Nutrient Composition and Fatty Acid and Protein Profiles of Selected Fish By-Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Fish Sample Collection and Preparation
2.3. Proximate Composition
2.4. Mineral Analysis
2.5. Preparation of Samples for Fatty Acid and Protein Profile Analyses
2.6. Fatty Acid Profile
2.7. Protein Profile
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Olsen, R.L.; Toppe, J.; Karunasagar, I. Challenges and realistic opportunities in the use of by-products from processing of fish and shellfish. Trends Food Sci. Technol. 2014, 36, 144–151. [Google Scholar] [CrossRef]
- FAO. A Third Assessment of Global Marine Fisheries Discards; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019; p. 78. [Google Scholar]
- Arvanitoyannis, I.S.; Kassaveti, A. Fish industry waste: Treatments, environmental impacts, current and potential uses. Int. J. Food Sci. Technol. 2008, 43, 726–745. [Google Scholar] [CrossRef]
- Sloan, E.A. Top 10 Food Trends; IFT’s Food Technology: Chicago, IL, USA, 2019. [Google Scholar]
- Esteban, M.B.; García, A.J.; Ramos, P.; Márquez, M.C. Evaluation of fruit–vegetable and fish wastes as alternative feedstuffs in pig diets. Waste Manag. 2007, 27, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Mangano, V.; Gervasi, T.; Rotondo, A.; De Pasquale, P.; Dugo, G.; Macri, F.; Salvo, A. Protein hydrolysates from anchovy waste: Purification and chemical characterization. Nat. Prod. Res. 2019. [Google Scholar] [CrossRef]
- Saisavoey, T.; Sangtanoo, P.; Reamtong, O.; Karnchanatat, A. Free radical scavenging and anti-inflammatory potential of a protein hydrolysate derived from salmon bones on RAW 264.7 macrophage cells. J. Sci. Food Agric. 2019, 99, 5112–5121. [Google Scholar] [CrossRef]
- Saliu, F.; Magoni, C.; Lasagni, M.; Della Pergola, R.; Labra, M. Multi-analytical characterization of perigonadal fat in bluefin tuna: From waste to marine lipid source. J. Sci. Food Agric. 2019, 99, 4571–4579. [Google Scholar] [CrossRef]
- Ahmad, T.B.; Rudd, D.; Kotiw, M.; Liu, L.A.-O.; Benkendorff, K. Correlation between Fatty Acid Profile and Anti-Inflammatory Activity in Common Australian Seafood by-Products. Mar. Drugs 2019, 17, 155. [Google Scholar] [CrossRef] [Green Version]
- Roslan, J.; Yunos, K.F.M.; Abdullah, N.; Kamal, S.M.M. Characterization of Fish Protein Hydrolysate from Tilapia (Oreochromis Niloticus) by-Product. Agric. Agric. Sci. Procedia 2014, 2, 312–319. [Google Scholar] [CrossRef] [Green Version]
- Khoddami, A.; Ariffin, A.A.; Bakar, J.; Ghazali, H.M. Fatty Acid Profile of the Oil Extracted from Fish Waste (Head, Intestine and Liver) (Sardinella lemuru). World Appl. Sci. J. 2009, 7, 127–131. [Google Scholar]
- Ngo, D.H.; Wijesekara, I.; Vo, T.S.; Van Ta, Q.; Kim, S.K. Marine food-derived functional ingredients as potential antioxidants in the food industry: An overview. Food Res. Int. 2011, 44, 523–529. [Google Scholar] [CrossRef]
- Gildberg, A. Enzymes and Bioactive Peptides from Fish Waste Related to Fish Silage, Fish Feed and Fish Sauce Production. J. Aquat. Food Prodcut Technol. 2004, 8850, 37–41. [Google Scholar] [CrossRef]
- Kim, S.K.; Wijesekara, I. Development and biological activities of marine-derived bioactive peptides: A review. J. Funct. Foods 2010, 2, 1–9. [Google Scholar] [CrossRef]
- Kim, S.K.; Mendis, E. Bioactive compounds from marine processing byproducts—A review. Food Res. Int. 2006, 39, 383–393. [Google Scholar] [CrossRef]
- Silva, A. Morphometric variation among sardine (Sardina pilchardus) populations from the northeastern Atlantic and the western Mediterranean. ICES J. Mar. Sci. 2003, 60, 1352–1360. [Google Scholar] [CrossRef]
- Caponio, F.; Lestingi, A.; Summo, C.; Bilancia, M.T.; Laudadio, V. Chemical characteristics and lipid fraction quality of sardines (Sardina pilchardus W.): Influence of sex and length. J. Appl. Ichthyol. 2004, 20, 530–535. [Google Scholar] [CrossRef]
- Federation of Greek Mariculture. Annual Report Aquaculture in Greece 2017; Federation of Greek Mariculture: Athens, Greece, 2017. [Google Scholar]
- FGM. Aquaculture in Greece; Federation of Greek Mariculture: Athens, Greece, 2016; p. 8. [Google Scholar]
- Sinanoglou, V.J.; Proestos, C.; Lantzouraki, D.Z.; Calokerinos, A.C.; Miniadis-Meimaroglou, S. Lipid evaluation of farmed and wild meagre (Argyrosomus regius). Eur. J. Lipid Sci. Technol. 2014, 116, 134–143. [Google Scholar] [CrossRef]
- Yiannopoulos, S.; Christodoulidou, M.; Kontoghiorghe, K.; Ioannou, E.; Nicolaidou, P. Cyprus Food Composition Tables. Available online: https://www.moh.gov.cy/MOH/SGL/sgl.nsf/All/72C8C9F6F124F979C22583C5003E694F/$file/Cyprus%20Food%20Composition%20Tables%20-%203rd%20Edition.pdf (accessed on 13 January 2020).
- Zheng, J.; Chen, K.-H.; Yan, X.; Chen, S.-J.; Hu, G.-C.; Peng, X.-W.; Yuan, J.-G.; Mai, B.-X.; Yang, Z.-Y. Heavy metals in food, house dust, and water from an e-waste recycling area in South China and the potential risk to human health. Ecotoxicol. Environ. Saf. 2013, 96, 205–212. [Google Scholar] [CrossRef]
- Sakellari, A.; Karavoltsos, S.; Theodorou, D.; Dassenakis, M.; Scoullos, M. Bioaccumulation of metals (Cd, Cu, Zn) by the marine bivalves M. galloprovincialis, P. radiata, V. verrucosa and C. chione in Mediterranean coastal microenvironments: Association with metal bioavailability. Environ. Monit. Assess. 2013, 185, 3383–3395. [Google Scholar] [CrossRef]
- Vassiliadou, I.; Costopoulou, D.; Kalogeropoulos, N.; Karavoltsos, S.; Sakellari, A.; Zafeiraki, E.; Dassenakis, M.; Leondiadis, L. Levels of perfluorinated compounds in raw and cooked Mediterranean finfish and shellfish. Chemosphere 2015, 127, 117–126. [Google Scholar] [CrossRef]
- Grigorakis, K.; Alexis, M.N.; Taylor, K.A.; Hole, M. Comparison of wild and cultured gilthead sea bream (Sparus aurata); Composition, appearance and seasonal variations. Int. J. Food Sci. Technol. 2002, 37, 477–484. [Google Scholar] [CrossRef]
- Tsangaris, C.; Kaberi, H.; Catsiki, V.A. Metal levels in sediments and transplanted mussels in Pagassitikos Gulf (Aegean Sea, Eastern Mediterranean). Environ. Monit. Assess. 2013, 185, 6077–6087. [Google Scholar] [CrossRef] [PubMed]
- Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 1998. [Google Scholar]
- ISO. ISO 5983-2: 2009 Animal Feeding Stuffs—Determination of Nitrogen Content and Calculation of Crude Protein Content. Part 2: Block Digestion and Steam Distillation Method. Available online: https://www.sis.se/api/document/preview/911249/ (accessed on 13 January 2020).
- Onyeike, E.N.; Ayalogu, E.O.; Ibegbulem, C.O. Evaluation of the nutritional value of some crude oil polluted freshwater fishes. Glob. J. Pure Appl. Sci. 2000, 6, 227–233. [Google Scholar]
- Raša Milanov, Đ.; Krstić, M.; Markovic, R.; Dragoljub Jovanović, A.; Baltic, M.; Ćirić, J.; Jovetic, M.; Milan Baltić, Ž. Analysis of Heavy Metals Concentration in Tissues of Three Different Fish Species Included in Human Diet from Danube River. Acta Vet. 2016, 66. [Google Scholar] [CrossRef] [Green Version]
- European Parliament and Council. Regulation (EU) No 1169/2011 of 25 October 2011 on the Provision of Food Information to Consumers, Amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and Repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004 Text with EEA Relevance. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32011R1169 (accessed on 13 January 2020).
- Montowska, M.; Kowalczewski, P.L.; Rybicka, I.; Fornal, E. Nutritional value, protein and peptide composition of edible cricket powders. Food Chem. 2019, 289, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Charkoftaki, G.; Thompson, D.C.; Golla, J.P.; Garcia-Milian, R.; Lam, T.T.; Engel, J.; Vasiliou, V. Integrated multi-omics approach reveals a role of ALDH1A1 in lipid metabolism in human colon cancer cells. Chem. Biol. Interact. 2019, 304, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Ishihama, Y.; Oda, Y.; Tabata, T.; Sato, T.; Nagasu, T.; Rappsilber, J.; Mann, M. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol. Cell. Proteom. 2005, 4, 1265–1272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahidi, F.; Janak Kamil, Y.V.A. Enzymes from fish and aquatic invertebrates and their application in the food industry. Trends Food Sci. Technol. 2001, 12, 435–464. [Google Scholar] [CrossRef]
- Grigorakis, K. Compositional and organoleptic quality of farmed and wild gilthead sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) and factors affecting it: A review. Aquaculture 2007, 272, 55–75. [Google Scholar] [CrossRef]
- Torres, J.A.; Chen, Y.C.; Rodrigo-García, J.; Jaczynski, J. 4—Recovery of by-products from seafood processing streams. In Maximising the Value of Marine By-Products; Shahidi, F., Ed.; Woodhead Publishing: Shaston, UK, 2007; pp. 65–90. [Google Scholar] [CrossRef]
- Guerard, F.; Guimas, L.; Binet, A. Production of tuna waste hydrolysates by a commercial neutral protease preparation. J. Mol. Catal. B Enzym. 2002, 19–20, 489–498. [Google Scholar] [CrossRef]
- Rustad, T.; Storrø, I.; Slizyte, R. Possibilities for the utilisation of marine by-products. Int. J. Food Sci. Technol. 2011, 46, 2001–2014. [Google Scholar] [CrossRef]
- Martínez-Alvarez, O.; Chamorro, S.; Brenes, A. Protein hydrolysates from animal processing by-products as a source of bioactive molecules with interest in animal feeding: A review. Food Res. Int. 2015, 73, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Vidotti, R.M.; Viegas, E.M.M.; Carneiro, D.J. Amino acid composition of processed fish silage using different raw materials. Anim. Feed Sci. Technol. 2003, 105, 199–204. [Google Scholar] [CrossRef]
- Abbey, L.; Glover-Amengor, M.; Atikpo, M.O.; Atter, A.; Toppe, J. Nutrient content of fish powder from low value fish and fish byproducts. Food Sci. Nutr. 2017, 5, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Grigorakis, K.; Fountoulaki, E.; Vasilaki, A.; Mittakos, I.; Nathanailides, C. Lipid quality and filleting yield of reared meagre (Argyrosomus regius). Int. J. Food Sci. Technol. 2011, 46, 711–716. [Google Scholar] [CrossRef]
- Costa, S.; Afonso, C.; Bandarra, N.M.; Gueifão, S.; Castanheira, I.; Carvalho, M.L.; Cardoso, C.; Nunes, M.L. The emerging farmed fish species meagre (Argyrosomus regius): How culinary treatment affects nutrients and contaminants concentration and associated benefit-risk balance. Food Chem. Toxicol. 2013, 60, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Carbonaro, M. Proteomics: Present and future in food quality evaluation. Trends Food Sci. Technol. 2004, 15, 209–216. [Google Scholar] [CrossRef]
- Harnedy, P.A.; FitzGerald, R.J. Bioactive peptides from marine processing waste and shellfish: A review. J. Funct. Foods 2012, 4, 6–24. [Google Scholar] [CrossRef]
- Sato, M.; Hosokawa, T.; Yamaguchi, T.; Nakano, T.; Muramoto, K.; Kahara, T.; Funayama, K.; Kobayashi, A.; Nakano, T. Angiotensin I-Converting Enzyme Inhibitory Peptides Derived from Wakame (Undaria pinnatifida) and Their Antihypertensive Effect in Spontaneously Hypertensive Rats. J. Agric. Food Chem. 2002, 50, 6245–6252. [Google Scholar] [CrossRef]
- Lazic, S.E.; Clarke-Williams, C.J.; Munafo, M.R. What exactly is ‘N’ in cell culture and animal experiments? PLoS Biol. 2018, 16, e2005282. [Google Scholar] [CrossRef] [Green Version]
g By-Product/100 g Fish | Large Meagre (n = 6) | Small Meagre (n = 30) | Large Gilthead Sea Bream (n = 16) | Small Gilthead Sea Bream (n = 44) | P1 | P2 | ||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |||
Head | 18.74 | 3.27 | 17.09 | 1.74 | 18.49 | 1.42 | 16.70 | 1.27 | 0.09 | 0.61 |
Gills | 3.18 | 0.31 | 3.01 | 0.32 | 2.54 | 0.27 | 2.42 | 0.22 | 0.58 | 0.38 |
Intestines | 5.07 | 0.53 | 7.44 | 0.95 | 4.49 | 0.90 | 5.44 | 0.87 | <0.001 | 0.08 |
Trimmings | 1.65 | 0.19 | 1.32 | 0.29 | 1.62 | 0.19 | 2.27 | 0.63 | 0.007 | <0.001 |
Bones | 8.76 | 3.09 | 6.53 | 0.76 | 4.95 | 0.47 | 5.04 | 0.72 | 0.50 | <0.001 |
Skin | 6.25 | 1.68 | 7.06 | 1.06 | 6.35 | 1.04 | 6.22 | 0.99 | 0.38 | 0.43 |
Sum | 43.65 | 4.84 | 42.46 | 2.41 | 38.45 | 2.06 | 38.07 | 2.08 | 0.98 | <0.001 |
By-Product Nutrient Composition | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Meagre | (g/100 g) * | Head | Gills | Intestines | Trimmings | Bones | Skin | ||||||||||||||||||
Large | Small | Large | Small | Large | Small | Large | Small | Large | Small | Large | Small | ||||||||||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
Moisture | 64.0 | 0.5 | 68.9 | 0.7 | 68.3 | 0.2 | 74.3 | 0.4 | 73.0 | 0.2 | 59.2 | 0.4 | 63.1 | 0.7 | 57.0 | 0.1 | 63.2 | 0.7 | 40.6 | 0.2 | 58.4 | 0.3 | 65.3 | 0.2 | |
Ash | 20.95 | 0.37 | 21.27 | 1.04 | 15.59 | 0.98 | 19.18 | 0.32 | 4.77 | 0.08 | 2.25 | 0.05 | 49.12 | 1.91 | 48.51 | 2.55 | 21.00 | 0.58 | 23.30 | 1.23 | 20.24 | 0.53 | 15.23 | 1.06 | |
Protein | 40.41 | 0.16 | 47.50 | 1.25 | 45.62 | 0.16 | 48.46 | 0.32 | 59.62 | 0.08 | 29.79 | 0.64 | 45.87 | 0.91 | 45.98 | 1.92 | 32.07 | 0.25 | 36.41 | 0.13 | 75.16 | 1.87 | 75.15 | 0.03 | |
Fat | 28.88 | 1.60 | 23.34 | 0.74 | 19.71 | 1.33 | 21.31 | 0.45 | 17.09 | 0.19 | 54.05 | 4.94 | 3.00 | 1.50 | 4.35 | 0.69 | 34.96 | 0.10 | 31.07 | 2.10 | 6.12 | 0.42 | 9.61 | 1.60 | |
Carbohydrates | 9.76 | 1.65 | 7.89 | 1.78 | 19.08 | 1.66 | 11.05 | 0.63 | 18.52 | 0.22 | 13.91 | 4.98 | 2.01 | 2.59 | 1.16 | 3.27 | 11.97 | 0.64 | 9.22 | 2.44 | 1.01 | 0.01 | 0.99 | 0.01 | |
Gilthead Sea Bream | (g/100 g) * | Head | Gills | Intestines | Trimmings | Bones | Head | ||||||||||||||||||
Large | Small | Large | Small | Large | Small | Large | Small | Large | Small | Large | Small | ||||||||||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
Moisture | 57.3 | 0.7 | 62.4 | 0.2 | 66.6 | 0.3 | 62.9 | 0.8 | 67.1 | 1.0 | 57.15 | 0.5 | 48.6 | 0.1 | 53.1 | 0.2 | 53.3 | 0.7 | 74.5 | 0.8 | 53.0 | 0.5 | 61.2 | 0.1 | |
Ash | 18.11 | 1.24 | 21.39 | 1.33 | 16.60 | 0.40 | 17.49 | 0.30 | 3.57 | 0.06 | 2.62 | 0.07 | 45.76 | 2.29 | 47.26 | 0.73 | 26.62 | 0.10 | 27.70 | 0.58 | 6.02 | 0.17 | 4.36 | 0.17 | |
Protein | 32.40 | 0.45 | 37.19 | 0.67 | 31.49 | 0.42 | 38.50 | 1.47 | 37.23 | 0.75 | 26.87 | 0.35 | 41.85 | 1.00 | 45.10 | 2.30 | 34.02 | 0.98 | 40.74 | 1.57 | 43.16 | 0.89 | 49.67 | 0.11 | |
Fat | 37.08 | 4.19 | 28.76 | 0.47 | 37.46 | 1.16 | 26.69 | 0.23 | 43.19 | 0.35 | 55.12 | 0.98 | 5.45 | 0.09 | 4.09 | 0.33 | 30.56 | 0.11 | 21.47 | 0.54 | 46.39 | 3.45 | 45.94 | 0.54 | |
Carbohydrates | 12.41 | 4.39 | 12.66 | 1.56 | 14.45 | 1.30 | 17.32 | 1.52 | 16.01 | 0.83 | 15.39 | 1.04 | 6.94 | 2.50 | 3.55 | 2.44 | 8.80 | 0.99 | 10.09 | 1.75 | 4.43 | 3.56 | 0.03 | 0.02 |
By-Product Nutrient Composition | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Meagre | (mg/g) | Head | Gills | Intestines | Trimmings | Bones | Skin | ||||||||||||||||||
Large | Small | Large | Small | Large | Small | Large | Small | Large | Small | Large | Small | ||||||||||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
Calcium (Ca) | 5.02 | 0.72 | 8.59 | 1.13 | 5.88 | 0.23 | 6.80 | 0.12 | 0.61 | 0.04 | 0.58 | 0.10 | 12.82 | 0.34 | 46.58 | 1.34 | 6.39 | 0.93 | 9.58 | 0.57 | 5.59 | 0.71 | 3.90 | 0.08 | |
Sodium (Na) | 4.07 | 0.37 | 4.92 | 0.56 | 5.52 | 0.13 | 5.92 | 0.27 | 2.53 | 0.12 | 2.12 | 0.57 | 5.87 | 0.99 | 3.72 | 0.43 | 3.46 | 0.11 | 2.76 | 0.73 | 4.42 | 0.28 | 3.15 | 0.17 | |
Potassium (K) | 6.31 | 1.05 | 8.30 | 0.87 | 8.55 | 1.06 | 9.34 | 0.77 | 8.92 | 1.03 | 4.86 | 1.13 | 6.92 | 1.02 | 6.65 | 0.66 | 7.62 | 0.24 | 8.92 | 0.23 | 8.46 | 1.03 | 9.33 | 1.12 | |
Magnesium (Mg) | 0.24 | 0.19 | 1.34 | 0.44 | 1.37 | 0.17 | 3.52 | 0.82 | 2.51 | 0.55 | 1.49 | 0.67 | 0.71 | 0.04 | 2.46 | 0.25 | 0.67 | 0.13 | 0.45 | 0.12 | 0.43 | 0.03 | 0.76 | 0.32 | |
% RDA/AI (Ca) * | 50 | 86 | 59 | 68 | 6 | 6 | 128 | 466 | 64 | 96 | 56 | 39 | |||||||||||||
% RDA/AI (Na) * | 27 | 33 | 37 | 39 | 17 | 14 | 39 | 25 | 23 | 18 | 29 | 21 | |||||||||||||
% RDA/AI (K) * | 13 | 18 | 18 | 20 | 19 | 10 | 15 | 14 | 16 | 19 | 18 | 20 | |||||||||||||
% RDA/AI (Mg) * | 8 | 42 | 43 | 110 | 78 | 47 | 22 | 77 | 21 | 14 | 13 | 24 | |||||||||||||
Gilthead Sea Bream | Calcium (Ca) | 8.59 | 0.43 | 5.62 | 1.02 | 4.52 | 0.72 | 7.59 | 0.33 | 0.24 | 0.09 | 0.67 | 0.25 | 42.38 | 0.11 | 11.49 | 0.45 | 9.23 | 0.34 | 7.92 | 1.10 | 2.10 | 0.92 | 0.50 | 0.02 |
Sodium (Na) | 3.68 | 0.21 | 3.28 | 0.21 | 4.26 | 0.82 | 4.54 | 0.72 | 3.01 | 0.79 | 2.39 | 1.01 | 6.81 | 0.35 | 6.08 | 0.26 | 3.43 | 0.14 | 3.79 | 0.99 | 3.52 | 0.13 | 1.34 | 0.22 | |
Potassium (K) | 6.47 | 0.92 | 6.40 | 1.02 | 7.04 | 0.11 | 8.16 | 0.13 | 4.65 | 0.15 | 7.83 | 1.73 | 7.09 | 0.13 | 8.09 | 1.00 | 6.92 | 0.88 | 8.35 | 0.37 | 7.44 | 0.32 | 8.66 | 0.64 | |
Magnesium (Mg) | 0.86 | 0.43 | 0.28 | 0.29 | 0.64 | 0.31 | 2.49 | 0.46 | 1.61 | 0.17 | 2.84 | 0.12 | 3.34 | 1.04 | 0.77 | 0.25 | 0.33 | 0.06 | 0.30 | 0.09 | 0.58 | 0.36 | 2.10 | 0.03 | |
% RDA/AI (Ca) * | 86 | 56 | 45 | 76 | 2 | 7 | 424 | 115 | 92 | 79 | 21 | 5 | |||||||||||||
% RDA/AI (Na) * | 25 | 22 | 28 | 30 | 20 | 16 | 45 | 41 | 23 | 25 | 23 | 9 | |||||||||||||
% RDA/AI (K) * | 14 | 14 | 15 | 17 | 10 | 17 | 15 | 17 | 15 | 18 | 16 | 18 | |||||||||||||
% RDA/AI (Mg) * | 27 | 9 | 20 | 78 | 50 | 89 | 104 | 24 | 10 | 9 | 18 | 66 |
Fatty Acids | Meagre (Argyrosomus regius) | Gilthead Sea Bream (Sparus aurata) | p | ||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
14:0 | 0.63 | 0.08 | 1.40 | 0.27 | <0.05 |
15:0 | 0.06 | 0.004 | 0.10 | 0.01 | <0.05 |
16:0 | 3.19 | 0.001 | 4.85 | 0.003 | 0.08 |
16:1 | 0.94 | 0.002 | 2.23 | 0.003 | <0.001 |
17:0 | 0.05 | 0.01 | 0.08 | 0.02 | 0.19 |
18:0 | 0.71 | 0.01 | 0.78 | 0.05 | 0.91 |
18:1 | 6.63 | 0.001 | 11.34 | 0.01 | <0.05 |
18:2 n-6 | 2.60 | 0.12 | 4.24 | 0.18 | 0.11 |
18:3 n-6 | 0.03 | 0.37 | 0.07 | 1.06 | <0.001 |
18:3 n-3 | 0.47 | 0.002 | 0.81 | 0.02 | <0.05 |
18:4 n-3 | 0.15 | 0.003 | 0.31 | 0.02 | <0.05 |
20:0 | 0.07 | 0.07 | 0.09 | 0.21 | 0.39 |
20:1 n-9 | 1.14 | 0.03 | 1.53 | 0.09 | 0.32 |
20:2 n-9 | 0.02 | 0.01 | 0.09 | 0.02 | <0.001 |
20:2 n-6 | 0.13 | 0.13 | 0.20 | 0.37 | 0.12 |
20:3 n-6 | 0.04 | 0.004 | 0.09 | 0.03 | <0.05 |
20:3 n-3 | 0.12 | 0.02 | 0.14 | 0.04 | 0.35 |
20:4 n-6 | 0.04 | 0.01 | 0.09 | 0.02 | <0.001 |
20:4 n-3 | 0.10 | 0.03 | 0.26 | 0.02 | <0.001 |
20:5 n-3 | 0.23 | 0.01 | 0.42 | 0.02 | <0.05 |
22:1 | 1.09 | 0.04 | 1.30 | 0.13 | 0.58 |
22:2 n-6 | - | - | 0.03 | 0.001 | <0.05 |
23:0 | 0.04 | 0.01 | 0.10 | 0.02 | <0.001 |
22:5 n-3 | 0.26 | 0.04 | 0.70 | 0.23 | <0.001 |
22:6 n-3 | 0.30 | 0.05 | 0.53 | 0.15 | <0.05 |
Total Fatty Acids | 19.15 | 2.62 | 31.86 | 7.85 | <0.05 |
SFA | 4.84 | 0.69 | 7.45 | 1.71 | 0.05 |
PUFA | 4.60 | 0.67 | 8.16 | 2.11 | <0.05 |
MUFA | 9.71 | 1.27 | 16.25 | 4.05 | <0.05 |
Meagre (Argyrosomus regius) | |||
---|---|---|---|
Protein Name | Protein ID * | MW | emPAI |
ATP synthase subunit epsilon. mitochondrial | XP_010742784.1 | 5730 | 4.97 |
NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 1 | XP_019118827.2 | 6895 | 1.75 |
60S ribosomal protein L35a | XP_010748069.1 | 12,478 | 1.38 |
cytochrome c oxidase subunit 5B. mitochondrial | XP_010737425.2 | 14,265 | 1.13 |
cytochrome c oxidase subunit 6B1 | XP_010734575.1 | 10,226 | 1.01 |
U6 snRNA-associated Sm-like protein LSm2 | XP_010737833.1 | 10,846 | 0.93 |
calcineurin subunit B type 1 | XP_010728630.1 | 19,248 | 0.77 |
RNA-binding protein 8A isoform X1 | XP_010747091.1 | 19,985 | 0.73 |
glutathione S-transferase omega-1 | XP_010742490.3 | 27,659 | 0.7 |
histidine triad nucleotide-binding protein 1 | XP_010741018.2 | 13,526 | 0.7 |
NADH dehydrogenase [ubiquinone] iron-sulfur protein 6. mitochondrial | XP_027142854.1 | 13,890 | 0.68 |
fatty acid-binding protein. liver | XP_010731481.1 | 13,998 | 0.67 |
gamma-aminobutyric acid receptor-associated protein-like 2 | XP_010747638.1 | 14,628 | 0.64 |
prefoldin subunit 6 | XP_010731190.1 | 14,578 | 0.64 |
acylphosphatase-2 isoform X1 | XP_010745126.2 | 14,823 | 0.63 |
high mobility group protein B1 | ADX06860.1 | 23,528 | 0.59 |
allograft inflammatory factor 1-like | XP_027142939.1 | 16,708 | 0.54 |
hypoxanthine-guanine phosphoribosyltransferase. partial | ASW22527.1 | 18,060 | 0.49 |
myeloid-derived growth factor | XP_019112401.2 | 18,073 | 0.49 |
nucleoplasmin-3 | XP_027133567.1 | 18,296 | 0.49 |
thioredoxin domain-containing protein 12 | XP_010739874.1 | 19,055 | 0.46 |
translationally-controlled tumor protein | XP_010747176.1 | 19,174 | 0.46 |
eukaryotic translation initiation factor 3 subunit G. partial | AFU54186.1 | 30,487 | 0.43 |
proliferation-associated protein 2G4 | XP_010747198.1 | 43,338 | 0.41 |
glutathione peroxidase 7 | XP_010740942.1 | 21,100 | 0.41 |
uricase | XP_010745371.2 | 34,496 | 0.38 |
dehydrogenase/reductase SDR family member 7C-A | XP_010739765.1 | 34,007 | 0.38 |
lambda-crystallin homolog isoform X1 | XP_010748901.2 | 35,361 | 0.37 |
T-complex protein 1 subunit epsilon | XP_010731936.1 | 59,425 | 0.37 |
aldose reductase | XP_019116037.1 | 35,655 | 0.36 |
histone-binding protein RBBP4 | XP_010731001.1 | 47,510 | 0.36 |
eukaryotic translation initiation factor 3 subunit I | XP_019115322.1 | 36,318 | 0.36 |
programmed cell death protein 10 | XP_027130892.1 | 24,431 | 0.35 |
LRP chaperone MESD | XP_010746988.1 | 24,919 | 0.34 |
erlin-2 isoform X1 | XP_027133320.1 | 37,660 | 0.34 |
aspartyl aminopeptidase isoform X2 | XP_010748612.3 | 52,042 | 0.33 |
adenylate kinase 4. mitochondrial | XP_019125546.1 | 25,473 | 0.33 |
NADH dehydrogenase [ubiquinone] flavoprotein 2. mitochondrial | XP_019124447.1 | 26,706 | 0.32 |
core histone macro-H2A.1 isoform X1 | XP_010735833.1 | 39,251 | 0.32 |
mast cell protease 1A | XP_010728896.2 | 26,502 | 0.32 |
RNA-binding protein FUS | XP_010735714.2 | 43,968 | 0.29 |
prohibitin | XP_010738397.1 | 29,782 | 0.28 |
aspartate—tRNA ligase. cytoplasmic | XP_019124484.1 | 60,564 | 0.28 |
protein kinase C and casein kinase substrate in neurons protein 3 | XP_027141505.1 | 45,435 | 0.28 |
eukaryotic translation initiation factor 3 subunit D isoform X1 | XP_027141552.1 | 64,192 | 0.26 |
nucleophosmin | XP_010729733.2 | 32,171 | 0.26 |
trimeric intracellular cation channel type A | XP_027145915.1 | 32,271 | 0.26 |
uncharacterized protein LOC113746832 | XP_027139706.1 | 33,344 | 0.25 |
pollen-specific leucine-rich repeat extensin-like protein 1 | XP_010728080.2 | 33,127 | 0.25 |
WD repeat-containing protein 61 | XP_010733492.1 | 33,241 | 0.25 |
homogentisate 1.2-dioxygenase | XP_010754782.3 | 49,895 | 0.25 |
mitochondrial 2-oxodicarboxylate carrier isoform X1 | XP_010742940.1 | 33,148 | 0.25 |
actin-related protein 2/3 complex subunit 2 | XP_019118121.1 | 34,256 | 0.24 |
protein phosphatase 1B isoform X1 | XP_010733968.1 | 52,276 | 0.24 |
uncharacterized protein LOC104934800 | XP_010748848.3 | 34,731 | 0.24 |
tyrosine-protein kinase CSK | XP_010731405.1 | 51,060 | 0.24 |
adenylosuccinate lyase | XP_019121532.1 | 54,567 | 0.23 |
hydroxymethylglutaryl-CoA lyase. mitochondrial | XP_010729592.3 | 35,462 | 0.23 |
eukaryotic translation initiation factor 4B isoform X1 | XP_010751826.3 | 70,327 | 0.23 |
fructose-1.6-bisphosphatase 1 | XP_010746269.1 | 36,921 | 0.22 |
ELAV-like protein 1 isoform X1 | XP_010754002.1 | 38,262 | 0.21 |
O-acetyl-ADP-ribose deacetylase MACROD1 isoform X1 | XP_010737474.3 | 39,367 | 0.21 |
ankyrin repeat domain-containing protein 34C | XP_010727747.2 | 57,267 | 0.21 |
importin subunit alpha-3 | XP_010736490.1 | 57,568 | 0.21 |
serine/threonine-protein phosphatase 2B catalytic subunit alpha isoform X1 | XP_010752215.1 | 60,014 | 0.2 |
calcium-binding protein 39 | XP_010729707.1 | 39,843 | 0.2 |
26S proteasome non-ATPase regulatory subunit 4 | XP_010739959.1 | 40,133 | 0.2 |
alkaline phosphatase | AEL33276.1 | 59,799 | 0.2 |
mitochondrial cytochrome b-c1 complex subunit 8 | ATN38476.1 | 9671 | 1.09 |
mitochondrial cytochrome c oxidase subunit 6B1 isoform A | ATN38445.1 | 10,139 | 1.02 |
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 13 | AGV76781.1 | 17,214 | 0.88 |
very long chain acyl-CoA synthetase. partial | AFP97557.1 | 46,175 | 0.27 |
mitochondrial NAD-dependent protein deacetylase sirtuin-3 | AHX56275.1 | 48,263 | 0.26 |
carnitine palmitoyltransferase 2. partial | AUN35172.1 | 68,338 | 0.24 |
mitochondrial ATP synthase mitochondrial F1 complex assembly factor 1 | ATN38406.1 | 35,887 | 0.23 |
alkaline phosphatase | AAP04486.1 | 57,515 | 0.21 |
cullin 5. partial | AKN80426.1 | 52,490 | 0.15 |
mitochondrial Rho GTPase 1-A | AGU38816.1 | 71,045 | 0.11 |
macrophage mannose receptor 1. partial | AIT83004.1 | 114,777 | 0.07 |
insulin-like growth factor-I receptor b | ALO75807.1 | 159,047 | 0.07 |
acetyl-CoA carboxylase alpha | ANJ04915.1 | 176,414 | 0.04 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kandyliari, A.; Mallouchos, A.; Papandroulakis, N.; Golla, J.P.; Lam, T.T.; Sakellari, A.; Karavoltsos, S.; Vasiliou, V.; Kapsokefalou, M. Nutrient Composition and Fatty Acid and Protein Profiles of Selected Fish By-Products. Foods 2020, 9, 190. https://doi.org/10.3390/foods9020190
Kandyliari A, Mallouchos A, Papandroulakis N, Golla JP, Lam TT, Sakellari A, Karavoltsos S, Vasiliou V, Kapsokefalou M. Nutrient Composition and Fatty Acid and Protein Profiles of Selected Fish By-Products. Foods. 2020; 9(2):190. https://doi.org/10.3390/foods9020190
Chicago/Turabian StyleKandyliari, Aikaterini, Athanasios Mallouchos, Nikos Papandroulakis, Jaya Prakash Golla, TuKiet T. Lam, Aikaterini Sakellari, Sotirios Karavoltsos, Vasilis Vasiliou, and Maria Kapsokefalou. 2020. "Nutrient Composition and Fatty Acid and Protein Profiles of Selected Fish By-Products" Foods 9, no. 2: 190. https://doi.org/10.3390/foods9020190
APA StyleKandyliari, A., Mallouchos, A., Papandroulakis, N., Golla, J. P., Lam, T. T., Sakellari, A., Karavoltsos, S., Vasiliou, V., & Kapsokefalou, M. (2020). Nutrient Composition and Fatty Acid and Protein Profiles of Selected Fish By-Products. Foods, 9(2), 190. https://doi.org/10.3390/foods9020190