaction products. Nature 2002, 419, 449–450. [Google Scholar] [CrossRef]
- Cesarova, Z.; Kiss, E.; Kolek, E. Study of Factors Affecting Acrylamide Levels in Model Systems. Czech J. Food Sci. 2006, 24, 133–137. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xu, L. Influence Factors on the Formation of Acrylamide in the Amino Acid/Sugar Chemical Model System. J. Food Nutr. Res. 2014, 2, 344–348. [Google Scholar] [CrossRef]
- European Commission. Commission Directive 98/64/EC of 3 September 1998 Establishing Comminity methods of analysis for determination of amino acids, crude oils and fats, and olaquindox in feedingstuffs and amending Directive 71/393/EEC. Off. J. Eur. Communities 1998, 257, 14–28. [Google Scholar]
- Shodex. Shodex NH2P-50 Series Columns. Analysis of Saccharides in Food Industry; Technical Notebook 2. Shodex Showa Denko Europe GmbH. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwiP_tCtjr_nAhXQwqYKHefsDC4QFjAAegQIAxAB&url=https%3A%2F%2Fh24 files.s3.amazonaws.com%2F132232%2F828979-0BJxl.pdf&usg=AOvVaw2ParSY5MQ7V5j4vk3tXHR8 (accessed on 10 January 2020).
- Alves, R.C.; Soares, C.; Casel, S.; Fernandes, J.O.; Beatriz, M.; Oliveira, P.P. Acrylamide in espresso coffee: Influence of species, roast degree and brew length. Food Chem. 2010, 119, 929–934. [Google Scholar] [CrossRef]
- Mojska, H.T. Study on the acrylamide content in processed cereal products. Food Sci. Technol. Qual. 2008, 4, 168–172. [Google Scholar]
- Soares, M.C.; Fernandes, J.O. MSPD method to determine acrylamide in food. Food Anal. Methods 2009, 2, 197–203. [Google Scholar] [CrossRef]
- Robert, F.; Vuataz, G.; Pollien, P.; Saucy, F.; Alonso, M.L.; Bauwens, I.; Blank, I. Acrylamide formation from asparagines under low-moisture Maillard reaction conditions. 1. Physicial and chemicial aspect in crystalline model systems. J. Agric. Food Chem. 2004, 52, 6837–6842. [Google Scholar] [CrossRef]
- Hurtta, M.; Pitkänen, I.; Knuutinen, J. Melting behavior of D-sucrose, D-glucose and D-fructose. Carbohydr. Res. 2004, 339, 2267–2273. [Google Scholar] [CrossRef]
- Keramat, J.; LeBail, A.; Prost, C.; Jafari, M. Acrylamide in baking products. A review article. Food Bioprocess Technol. 2011, 4, 530–543. [Google Scholar] [CrossRef]
- Yuan, Y.A.; Shu, C.; Zhou, B.; Qi, L.X.; Xiang, J.G. Impact of selected additives on acrylamide formation in asparagines/sugar Maillard model systems. Food Res. Int. 2011, 44, 449–455. [Google Scholar] [CrossRef]
- Gökmen, V.; Şenyuva, H.Z.A. Simplified approach for the kinetic characterization of acrylamide formation in fructose asparagine model system. Food Addit. Contam. 2006, 23, 348–354. [Google Scholar] [CrossRef]
- Curtis, T.Y.; Powers, S.J.; Balagiannis, D.; Elmore, J.S.; Mottram, D.S.; Parry, M.A.J. Free amino acids and sugars in rye grain: Implications of acrylamide formation. J. Agric. Food Chem. 2010, 58, 1959–1969. [Google Scholar] [CrossRef] [PubMed]
- Miśkiewicz, K.; Rosicka-Kaczmarek, J.; Nebesny, E.; Żyżelewicz, D.; Budryn, G. The effects of baking conditions on acrylamide content in shortcrust cookies with added freeze-dried aqueous rosemary extract. J. Food Sci. Technol. 2018, 55, 4184–4196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Component | Fructose: Asparagine | Glucose: Asparagine | Sucrose: Asparagine | |||
---|---|---|---|---|---|---|
Without Chickpea Protein | With 1% Chickpea Protein | Without Chickpea Protein | With 1% Chickpea Protein | Without Chickpea Protein | With 1% Chickpea Protein | |
[g 100 g−1 of the Product] | ||||||
Fructose | 0.039 | 0.039 | nd | nd | nd | nd |
Glucose | nd | nd | 0.085 | 0.085 | nd | nd |
Sucrose | nd | nd | nd | nd | 25.20 | 25.20 |
Asparagine | 0.0022 | 0.0022 | 0.0022 | 0.0022 | 0.0022 | 0.0022 |
Chickpea protein preparation | nd | 0.37 | nd | 0.37 | nd | 0.37 |
Silicon dioxide | 99.96 | 99.59 | 99.91 | 99.54 | 74.80 | 74.43 |
Water added to the system | 9.99 | 9.96 | 9.99 | 9.95 | 7.48 | 7.44 |
Glucose-Asparagine | Fructose-Asparagine | Sucrose-Asparagine | ||||
---|---|---|---|---|---|---|
Without Chickpea Protein | With 1% Chickpea Protein | Without Chickpea Protein | With 1% Chickpea Protein | Without Chickpea Protein | With 1% Chickpea Protein | |
Fructose | nd | nd | 97.4% reduction | 46.0% reduction | 0.24-fold increase | 0.73-fold increase |
Glucose | 80.0% reduction | 67.0% reduction | nd | nd | 3.18-fold increase | 25.29-fold increase |
Sucrose | nd | nd | nd | nd | 53.8% reduction | 59.9% reduction |
Asparagine | 84.9% reduction | 78.2% reduction | 89.0% reduction | 87.5 reduction | 86.3% reduction | 70.2% reduction |
Fructose | Glucose | Sucrose | ||||
---|---|---|---|---|---|---|
Without Chickpea Protein | With 1% Chickpea Protein | Without Chickpea Protein | With 1% Chickpea Protein | Without Chickpea Protein | With 1% Chickpea Protein | |
Tonset [°C] | 112.02 ± 0.95 | 116.46 ± 1.01 | 150.83 ± 0.76 | 152.95 ± 0.83 | 183.99 ± 0.97 | 186.44 ± 0.66 |
Toffset [°C] | 136.07 ± 0.35 | 135.04 ± 0.47 | 163.69 ± 0.55 | 163.82 ± 0.32 | 195.89 ± 0.67 | 196.92 ± 0.34 |
ΔH [J g−1] | 219.36 ± 0.95 | 143.92 ± 1.02 | 136.66 ± 1.11 | 37.76 ± 1.21 | 122.02 ± 1.02 | 44.22 ± 1.32 |
Toffset–Tonset [°C] | 24.05 ± 0.88 | 18.58 ± 1.21 | 12.86 ± 0.98 | 10.87 ± 0.75 | 11.90 ± 0.81 | 10.48 ± 0.43 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miśkiewicz, K.; Rosicka-Kaczmarek, J.; Nebesny, E. Effects of Chickpea Protein on Carbohydrate Reactivity in Acrylamide Formation in Low Humidity Model Systems. Foods 2020, 9, 167. https://doi.org/10.3390/foods9020167
Miśkiewicz K, Rosicka-Kaczmarek J, Nebesny E. Effects of Chickpea Protein on Carbohydrate Reactivity in Acrylamide Formation in Low Humidity Model Systems. Foods. 2020; 9(2):167. https://doi.org/10.3390/foods9020167
Chicago/Turabian StyleMiśkiewicz, Karolina, Justyna Rosicka-Kaczmarek, and Ewa Nebesny. 2020. "Effects of Chickpea Protein on Carbohydrate Reactivity in Acrylamide Formation in Low Humidity Model Systems" Foods 9, no. 2: 167. https://doi.org/10.3390/foods9020167
APA StyleMiśkiewicz, K., Rosicka-Kaczmarek, J., & Nebesny, E. (2020). Effects of Chickpea Protein on Carbohydrate Reactivity in Acrylamide Formation in Low Humidity Model Systems. Foods, 9(2), 167. https://doi.org/10.3390/foods9020167