Optimizing High Pressure Processing Parameters to Produce Milkshakes Using Chokeberry Pomace
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation and HPP Treatments
2.2. Total Phenolic Content
2.3. Antioxidant Capacity
2.4. Chokeberry Microstructure
2.5. Microbiological Analysis
2.6. Experimental Design and Statistical Analysis
3. Results and Discussion
3.1. Effect of HPP on TPC, AC, and Microbial Counts of Chokeberry Milkshakes
3.2. Processing Parameter Optimization and Their Effect on the Safety and Quality of the Formulated Matrix
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Basu, A.; Rhone, M.; Lyons, T.J. Berries: Emerging impact on cardiovascular health. Nutr. Rev. 2010, 68, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Tańska, M.; Roszkowska, B.; Czaplicki, S.; Borowska, E.J.; Bojarska, J.; Dąbrowska, A. Effect of fruit pomace addition on shortbread cookies to improve their physical and nutritional values. Plant Foods Hum. Nutr. 2016, 71, 307–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Werner, M.; Winterhalter, P.; Esatbeyoglu, T. Phenolic composition, radical scavenging activity and an approach for authentication of Aronia melanocarpa berries, juice, and pomace. J. Food Sci. 2019, 84, 1791–1798. [Google Scholar] [CrossRef] [PubMed]
- De Souza, D.R.; Willems, J.L.; Low, N.H. Phenolic composition and antioxidant activities of saskatoon berry fruit and pomace. Food Chem. 2019, 290, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Diez-Sánchez, E.; Quiles, A.; Llorca, E.; Reiβner, A.-M.; Struck, S.; Rohm, H.; Hernando, I. Extruded flour as techno-functional ingredient in muffins with berry pomace. LWT 2019, 113, 108300. [Google Scholar] [CrossRef]
- Quiles, A.; Llorca, E.; Schmidt, C.; Reißner, A.-M.; Struck, S.; Rohm, H.; Hernando, I. Use of berry pomace to replace flour, fat or sugar in cakes. Int. J. Food Sci. Technol. 2018, 53, 1579–1587. [Google Scholar] [CrossRef]
- Ospina, M.; Montaña-Oviedo, K.; Díaz-Duque, Á.; Toloza-Daza, H.; Narváez-Cuenca, C.-E. Utilization of fruit pomace, overripe fruit, and bush pruning residues from Andes berry (Rubus glaucus Benth) as antioxidants in an oil in water emulsion. Food Chem. 2019, 281, 114–123. [Google Scholar] [CrossRef]
- Kulling, S.; Rawel, H. Chokeberry (Aronia melanocarpa)—A review on the characteristic components and potential health effects. Planta Med. 2008, 74, 1625–1634. [Google Scholar] [CrossRef] [Green Version]
- Kähkönen, M.P.; Hopia, A.I.; Heinonen, M. Berry phenolics and their antioxidant activity. J. Agric. Food Chem. 2001, 49, 4076–4082. [Google Scholar] [CrossRef]
- Chrubasik, C.; Li, G.; Chrubasik, S. The clinical effectiveness of chokeberry: A systematic review. Phyther. Res. 2010, 24, 1107–1114. [Google Scholar] [CrossRef] [Green Version]
- Issar, K.; Sharma, P.C.; Gupta, A. Utilization of apple pomace in the preparation of fiber-enriched acidophilus yoghurt. J. Food Process. Preserv. 2017, 41, e13098. [Google Scholar] [CrossRef]
- Wang, X.; Kristo, E.; LaPointe, G. Adding apple pomace as a functional ingredient in stirred-type yogurt and yogurt drinks. Food Hydrocoll. 2020, 100, 105453. [Google Scholar] [CrossRef]
- Wang, X.; Kristo, E.; LaPointe, G. The effect of apple pomace on the texture, rheology and microstructure of set type yogurt. Food Hydrocoll. 2019, 91, 83–91. [Google Scholar] [CrossRef]
- de Souza de Azevedo, P.O.; Aliakbarian, B.; Casazza, A.A.; LeBlanc, J.G.; Perego, P.; de Souza Oliveira, R.P. Production of fermented skim milk supplemented with different grape pomace extracts: Effect on viability and acidification performance of probiotic cultures. PharmaNutrition 2018, 6, 64–68. [Google Scholar] [CrossRef]
- Ni, H.; Hayes, H.E.; Stead, D.; Raikos, V. Incorporating salal berry (Gaultheria shallon) and blackcurrant (Ribes nigrum) pomace in yogurt for the development of a beverage with antidiabetic properties. Heliyon 2018, 4, e00875. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-Gutiérrez, J.L.; Plaza, L.; Hernando, I.; Sánchez-Moreno, C.; Quiles, A.; de Ancos, B.; Cano, M.P. Changes in the structure and antioxidant properties of onions by high pressure treatment. Food Funct. 2013, 4, 586. [Google Scholar] [CrossRef]
- San Martín, M.F.; Barbosa-Cánovas, G.V.; Swanson, B.G. Food processing by high hydrostatic pressure. Crit. Rev. Food Sci. Nutr. 2002, 42, 627–645. [Google Scholar] [CrossRef]
- Welti-Chanes, J.; López-Malo, A.; Palou, E.; Bermúdez, D.; Guerrero-Beltrán, J.A.; Barbosa-Cánovas, G.V. Fundamentals and applications of high pressure processing to foods. In Novel Food Processing Technologies; Barbosa-Cánovas, G.V., Tapia, M.S., Cano, M.P., Martín-Belloso, O., Martínez, A., Eds.; CRC Press: Boca Raton, FL, USA, 2005; pp. 164–170. ISBN 0-8257-5333-X. [Google Scholar]
- Reißner, A.M.; Al-Hamimi, S.; Quiles, A.; Schmidt, C.; Struck, S.; Hernando, I.; Turner, C.; Rohm, H. Composition and physicochemical properties of dried berry pomace. J. Sci. Food Agric. 2019, 99, 1284–1293. [Google Scholar] [CrossRef]
- Saucedo-Reyes, D.; Marco-Celdrán, A.; Pina-Pérez, M.C.; Rodrigo, D.; Martínez-López, A. Modeling survival of high hydrostatic pressure treated stationary- and exponential-phase Listeria innocua cells. Innov. Food Sci. Emerg. Technol. 2009, 10, 135–141. [Google Scholar] [CrossRef]
- Pina Pérez, M.C.; Rodrigo Aliaga, D.; Saucedo Reyes, D.; Martínez López, A. Pressure inactivation kinetics of Enterobacter sakazakii in infant formula milk. J. Food Prot. 2007, 70, 2281–2289. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-Carrión, M.; Sanz, T.; Hernando, I.; Llorca, E.; Fiszman, S.M.; Quiles, A. New formulations of functional white sauces enriched with red sweet pepper: A rheological, microstructural and sensory study. Eur. Food Res. Technol. 2015, 240, 1187–1202. [Google Scholar] [CrossRef]
- Murray, E.G.D.; Webb, R.A.; Swann, M.B.R. A disease of rabbits characterised by a large mononuclear leucocytosis, caused by a hitherto undescribed bacillus Bacterium monocytogenes (n.sp.). J. Pathol. Bacteriol. 1926, 29, 407–439. [Google Scholar] [CrossRef]
- Farber, J.M.; Peterkin, P.I. Listeria monocytogenes, a food-borne pathogen. Microbiol. Rev. 1991, 55, 476–511. [Google Scholar] [CrossRef] [Green Version]
- Pina-Pérez, M.C.; Silva-Angulo, A.B.; Muguerza-Marquínez, B.; Aliaga, D.R.; López, A.M. Synergistic effect of high hydrostatic pressure and natural antimicrobials on inactivation kinetics of bacillus cereus in a liquid whole egg and skim milk mixed beverage. Foodborne Pathog. Dis. 2009, 6, 649–656. [Google Scholar] [CrossRef]
- Barba, F.J.; Criado, M.N.; Belda-Galbis, C.M.; Esteve, M.J.; Rodrigo, D. Stevia rebaudiana Bertoni as a natural antioxidant/antimicrobial for high pressure processed fruit extract: Processing parameter optimization. Food Chem. 2014, 148, 261–267. [Google Scholar] [CrossRef]
- Tokuşoğlu, Ö. Effect of high hydrostatic pressure processing strategies on retention of antioxidant phenolic bioactives in foods and beverages—A review. Polish J. Food Nutr. Sci. 2016, 66, 243–251. [Google Scholar] [CrossRef]
- Andrés, V.; Villanueva, M.J.; Tenorio, M.D. The effect of high-pressure processing on colour, bioactive compounds, and antioxidant activity in smoothies during refrigerated storage. Food Chem. 2016, 192, 328–335. [Google Scholar] [CrossRef]
- Corrales, M.; Toepfl, S.; Butz, P.; Knorr, D.; Tauscher, B. Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: A comparison. Innov. Food Sci. Emerg. Technol. 2008, 9, 85–91. [Google Scholar] [CrossRef]
- Liu, S.; Xu, Q.; Li, X.; Wang, Y.; Zhu, J.; Ning, C.; Chang, X.; Meng, X. Effects of high hydrostatic pressure on physicochemical properties, enzymes activity, and antioxidant capacities of anthocyanins extracts of wild Lonicera caerulea berry. Innov. Food Sci. Emerg. Technol. 2016, 36, 48–58. [Google Scholar] [CrossRef]
- Barba, F.J.; Esteve, M.J.; Frigola, A. Ascorbic acid is the only bioactive that is better preserved by high hydrostatic pressure than by thermal treatment of a vegetable beverage. J. Agric. Food Chem. 2010, 58, 10070–10075. [Google Scholar] [CrossRef] [PubMed]
- Hurtado, A.; Guàrdia, M.D.; Picouet, P.; Jofré, A.; Ros, J.M.; Bañón, S. Stabilisation of red fruit-based smoothies by high-pressure processing. Part II: Effects on sensory quality and selected nutrients. J. Sci. Food Agric. 2017, 97, 777–783. [Google Scholar] [CrossRef]
- Patras, A.; Brunton, N.P.; Da Pieve, S.; Butler, F. Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purées. Innov. Food Sci. Emerg. Technol. 2009, 10, 308–313. [Google Scholar] [CrossRef]
- Waters, J.C. Accuracy and precision in quantitative fluorescence microscopy. J. Cell Biol. 2009, 185, 1135–1148. [Google Scholar] [CrossRef] [Green Version]
- Gao, G.; Ren, P.; Cao, X.; Yan, B.; Liao, X.; Sun, Z.; Wang, Y. Comparing quality changes of cupped strawberry treated by high hydrostatic pressure and thermal processing during storage. Food Bioprod. Process. 2016, 100, 221–229. [Google Scholar] [CrossRef]
- Hernández-Carrión, M.; Hernando, I.; Quiles, A. High hydrostatic pressure treatment as an alternative to pasteurization to maintain bioactive compound content and texture in red sweet pepper. Innov. Food Sci. Emerg. Technol. 2014, 26, 76–85. [Google Scholar] [CrossRef]
- Gonzalez, M.E.; Barrett, D.M. Thermal, high pressure, and electric field processing effects on plant cell membrane integrity and relevance to fruit and vegetable quality. J. Food Sci. 2010, 75, R121–R130. [Google Scholar] [CrossRef] [Green Version]
- Patterson, M.F. Microbiology of pressure-treated foods. J. Appl. Microbiol. 2005, 98, 1400–1409. [Google Scholar] [CrossRef]
- Ritz, M.; Tholozan, J.; Federighi, M.; Pilet, M. Physiological damages of Listeria monocytogenes treated by high hydrostatic pressure. Int. J. Food Microbiol. 2002, 79, 47–53. [Google Scholar] [CrossRef]
- Muñoz-Cuevas, M.; Guevara, L.; Aznar, A.; Martínez, A.; Periago, P.M.; Fernández, P.S. Characterisation of the resistance and the growth variability of Listeria monocytogenes after high hydrostatic pressure treatments. Food Control 2013, 29, 409–415. [Google Scholar] [CrossRef]
- Ferreira, M.; Almeida, A.; Delgadillo, I.; Saraiva, J.; Cunha, Â. Susceptibility of Listeria monocytogenes to high pressure processing: A review. Food Rev. Int. 2016, 32, 377–399. [Google Scholar] [CrossRef]
- Possas, A.; Pérez-Rodríguez, F.; Valero, A.; García-Gimeno, R.M. Modelling the inactivation of Listeria monocytogenes by high hydrostatic pressure processing in foods: A review. Trends Food Sci. Technol. 2017, 70, 45–55. [Google Scholar] [CrossRef]
- Bartkiene, E.; Lele, V.; Sakiene, V.; Zavistanaviciute, P.; Ruzauskas, M.; Bernatoniene, J.; Jakstas, V.; Viskelis, P.; Zadeike, D.; Juodeikiene, G. Improvement of the antimicrobial activity of lactic acid bacteria in combination with berries/fruits and dairy industry by-products. J. Sci. Food Agric. 2019, 99, 3992–4002. [Google Scholar] [CrossRef]
- Cisowska, A.; Wojnicz, D.; Hendrich, A.B. Anthocyanins as antimicrobial agents of natural plant origin. Nat. Prod. Commun. 2011, 6, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Nohynek, L.J.; Alakomi, H.-L.; Kähkönen, M.P.; Heinonen, M.; Helander, I.M.; Oksman-Caldentey, K.-M.; Puupponen-Pimiä, R.H. Berry phenolics: Antimicrobial properties and mechanisms of action against severe human pathogens. Nutr. Cancer 2006, 54, 18–32. [Google Scholar] [CrossRef]
- Evrendilek, G.A.; Balasubramaniam, V.M. Inactivation of Listeria monocytogenes and Listeria innocua in yogurt drink applying combination of high pressure processing and mint essential oils. Food Control 2011, 22, 1435–1441. [Google Scholar] [CrossRef]
- Vurma, M.; Chung, Y.-K.; Shellhammer, T.H.; Turek, E.J.; Yousef, A.E. Use of phenolic compounds for sensitizing Listeria monocytogenes to high-pressure processing. Int. J. Food Microbiol. 2006, 106, 263–269. [Google Scholar] [CrossRef]
- Gervilla, R.; Capellas, M.; Ferragut, V.; Guamis, B. Effect of high hydrostatic pressure on Listeria innocua 910 CECT inoculated into ewe’s milk. J. Food Prot. 1997, 60, 33–37. [Google Scholar] [CrossRef]
- Black, E.P.; Huppertz, T.; Fitzgerald, G.F.; Kelly, A.L. Baroprotection of vegetative bacteria by milk constituents: A study of Listeria innocua. Int. Dairy J. 2007, 17, 104–110. [Google Scholar] [CrossRef]
- Bordenave, N.; Hamaker, B.R.; Ferruzzi, M.G. Nature and consequences of non-covalent interactions between flavonoids and macronutrients in foods. Food Funct. 2014, 5, 18–34. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yu, D.; Sun, J.; Liu, X.; Jiang, L.; Guo, H.; Ren, F. Interaction of plant phenols with food macronutrients: Characterisation and nutritional–physiological consequences. Nutr. Res. Rev. 2014, 27, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakobek, L. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem. 2015, 175, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Tadapaneni, R.K.; Banaszewski, K.; Patazca, E.; Edirisinghe, I.; Cappozzo, J.; Jackson, L.; Burton-Freeman, B. Effect of high-pressure processing and milk on the anthocyanin composition and antioxidant capacity of strawberry-based beverages. J. Agric. Food Chem. 2012, 60, 5795–5802. [Google Scholar] [CrossRef] [PubMed]
- Chawla, R.; Patil, G.R.; Singh, A.K. High hydrostatic pressure technology in dairy processing: A review. J. Food Sci. Technol. 2011, 48, 260–268. [Google Scholar] [CrossRef] [Green Version]
Run | Pressure (MPa) (X1) | Time (min) (X2) | Chokeberry Pomace (% (w/v)) |
---|---|---|---|
1 | 500 | 1 | 2.5 |
2 | 350 | 10 | 6.25 |
3 | 500 | 5.5 | 6.25 |
4 a | 350 | 5.5 | 6.25 |
5 | 500 | 10 | 10 |
6 | 350 | 5.5 | 2.5 |
7 | 350 | 5.5 | 10 |
8 | 350 | 1 | 6.25 |
9 | 200 | 10 | 10 |
10 | 500 | 10 | 2.5 |
11 | 200 | 5.5 | 6.25 |
12 | 200 | 10 | 2.5 |
13 | 350 | 5.5 | 6.25 |
14 | 200 | 1 | 10 |
15 | 200 | 1 | 2.5 |
16 | 500 | 1 | 10 |
Pressure (MPa) | Time (min) | Chokeberry Pomace % (w/v) | TPC (mg GAE/100 mL) | AC (µmol Trolox/mL) | Inactivation Log10 (N/N0) |
---|---|---|---|---|---|
0 | 0 | 2.5 | 53.02 ± 0.14 | 6.06 ± 0.14 | - |
6.25 | 73.92 ± 3.17 | 9.27 ± 0.20 | - | ||
10 | 121.16 ± 0.31 | 14.89 ± 0.30 | - | ||
200 | 1 | 2.5 | 49.39 ± 2.24 | 5.02 ± 0.34 | 0.01 ± 0.08 |
10 | 130.20 ± 3.46 | 17.3 ± 1.08 | −0.18 ± 0.04 | ||
5.5 | 6.25 | 136.79 ± 8.06 | 11.79 ± 0.99 | −0.20 ± 0.08 | |
10 | 2.5 | 50.54 ± 4.64 | 4.80 ± 0.16 | 0.06 ± 0.12 | |
10 | 132.85 ± 2.31 | 13.98 ± 0.49 | −0.11 ± 0.06 | ||
350 | 1 | 6.25 | 84.32 ± 2.59 | 10.13 ± 0.79 | −0.20 ± 0.06 |
5.5 | 2.5 | 42.45 ± 2.89 | 4.77 ± 0.39 | −0.25 ± 0.14 | |
6.25 a | 78.54 ± 3.39 a | 7.58 ± 0.41 a | −0.21 ± 0.19 a | ||
6.25 | 106.14 ± 4.28 | 8.54 ± 0.03 | −0.33 ± 0.09 | ||
10 | 124.96 ± 3.78 | 16.45 ± 0.10 | −0.55 ± 0.05 | ||
10 | 6.25 | 101.92 ± 5.70 | 16.53 ± 0.78 | −0.33 ± 0.32 | |
500 | 1 | 2.5 | 54.14 ± 0.61 | 5.7 ± 0.45 | −0.44 ± 0.05 |
10 | 155.28 ± 2.07 | 16.36 ± 0.35 | −0.67 ± 0.08 | ||
5.5 | 6.25 | 97.17 ± 7.09 | 11.33 ± 2.03 | −0.87 ± 0.06 | |
10 | 2.5 | 58.36 ± 2.97 | 6.69 ± 0.19 | −3.63 ± 0.08 | |
10 | 134.17 ± 1.57 | 14.79 ± 0.76 | −4.02 ± 0.15 |
Response | Predicted | Lower 95.0% Limit | Upper 95.0% Limit |
---|---|---|---|
TPC (mg GAE/100 mL) | 138.33 | 125.68 | 150.99 |
AC (µmol Trolox/mL) | 15.92 | 14.13 | 17.72 |
Log10 (N/N0) | −3.15 | −3.96 | −2.34 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diez-Sánchez, E.; Martínez, A.; Rodrigo, D.; Quiles, A.; Hernando, I. Optimizing High Pressure Processing Parameters to Produce Milkshakes Using Chokeberry Pomace. Foods 2020, 9, 405. https://doi.org/10.3390/foods9040405
Diez-Sánchez E, Martínez A, Rodrigo D, Quiles A, Hernando I. Optimizing High Pressure Processing Parameters to Produce Milkshakes Using Chokeberry Pomace. Foods. 2020; 9(4):405. https://doi.org/10.3390/foods9040405
Chicago/Turabian StyleDiez-Sánchez, Elena, Antonio Martínez, Dolores Rodrigo, Amparo Quiles, and Isabel Hernando. 2020. "Optimizing High Pressure Processing Parameters to Produce Milkshakes Using Chokeberry Pomace" Foods 9, no. 4: 405. https://doi.org/10.3390/foods9040405
APA StyleDiez-Sánchez, E., Martínez, A., Rodrigo, D., Quiles, A., & Hernando, I. (2020). Optimizing High Pressure Processing Parameters to Produce Milkshakes Using Chokeberry Pomace. Foods, 9(4), 405. https://doi.org/10.3390/foods9040405