Arthrospira platensis as Natural Fermentation Booster for Milk and Soy Fermented Beverages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Commercial Acidifying Starter Cultures
2.2. Experimental Design
2.3. Set up of Fermentation Conditions of LAB Strains
2.4. Commercial Mix Culture Fermentation
2.5. Impedance Measurements
2.6. pH Measurement
2.7. Rheological characterization of fermented SSM and SBB
2.8. Color Measurements of Fermented SSM and SBB
2.9. Statistical Analysis
3. Results and Discussion
3.1. Measurement of the Boosting Effect of Sterilized A. Platensis on LAB Strains by Impedance Analysis
3.2. Impedance Analysis of Commercial Mix Cultures
3.3. Rheological Properties of Fermented Samples
3.4. Color Characteristics of Fermented Milks
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ghaeni, M.; Roomiani, L.; Moradi, Y. Evaluation of carotenoids and chlorophyll as natural resources for food in spirulina microalgae. Appl. Food Biotechnol. 2014, 2, 39–44. [Google Scholar]
- Park, J.H.; Lee, S.I.; Kim, I.H. Effect of dietary Spirulina (Arthrospira) platensis on the growth performance, antioxidant enzyme activity, nutrient digestibility, cecal microflora, excreta noxious gas emission, and breast meat quality of broiler chickens. Poult. Sci. 2018, 97, 2451–2459. [Google Scholar] [CrossRef] [PubMed]
- Batista, A.P.; Niccolai, A.; Fradinho, P.; Fragoso, S.; Bursic, I.; Rodolfi, L.; Biondi, N.; Tredici, M.R.; Sousa, I.; Raymundo, A. Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Res. 2017, 26, 161–171. [Google Scholar] [CrossRef]
- Andrade, L.M. Chlorella and spirulina microalgae as sources of functional foods, nutraceuticals, and food supplements; an overview. MOJ Food Process. Technol. 2018, 6, 45–58. [Google Scholar] [CrossRef] [Green Version]
- Holman, B.W.B.; Malau-Aduli, A.E.O. Spirulina as a livestock supplement and animal feed: Spirulina supplementation in livestock. J. Anim. Physiol. Anim. Nutr. 2013, 97, 615–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ariede, M.B.; Candido, T.M.; Jacome, A.L.M.; Velasco, M.V.R.; de Carvalho, J.C.M.; Baby, A.R. Cosmetic attributes of algae—A review. Algal Res. 2017, 25, 483–487. [Google Scholar] [CrossRef]
- Majdoub, H.; Mansour, M.B.; Chaubet, F.; Roudesli, M.S.; Maaroufi, R.M. Anticoagulant activity of a sulfated polysaccharide from the green alga Arthrospira platensis. Biochim. Biophys. Acta BBA Gen. Subj. 2009, 1790, 1377–1381. [Google Scholar] [CrossRef]
- Golmakani, M.T.; Soleimanian-Zad, S.; Alavi, N.; Nazari, E.; Eskandari, M.H. Effect of Spirulina (Arthrospira platensis) powder on probiotic bacteriologically acidified feta-type cheese. J. Appl. Phycol. 2019, 31, 1085–1094. [Google Scholar] [CrossRef]
- Mohammadi-Gouraji, E.; Soleimanian-Zad, S.; Ghiaci, M. Phycocyanin-enriched yogurt and its antibacterial and physicochemical properties during 21 days of storage. LWT 2019, 102, 230–236. [Google Scholar] [CrossRef]
- Yamaguchi, S.K.F.; Moreira, J.B.; Costa, J.A.V.; de Souza, C.K.; Bertoli, S.L.; de Carvalho, L.F. Evaluation of adding s pirulina to freeze-dried yogurts before fermentation and after freeze-drying. Ind. Biotechnol. 2019, 15, 89–94. [Google Scholar] [CrossRef]
- Camacho, F.; Macedo, A.; Malcata, F. Potential industrial applications and commercialization of microalgae in the functional food and feed industries: A short review. Mar. Drugs 2019, 17, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massoud, R.; Khosravi-Darani, K.; Nakhsaz, F.; Varga, L. Evaluation of physicochemical, microbiological and sensory properties of croissants fortified with Arthrospira platensis (Spirulina). Czech J. Food Sci. 2017, 34, 350–355. [Google Scholar] [CrossRef] [Green Version]
- Ak, B.; Avşaroğlu, E.; Işık, O.; Özyurt, G.; Kafkas, E.; Uslu, L. Nutritional and physicochemical characteristics of bread enriched with microalgae spirulina platensis. Int J. Eng. Res. Appl. 2016, 6, 9. [Google Scholar]
- Zouari, N.; Abid, M.; Fakhfakh, N.; Ayadi, M.A.; Zorgui, L.; Ayadi, M.; Attia, H. Blue-green algae (Arthrospira platensis) as an ingredient in pasta: Free radical scavenging activity, sensory and cooking characteristics evaluation. Int. J. Food Sci. Nutr. 2011, 62, 811–813. [Google Scholar] [CrossRef] [PubMed]
- Bhowmik, D.; Dubey, J.; Mehra, S. Probiotic Efficiency of spirulina platensis—Stimulating growth of lactic acid bacteria. World J. Dairy Food Sci. 2009, 4, 160–164. [Google Scholar]
- Parada, J. Lactic acid bacteria growth promoters from Spirulina platensis. Int. J. Food Microbiol. 1998, 45, 225–228. [Google Scholar] [CrossRef]
- Plaza, M.; Herrero, M.; Cifuentes, A.; Ibáñez, E. innovative natural functional ingredients from microalgae. J. Agric. Food Chem. 2009, 57, 7159–7170. [Google Scholar] [CrossRef]
- Guldas, M.; Irkin, R. Influence of Spirulina platensis powder on the microflora of yoghurt and acidophilus milk. Mljekarstvo 2010, 60, 237–243. [Google Scholar]
- Barkallah, M.; Dammak, M.; Louati, I.; Hentati, F.; Hadrich, B.; Mechichi, T.; Ayadi, M.A.; Fendri, I.; Attia, H.; Abdelkafi, S. Effect of Spirulina platensis fortification on physicochemical, textural, antioxidant and sensory properties of yogurt during fermentation and storage. LWT 2017, 84, 323–330. [Google Scholar] [CrossRef]
- Çelekli, A.; Alslibi, Z.A.; Bozkurt, H. üseyin Influence of incorporated Spirulina platensis on the growth of microflora and physicochemical properties of ayran as a functional food. Algal Res. 2019, 44, 101710. [Google Scholar] [CrossRef]
- Gardiner, G.E.; Bouchier, P.; O’Sullivan, E.; Kelly, J.; Kevin Collins, J.; Fitzgerald, G.; Paul Ross, R.; Stanton, C. A spray-dried culture for probiotic Cheddar cheese manufacture. Int. Dairy J. 2002, 12, 749–756. [Google Scholar] [CrossRef]
- Shah, N.P. Effects of milk-derived bioactives: An overview. Br. J. Nutr. 2000, 84, 3–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gueimonde, M.; Delgado, S.; Mayo, B.; Ruas-Madiedo, P.; Margolles, A.; de los Reyes-Gavilán, C.G. Viability and diversity of probiotic Lactobacillus and Bifidobacterium populations included in commercial fermented milks. Food Res. Int. 2004, 37, 839–850. [Google Scholar] [CrossRef]
- Mortazavian, A.M.; Ehsani, M.R.; Mousavi, S.M.; Rezaei, K.; Sohrabvandi, S.; Reinheimer, J.A. Effect of refrigerated storage temperature on the viability of probiotic micro-organisms in yogurt. Int. J. Dairy Technol. 2007, 60, 123–127. [Google Scholar] [CrossRef]
- Korbekandi, H.; Jahadi, M.; Maracy, M.; Abedi, D.; Jalali, M. Production and evaluation of a probiotic yogurt using Lactobacillus casei ssp. casei. Int. J. Dairy Technol. 2009, 62, 75–79. [Google Scholar] [CrossRef]
- Shafiee, G.; Mortazavian, A.M.; Mohammadifar, M.A.; Koushki, M.R.; Mohammadi, A.; Mohammadi, R. Combined effects of dry matter content, incubation temperature and final pH of fermentation on biochemical and microbiological characteristics of probiotic fermented milk. Afr. J. Microbiol. Res. 2010, 4, 1265–1274. [Google Scholar]
- Varga, L.; Szigeti, J.; Kovács, R.; Földes, T.; Buti, S. Influence of a spirulina platensis biomass on the microflora of fermented ABT milks during storage (R1). J. Dairy Sci. 2002, 85, 1031–1038. [Google Scholar] [CrossRef]
- Vijay Pratap Singh, P.M. Spirulina and its nutritional importance: A possible approach for development of functional food. Biochem. Pharmacol. Open Access 2014, 03. [Google Scholar] [CrossRef] [Green Version]
- Beheshtipour, H.; Mortazavian, A.M.; Haratian, P.; Darani, K.K. Effects of Chlorella vulgaris and Arthrospira platensis addition on viability of probiotic bacteria in yogurt and its biochemical properties. Eur. Food Res. Technol. 2012, 235, 719–728. [Google Scholar] [CrossRef]
- Bancalari, E.; Bernini, V.; Bottari, B.; Neviani, E.; Gatti, M. application of impedance microbiology for evaluating potential acidifying performances of starter lactic acid bacteria to employ in milk transformation. Front. Microbiol. 2016, 7, 11. [Google Scholar] [CrossRef] [Green Version]
- Bancalari, E.; D’Incecco, P.; Savo Sardaro, M.L.; Neviani, E.; Pellegrino, L.; Gatti, M. Impedance microbiology to speed up the screening of lactic acid bacteria exopolysaccharide production. Int. J. Food Microbiol. 2019, 306, 10. [Google Scholar] [CrossRef] [PubMed]
- Beheshtipour, H.; Mortazavian, A.M.; Mohammadi, R.; Sohrabvandi, S.; Khosravi-Darani, K. Supplementation of Spirulina platensis and Chlorella vulgaris algae into probiotic fermented milks: Algae addition into probiotic fermented milk. Compr. Rev. Food Sci. Food Saf. 2013, 12, 144–154. [Google Scholar] [CrossRef]
- Kandler, O. Carbohydrate metabolism in lactic acid bacteria. Tonie Van Leeuwenhoek 1983, 49, 209–224. [Google Scholar] [CrossRef] [PubMed]
- Fusco, V.; Quero, G.M.; Cho, G.S.; Kabisch, J.; Meske, D.; Neve, H.; Bockelmann, W.; Franz, C.M.A.P. The genus Weissella: Taxonomy, ecology and biotechnological potential. Front. Microbiol. 2015, 6, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Q.Z.; Wang, J.S.; Zhao, M.M.; Jiang, Y.M.; Chun, C. Effect of casein hydrolysates on yogurt fermentation and texture properties during storage. Food Technol. Biotechnol. 2006, 44, 429–434. [Google Scholar]
- Gyenis, B.; Szigeti, J.; Molnár, N.; Varga, L. Use of dried microalgal biomasses to stimulate acid production and growth of Lactobacillus plantarum and Enterococcus faecium in milk. Acta Agrar. Kaposváriensis 2005, 9, 53–59. [Google Scholar]
- Ásványi-Molnár, N.; Sipos-Kozma, Z.; Tóth, Á.; Ásványi, B.; Varga, L. Development of functional dairy food enriched in spirulina (Arthrospira platensis). Tejgazdaság 2009, 69, 15–22. [Google Scholar]
- De Caire, G.Z.; Parada, J.L. Effect of Spirulina platensis biomass on the growth of lactic acid bacteria in milk. World J. Microbiol. Biotechnol. 2000, 16, 563–565. [Google Scholar] [CrossRef]
- Varga, L.; Szigeti, J.; Ordog, V. Effect of a Spirulina platensis biomass enriched with trace elements on combinations of starter culture strains employed in the dairy industry. Milchwissenschaft 1999, 54, 247–248. [Google Scholar]
- Wang, H.; Zhang, W.; Chen, L.; Wang, J.; Liu, T. The contamination and control of biological pollutants in mass cultivation of microalgae. Bioresour. Technol. 2013, 128, 745–750. [Google Scholar] [CrossRef]
- Cao, Z.H.; Green-Johnson, J.M.; Buckley, N.D.; Lin, Q.Y. Bioactivity of soy-based fermented foods: A review. Biotechnol. Adv. 2019, 37, 223–238. [Google Scholar] [CrossRef] [PubMed]
- Molnár, N.; Gyenis, B.; Varga, L. Influence of a powdered Spirulina platensis biomass on acid production of lactococci in milk. Milchwissenschaft 2005, 60, 380–382. [Google Scholar]
- Li, C.; Li, W.; Chen, X.; Feng, M.; Rui, X.; Jiang, M.; Dong, M. Microbiological, physicochemical and rheological properties of fermented soymilk produced with exopolysaccharide (EPS) producing lactic acid bacteria strains. LWT Food Sci. Technol. 2014, 57, 477–485. [Google Scholar] [CrossRef]
- Penna, A.L.B.; Gurram, S.; Barbosa-Cánovas, G.V. Effect of high hydrostatic pressure processing on rheological and textural properties of probiotic low-fat yogurt fermented by different starter cultures. J. Food Process Eng. 2006, 29, 447–461. [Google Scholar] [CrossRef]
- Antelo, F.S.; Costa, J.A.V.; Kalil, S.J. Thermal degradation kinetics of the phycocyanin from Spirulina platensis. Biochem. Eng. J. 2008, 41, 43–47. [Google Scholar] [CrossRef]
- Rankin, S.A.; Brewer, J.L. Color of nonfat fluid milk as affected by fermentation. J. Food Sci. 1998, 63, 178–180. [Google Scholar] [CrossRef]
- Danesi, E.D.G.; de Rangel-Yagui, C.O. An investigation of e ect of replacing nitrate by urea in the growth and production of chlorophyll by Spirulina platensis. Biomass Bioenergy 2002, 23, 261–269. [Google Scholar] [CrossRef]
- Chaiklahan, R.; Chirasuwan, N.; Bunnag, B. Stability of phycocyanin extracted from Spirulina sp.: Influence of temperature, pH and preservatives. Process Biochem. 2012, 47, 659–664. [Google Scholar] [CrossRef]
- De Marco Castro, E.; Shannon, E.; Abu-Ghannam, N. Effect of fermentation on enhancing the nutraceutical properties of arthrospira platensis (Spirulina). Fermentation 2019, 5, 28. [Google Scholar] [CrossRef] [Green Version]
Species | Strain | Abbreviation | Source | Incubation Temperature |
---|---|---|---|---|
Lactobacillus delbrueckii subsp. bulgaricus | 2214 | Lbd. bulgaricus | UNIPR | 42 °C |
Lactobacillus casei | 4339 | Lb. casei | UNIPR | 37 °C |
Lactococcus lactis subsp. cremoris | 1978 | Lcl. cremoris | UNIPR | 30 °C |
Lactococcus lactis subsp. lactis | 2269 | Lcl. lactis | UNIPR | 30 °C |
Leuconostoc | 4456 | Leuconostoc sp. | UNIPR | 30 °C |
Weissella | 4458 | Weissella minor | UNIPR | 30 °C |
Streptococcus thermophilus | 518 | St. thermophilus | UNIPR | 42 °C |
Lactobacillus rhamnosus GG | GG | Lb. rhamnosus | ATCC 53103 | 37 °C |
Streptococcus thermophilus multistrains | I | MixI | Sacco Srl, Cadorago, Italy | 37 °C |
Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus | II | MixII | Sacco Srl, Cadorago, Italy | 37 °C |
Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus | III | MixIII | Sacco Srl, Cadorago, Italy | 37 °C |
Streptococcus thermophilus, Lactobacillus delbrueckii spp. lactis and Lactobacillus helveticus. | IV | MixIV | Sacco Srl, Cadorago, Italy | 37 °C |
Mix Cultures | SP% | Lag ± SD (h) | Booster Effect (min) | pH ± SD after 24 h |
---|---|---|---|---|
I in SSM | 0 | 1.74b ± 0.02 | - | 4.2c ± 0.0 |
0.25 | 1.68b ± 0.03 | 3.67 | 3.9e ± 0.0 | |
0.50 | 1.73b ± 0.02 | 0.62 | 4.1d ± 0.0 | |
I in SBB | 0 | 1.59b ± 0.04 | - | 4.5a ± 0.0 |
0.25 | 2.17a ± 0.24 | −35.10 | 4.3b ± 0.0 | |
0.50 | 2.36a ± 0.08 | −46.29 | 4.3b ± 0.0 | |
II in SSM | 0 | 2.86b ± 0.01 | - | 4.3a ± 0.0 |
0.25 | 2.46d ± 0.04 | 23.73 | 4.3a ± 0.0 | |
0.50 | 2.59c ± 0.06 | 16.25 | 4.1b ± 0.0 | |
II in SBB | 0 | 5.47a ± 0.01 | - | 3.8d ± 0.0 |
0.25 | 5.46a ± 0.02 | 0.85 | 4.0c ± 0.0 | |
0.50 | 5.37a ± 0.05 | 6.32 | 3.8d ± 0.0 | |
III in SSM | 0 | 1.96c ± 0.16 | - | 4.5a ± 0.0 |
0.25 | 1.72d ± 0.02 | 14.15 | 4.3b ± 0.0 | |
0.50 | 1.98c ± 0.06 | −1.28 | 4.3b ± 0.0 | |
III in SBB | 0 | 1.97c ± 0.09 | - | 4.0d ± 0.0 |
0.25 | 3.65a ± 0.08 | −101.31 | 4.2c ± 0.0 | |
0.50 | 3.27b ± 0.09 | −78.37 | 4.2c ± 0.0 | |
IV in SSM | 0 | 1.80c ± 0.04 | - | 4.0a ± 0.0 |
0.25 | 2.85b ± 0.03 | −63.02 | 4.0a ± 0.0 | |
0.50 | 3.07a ± 0.03 | −76.55 | 4.0a ± 0.0 | |
IV in SBB | 0 | 1.83c ± 0.02 | - | 3.6b ± 0.0 |
0.25 | 1.38d ± 0.04 | 27.06 | 3.6b ± 0.0 | |
0.50 | 1.45d ± 0.07 | 22.97 | 3.6b ± 0.0 |
k (Pa sn) | n | |||||
---|---|---|---|---|---|---|
Mix Culture | Medium | SP (%) | t0 | t24 | t0 | t24 |
I | SSM | 0 | 0.008bB ± 0.002 | 4.732aA ± 0.039 | 0.839abA ± 0.038 | 0.150dB ± 0.005 |
0.25 | 0.010bB ± 0.006 | 2.562bcA ± 0.221 | 0.839abA ± 0.120 | 0.262abB ± 0.015 | ||
0.50 | 0.008bB ± 0.001 | 1.777cA ± 0.110 | 0.862aA ± 0.033 | 0.270aB ± 0.014 | ||
SBB | 0 | 0.034aB ± <0.001 | 4.513aA ± 0.034 | 0.705cA ± 0.003 | 0.182cdB ± 0.021 | |
0.25 | 0.033aB ± 0.001 | 4.321aA ± 0.579 | 0.722bcA ± 0.004 | 0.194cdB ± 0.033 | ||
0.50 | 0.039aB ± 0.008 | 3.092bA ± 0.716 | 0.704cA ± 0.022 | 0.22bcB ± 0.012 | ||
II | SSM | 0 | 0.007bB ± 0.002 | 3.618aA ± 0.629 | 0.873aA ± 0.027 | 0.207bB ± 0.062 |
0.25 | 0.016bB ± 0.007 | 1.667bA ± 0.462 | 0.763abA ± 0.092 | 0.31aB ± 0.018 | ||
0.50 | 0.009bB ± 0.005 | 1.062bA ± 0.033 | 0.847aA ± 0.070 | 0.362aB ± 0.001 | ||
SBB | 0 | 0.030aB ± 0.004 | 3.100aA ± 0.855 | 0.717bA ± 0.016 | 0.198bB ± 0.049 | |
0.25 | 0.033aB ± 0.001 | 3.333aA ± 0.380 | 0.720bA ± 0.008 | 0.158bB ± 0.034 | ||
0.50 | 0.038aB ± 0.001 | 3.529aA ± 0.084 | 0.712bA ± 0.008 | 0.124bB ± <0.001 | ||
III | SSM | 0 | 0.009bB ± 0.001 | 1.325dA ± 0.225 | 0.757aA ± 0.008 | 0.520aB ± 0.033 |
0.25 | 0.011bB ± 0.005 | 2.684cA ± 0.288 | 0.687aA ± 0.030 | 0.366cB ± 0.001 | ||
0.50 | 0.008bB ± 0.002 | 1.529dA ± 0.247 | 0.691aA ± 0.029 | 0.439bB ± <0.001 | ||
SBB | 0 | 0.026aB ± 0.010 | 2.786cA ± 0.049 | 0.735aA ± 0.147 | 0.306dB ± <0.001 | |
0.25 | 0.035aB ± 0.005 | 7.419aA ± 1.963 | 0.696aA ± 0.030 | 0.132eB ± 0.018 | ||
0.50 | 0.025aB ± 0.005 | 5.038bA ± 0.293 | 0.744aA ± 0.035 | 0.277dB ± 0.011 | ||
IV | SSM | 0 | 0.012dB ± 0.004 | 2.455bcA ± 0.27 | 0.781bA ± 0.049 | 0.294abB ± 0.016 |
0.25 | 0.008dB ± 0.001 | 1.532cA ± 0.101 | 0.869aA ± 0.039 | 0.311aB ± 0.004 | ||
0.50 | 0.007dB ± <0.001 | 1.294cA ± 0.110 | 0.894aA ± 0.017 | 0.317aB ± 0.008 | ||
SBB | 0 | 0.025aB ± <0.001 | 4.625aA ± 1.223 | 0.746bcA ± 0.001 | 0.150dB ± 0.021 | |
0.25 | 0.035bB ± <0.001 | 3.223bA ± 0.156 | 0.702cA ± 0.014 | 0.220cB ± 0.039 | ||
0.50 | 0.044cB ± 0.007 | 2.63bcA ± 0.461 | 0.677cA ± 0.030 | 0.250bcB ± 0.013 |
L* | a* | b* | ||||||
---|---|---|---|---|---|---|---|---|
Mix Culture | Medium | SP (%) | t0 | t24 | t0 | t24 | t0 | t24 |
I | SSM | 0 | 83.72aB ± 0.11 | 87.73aA ± 0.07 | −4.07dB ± <0.01 | −2.24fA ± 0.04 | 1.25dB ± 0.04 | 4.23eA ± 0.17 |
0.25 | 65.17dB ± 1.13 | 74.41cA ± 0.04 | 2.83aA ± 0.75 | 1.64cB ± 0.09 | 21.08aA ± 0.09 | 17.10cB ± 0.15 | ||
0.50 | 61.48fB ± 0.18 | 68.47eA ± 0.05 | 2.69aA ± 0.09 | 2.68aA ± 0.02 | 19.70bA ± 0.30 | 19.81aA ± 0.14 | ||
SBB | 0 | 81.45bB ± 0.01 | 84.47bA ± 0.02 | −2.73cB ± <0.01 | −2.12eA ± 0.03 | 15.23cA ± <0.01 | 14.43dB ± 0.07 | |
0.25 | 70.16cB ± 0.06 | 73.66dA ± 0.09 | 0.86bB ± 0.03 | 1.29dA ± 0.01 | 18.11bB ± 0.06 | 18.77bA ± 0.10 | ||
0.50 | 63.91eB ± 0.17 | 68.46eA ± 0.04 | 2.21aA ± 0.13 | 2.05bA ± 0.02 | 19.21bA ± 0.24 | 19.67aA ± 0.03 | ||
II | SSM | 0 | 83.23aB ± 0.07 | 85.18aA ± 0.08 | −4.01dB ± <0.01 | −2.23eA ± 0.08 | 0.84eB ± <0.01 | 2.87fA ± 0.13 |
0.25 | 67.29dB ± 0.44 | 74.06dA ± 0.03 | 2.23bA ± 0.32 | 1.39cA ± 0.01 | 17.78cA ± 1.08 | 16.79dA ± 0.03 | ||
0.50 | 60.65fB ± 0.26 | 66.76fA ± 0.43 | 3.72aA ± 0.16 | 2.82aB ± 0.07 | 21.51aA ± 0.55 | 20.42aA ± 0.30 | ||
SBB | 0 | 79.30bB ± 0.01 | 84.55bA ± 0.06 | −3.64dB ± 0.01 | −2.17eA ± 0.03 | 11.70dB ± 0.03 | 14.75eA ± 0.11 | |
0.25 | 70.76cB ± 0.04 | 74.78cA ± 0.08 | 0.90cB ± 0.06 | 1.14dA ± 0.02 | 18.01bcB ± <0.01 | 18.25cA ± 0.02 | ||
0.50 | 64.83eB ± 0.28 | 69.36eA ± 0.19 | 2.32bA ± 0.21 | 1.97bA ± 0.04 | 19.19bA ± 0.42 | 19.73bA ± 0.21 | ||
III | SSM | 0 | 83.56aB ± <0.01 | 85.61aA ± 0.21 | −3.83eA ± 0.01 | −3.83eA ± <0.01 | 1.02eB ± 0.04 | 1.78dA ± 0.02 |
0.25 | 69.73cB ± 0.32 | 71.92cA ± 0.01 | 1.85cA ± 0.05 | 1.53cA ± 0.23 | 17.82cA ± 0.05 | 17.78bA ± 0.66 | ||
0.50 | 61.27fB ± 0.71 | 64.48eA ± 0.04 | 2.77bA ± 0.04 | 3.30aA ± 0.44 | 19.93aA ± <0.01 | 19.69aA ± 0.48 | ||
SBB | 0 | 81.99bB ± 0.04 | 82.78bA ± 0.02 | −3.07dB ± 0.01 | −2.66dA ± 0.01 | 13.30dB ± 0.08 | 14.54cA ± 0.12 | |
0.25 | 67.39dB ± 0.05 | 69.52dA ± 0.01 | 2.84bA ± 0.02 | 1.28cB ± 0.02 | 19.74aA ± 0.06 | 16.76bB ± 0.36 | ||
0.50 | 61.95eB ± <0.01 | 63.39fA ± 0.07 | 3.32aA ± 0.04 | 2.45bB ± 0.01 | 19.31bA ± 0.23 | 17.74bB ± 0.02 | ||
IV | SSM | 0 | 81.59aB ± 0.01 | 84.65aA ± 0.02 | −3.48fB ± 0.02 | −2.20dA ± 0.01 | −1.15fB ± 0.03 | 2.75eA ± 0.01 |
0.25 | 67.56cB ± 0.04 | 71.48dA ± 0.03 | 0.75dB ± 0.01 | 1.88bA ± 0.04 | 15.05dB ± <0.01 | 17.81cA ± 0.01 | ||
0.50 | 60.17eB ± 0.04 | 64.75fA ± 0.17 | 1.80bB ± 0.02 | 2.97aA ± 0.04 | 16.92cB ± 0.11 | 20.88aA ± 0.08 | ||
SBB | 0 | 80.32bB ± 0.08 | 84.07bA ± 0.02 | −3.41eB ± <0.01 | −2.36eA ± 0.04 | 13.09eB ± 0.10 | 14.03dA ± 0.09 | |
0.25 | 67.44cB ± 0.10 | 72.02cA ± 0.06 | 0.80cB ± 0.02 | 1.12cA ± 0.05 | 17.93bA ± 0.13 | 17.90cA ± <0.01 | ||
0.50 | 61.97dB ± 0.06 | 66.29eA ± 0.05 | 1.93aA ± 0.03 | 1.81bB ± 0.01 | 18.70aB ± 0.02 | 19.18bA ± 0.05 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martelli, F.; Alinovi, M.; Bernini, V.; Gatti, M.; Bancalari, E. Arthrospira platensis as Natural Fermentation Booster for Milk and Soy Fermented Beverages. Foods 2020, 9, 350. https://doi.org/10.3390/foods9030350
Martelli F, Alinovi M, Bernini V, Gatti M, Bancalari E. Arthrospira platensis as Natural Fermentation Booster for Milk and Soy Fermented Beverages. Foods. 2020; 9(3):350. https://doi.org/10.3390/foods9030350
Chicago/Turabian StyleMartelli, Francesco, Marcello Alinovi, Valentina Bernini, Monica Gatti, and Elena Bancalari. 2020. "Arthrospira platensis as Natural Fermentation Booster for Milk and Soy Fermented Beverages" Foods 9, no. 3: 350. https://doi.org/10.3390/foods9030350
APA StyleMartelli, F., Alinovi, M., Bernini, V., Gatti, M., & Bancalari, E. (2020). Arthrospira platensis as Natural Fermentation Booster for Milk and Soy Fermented Beverages. Foods, 9(3), 350. https://doi.org/10.3390/foods9030350