Phenolic Acids of Plant Origin—A Review on Their Antioxidant Activity In Vitro (O/W Emulsion Systems) Along with Their in Vivo Health Biochemical Properties
Abstract
:1. Introduction and Target of This Review
2. Natural Sources and Antioxidant Activities of Phenolic Acids in Food Emulsions
2.1. Caffeic Cid (CA)
2.2. Gallic Acid (GA)
2.3. Rosmarinic Acid (RA)
2.4. Carnosic Acid (CarA)
2.5. Ferulic Acid (FA)
2.6. p-Coumaric Acid (p-CA)
2.7. Vanillic Acid (VA)
3. Health and Biochemical Properties of Phenolic Acids and Their Natural Extracts
3.1. General Health Aspects of Phenolic Acids
3.2. Caffeic Acid (CA) and its Esters
3.3. Carnosic Acid (CarA)
3.4. Gallic Acid
3.5. Ferulic Acid (FA)
3.6. p-Coumaric Acid (p-CA)
3.7. Rosmarinic Acid (RA)
3.8. Vanillic Acid (VA)
3.9. Natural Extracts as Mixtures of Phenolic Acids
4. Conclusions and Future Challenges
4.1. Activities of Phenolic Acids in O/W Emulsions
4.2. Health Biochemical Properties of Phenolic Acids
Author Contributions
Funding
Conflicts of Interest
References
- Κiokias, S.; Varzakas, T. Activity of flavonoids and beta-carotene during the auto-oxidative deterioration of model food oil-in water emulsions. Food Chem. 2014, 150, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Liudvinaviciute, D.; Rutkaite, R.; Bendoraitiene, J.; Klimaviciute, R. Thermogravimetric analysis of caffeic and rosmarinic acid containing chitosan complexes. Carbohyd. Polym. 2019, 222, 115003. [Google Scholar] [CrossRef]
- Lisete-Torres, P.; Losada-Barreiro, S.; Albuquerque, H.; Sánchez-Paz, V.; Paiva-Martins, F.; Bravo-Díaz, C. Distribution of hydroxytyrosol and hydroxytyrosol acetate in olive oil emulsions and their antioxidant efficiency. J. Agric. Food Chem. 2012, 60, 7318–7325. [Google Scholar] [CrossRef] [PubMed]
- Terpinc, P.; Polak, T.; Šegatin, N.; Hanzlowsky, A. Antioxidant properties of 4-vinyl derivatives of hydroxycinnamic acid. Food Chem. 2011, 128, 62–69. [Google Scholar] [CrossRef]
- Phonsatta, N.; Deetae, P.; Luangpituksa, P.; Grajeda-Iglesias, C.; Figueroa-Espinoza, M.C.; Le Comte, J.; Villeneuve, P.; Decker, E.A.; Visessanguan, W.; Panya, A. Comparison of antioxidant evaluation assays for investigating antioxidative activity of gallic acid and its alkyl esters in different food matrices. J. Agric. Food Chem. 2017, 65, 7509–7518. [Google Scholar] [CrossRef] [PubMed]
- Waraho, T.; McClements, D.-J.; Decker, E.-A. Mechanisms of lipid oxidation in food dispersions. Trends Food Sci. Technol. 2011, 22, 3–13. [Google Scholar] [CrossRef]
- Dimakou, C.; Oreopoulou, V. Antioxidant activity of carotenoids against the oxidative destabilization of sunflower oil-in-water emulsions. LWT-Food Sci. Technol. 2012, 46, 393–400. [Google Scholar] [CrossRef]
- Charoen, R.; Jangchud, A.; Jangchud, K.; Harnsilawat, T.; Naivikul, O.; McClements, D.-J. Influence of interfacial composition on oxidative stability of oil-in-water emulsions stabilized by biopolymer emulsifiers. Food Chem. 2012, 131, 1340–1346. [Google Scholar] [CrossRef]
- Poyato, C.; Navarro-Blasco, I.; Calvo, M.I.; Cavero, R.Y.; Astiasarán, I.; Ansorena, D. Oxidative stability of O/W and W/O/W emulsions: Effect of lipid composition and antioxidant polarity. Food Res. Intern. 2013, 51, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Shahidi, F. Antioxidant behavior in bulk oil: Limitations of polar paradox theory. J. Agric. Food Chem. 2012, 60, 4–6. [Google Scholar] [CrossRef]
- Kiokias, S.; Varzakas, T. Innovative applications of food related emulsions. Crit. Rev. Food Sci. Nutr. 2017, 57, 3165–3172. [Google Scholar] [CrossRef] [PubMed]
- Kiokias, S.; Gordon, M.; Oreopoulou, V. Compositional and processing factors that monitor oxidative deterioration of food relevant protein stabilised emulsions. Crit. Rev. Food Sci. Nutr. 2017, 57, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Axmann, M.; Strobl, W.-M.; Plochberger, B.; Stangl, H. Cholesterol transfer at the plasma membrane. Atherosclerosis 2019, 290, 111–117. [Google Scholar] [CrossRef]
- Kiokias, S.; Proestos, C.; Oreopoulou, V. Effect of natural Food Antioxidants against LDL and DNA Oxidative damages. Antioxidants 2018, 7, 133. [Google Scholar] [CrossRef] [Green Version]
- Kiokias, S. Antioxidant effects of vitamins C, E and provitamin A compounds as monitored by use of biochemical oxidative indicators linked to atherosclerosis and carcinogenesis. Int. J. Nutr. Res. 2019, 1, 1–13. [Google Scholar]
- Dalbem, L.; Costa Monteiro, C.-M.; Anderson, J.-T. Anticancer properties of hydroxycinnamic acids-A Review. Canc. Clinic. Oncol. 2012, 1, 109–121. [Google Scholar]
- Bojić, M.; HaasŠ, V.-S.; arić, D.; Maleš, Z. Determination of flavonoids, phenolic acids, and xanthines in Mate tea (Ilex paraguariensis St.-Hil.). J. Anal. Methods Chem. 2013, 6, 1–6. [Google Scholar]
- Berté, K.-A.; Beux, M.-R.; Spada, P.-K.; Salvador, M.; Hoffmann-Ribani, R. Chemical composition and antioxidant activity of yerba-mate (Ilex paraguariensis A. St.-Hil., Aquifoliaceae) extract as obtained by spray drying. J. Agric. Food Chem. 2011, 59, 5523–5527. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, S.-Y. Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem. 2001, 49, 5165–5170. [Google Scholar] [CrossRef]
- Da Silva, A.B.; Koistinen, V.M.; Mena, P.; Bronze, M.R.; Hanhineva, K.; Sahlstrøm, S.; Kitrytė, V.; Moco, S.; Aura, A.-M. Factors affecting intake, metabolism and health benefits of phenolic acids: Do we understand individual variability? Eur. J. Nutr. 2019, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Dezsi, S.; Bădărău, A.-S.; Bischin, C.; Vodna, D.-C.; Dumitrescu, R.-S.; Gheldiu, A.-M.; Mocan, A.; Laurian, V. Antimicrobial and antioxidant activities and phenolic profile of Eucalyptus globulus. Molecules 2015, 20, 4720–4734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deotale, S.M.; Dutta, S.; Moses, J.A.; Anandharamakrishnan, C. Coffee oil as a natural surfactant. Food Chem. 2019, 295, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Boke, S.; Goren, A.C.; Kirmizigul, S. Simultaneous determination of several flavonoids and phenolic compounds in nineteen different Cephalaria species by HPLC-MS/MS. J. Pharm. Biomed. Anal. 2019, 173, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Conde, E.; Gordon, M.-H.; Moure, A.; Dominguez, H. Effects of caffeic acid and bovine serum albumin in reducing the rate of development of rancidity in oil-in-water and water-in-oil emulsions. Food Chem. 2011, 129, 1652–1659. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, A.D.; Villeneuve, P.; Jacobsen, C. Alkyl caffeates as antioxidants in O/W emulsions: Impact of emulsifier type and endogenous tocopherols. Eur. J. Lipid Sci. Technol. 2017, 119, 6. [Google Scholar] [CrossRef] [Green Version]
- Pandurangan, A.-K.; Mohebali, N.; Norhaizan, M.-E.; Looi, C.-Y. Gallic acid attenuates dextran sulfate sodium-induced experimental colitis in BALB/c mice”. Drug Des. Dev. Ther. 2015, 9, 3923–3934. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; A Carver, J.; Calabrese, A.N.; Pukala, T.L. Gallic acid interacts with α-synuclein to prevent the structural collapse necessary for its aggregation. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2014, 1844, 1481–1485. [Google Scholar] [CrossRef]
- Zucca, P.; Antonella, R.; Tuberoso, C.; Piras, A.; Rinaldi, A.; Sanjust, E.; Dessì, M.; Rescigno, A. Evaluation of Antioxidant Potential of “Maltese Mushroom” (Cynomorium coccineum) by means of multiple chemical and biological assays”. Nutrients 2013, 5, 149–161. [Google Scholar] [CrossRef] [Green Version]
- Souza, M.-C.; Santos, M.-P.; Sumere, B.-P.; Silva, L.-C.; Cunha, D.-T.; Martínez, J.; Barbero, F.-G.; Rostagno, M.-A. Isolation of gallic acid, caffeine and flavonols from black tea by on-line coupling of pressurized liquid extraction with an adsorbent for the production of functional bakery products. LWT Food Sci. Technol. 2020, 117, 108661. [Google Scholar] [CrossRef]
- Bou, R.; Boo, C.; Kwek, A.; Hidalgo, D.; Decke, E.A. Effect of different antioxidants on lycopene degradation in oil-in-water emulsions. Eur. J. Lipid Sci. Technol. 2011, 113, 724–729. [Google Scholar] [CrossRef]
- Alavi Rafiee, S.; Farhoosh, R.; Sharif, A. Antioxidant activity of gallic acid as affected by an extra carboxyl group than pyrogallol in various oxidative environments. Eur. J. Lipid Sci. Technol. 2018, 120, 1800319. [Google Scholar] [CrossRef]
- Di Mattia, C.; Sacchetti, G.; Pittia, P.; Mastrocola, D. Effect of phenolic antioxidants on the dispersion state and chemical stability of olive oil O/W emulsions. Food Res. Int. 2009, 42, 1163–1170. [Google Scholar] [CrossRef]
- Zhu, M.; Wu, C.; Chen, Y.; Xie, M. Antioxidant effects of different polar gallic acid and its alkyl esters in oil-in-water emulsions. J. Chin. Inst. Food Sci. Technol. 2019, 19, 13–22. [Google Scholar]
- Wang, Y.; Wu, C.; Zhou, X.; Zhang, M.; Chen, Y.; Nie, S.; Xie, M. Combined application of gallate ester and α-tocopherol in oil-in-water emulsion: Their distribution and antioxidant efficiency. J. Dispers. Sci. Technol. 2019, 1–9. [Google Scholar] [CrossRef]
- Evageliou, V.; Panagopoulou, E.; Mandala, I. Encapsulation of EGCG and esterified EGCG derivatives in double emulsions containing whey protein isolate, bacterial cellulose and salt. Food Chem. 2019, 281, 171–177. [Google Scholar] [CrossRef]
- Oreopoulou, A.; Papavassilopoulou, E.; Bardouki, H.; Vamvakias, M.; Bimpilas, A.; Oreopoulou, V. Antioxidant recovery from hydrodistillation residues of selected Lamiaceae species by alkaline extraction. J. Appl. Res. Med. Aromat. Plants 2018, 8, 83–89. [Google Scholar] [CrossRef]
- Stansbury, J. Rosmarinic acid as a novel agent in the treatment of allergies and asthma. J. Restor. Med. 2014, 3, 121. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.-L.; Rejueiro, J.; Martínez-Huélamo, M.; Alvarenga, J.-F.; Leal, L.-N.; Lamuela-Raventos, R.-M. A comprehensive study on the phenolic profile of widely used culinary herbs and spices: Rosemary, thyme, oregano, cinnamon, cumin and bay. Food Chem. 2014, 154, 299–307. [Google Scholar] [CrossRef]
- Yashin, A.; Yashin, Y.; Xia, X.; Nemzer, B. Antioxidant activity of spices and their impact on human health: A review. Antioxidants 2017, 6, 70. [Google Scholar] [CrossRef] [Green Version]
- Tsimogiannis, D.; Choulitoudi, E.; Bimpilas, A.; Mitropoulou, G.; Kourkoutas, Y.; Oreopoulou, V. Exploitation of the biological potential of Satureja thymbra essential oil and distillation by-products. J. Appl. Res. Med. Aromat Plants 2016, 4, 12–20. [Google Scholar] [CrossRef]
- Alamed, J.; Chaiyasit, W.; McClements, D.-J.; Decker, E.-A. Relationships between free radical scavenging and antioxidant activity in foods. J. Agric. Food Chem. 2009, 57, 2969–2976. [Google Scholar] [CrossRef] [PubMed]
- Panya, A.; Kittipongpittaya, K.; Laguerre, M.; Bayrasy, C.; Lecomte, J.; Villeneuve, P.; Decker, E.-A. Interactions between α-tocopherol and rosmarinic acid and its alkyl esters in emulsions: Synergistic, additive, or antagonistic effect? J. Agric. Food Chem. 2012, 60, 10320–10330. [Google Scholar] [CrossRef] [PubMed]
- Bakota, E.-L.; Winkler-Moser, J.-K.; Berhow, M.-A.; Eller, F.-J.; Vaughn, S.-F. Antioxidant activity and sensory evaluation of a rosmarinic acid-enriched extract of Salvia officinalis. J. Food Sci. 2015, 80, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Loussouarn, M.; Krieger-Liszkay, A.; Svilar, L.; Bily, A.; Birtić, S.; Havaux, M. Carnosic acid and carnosol, two major antioxidants of rosemary, act through different mechanisms. Plant Physiol. 2017, 175, 381–1394. [Google Scholar] [CrossRef] [Green Version]
- Raes, K.; Doolaege, E.H.; Deman, S.; Vossen, E.; De Smet, S. Effect of carnosic acid, quercetin and α-tocopherol on lipid and protein oxidation in anin vitrosimulated gastric digestion model. Int. J. Food Sci. Nutr. 2015, 66, 216–221. [Google Scholar] [CrossRef]
- Li, Z.; Feng, Y.; Lei, Y.; Yuan, Z. Comparison of the antioxidant effects of carnosic acid and synthetic antioxidants on tara seed oil. Chem. Cent. J. 2018, 12, 37. [Google Scholar] [CrossRef] [Green Version]
- Frankel, E.N.; Huang, S.-W.; Aeschbach, R.; Prior, E. Antioxidant Activity of a Rosemary Extract and Its Constituents, Carnosic Acid, Carnosol, and Rosmarinic Acid, in Bulk Oil and Oil-in-Water Emulsion. J. Agric. Food Chem. 1996, 44, 131–135. [Google Scholar] [CrossRef]
- Gallego, G.; Gordon, M.H.; Segovia, F.J.; Skowyra, M.; Almajano, M.P. Antioxidant Properties of Three Aromatic Herbs (Rosemary, Thyme and Lavender) in Oil-in-Water Emulsions. J. Am. Oil Chem. Soc. 2013, 90, 1559–1568. [Google Scholar] [CrossRef]
- Gallego, M.-G.; Hakkarainen, M.; Almajano, M.-P. Stability of O/W emulsions packed with PLA film with incorporated rosemary and thyme. Eur. Food Res. Technol. 2017, 243, 1249–1259. [Google Scholar] [CrossRef]
- Lei, C.; Tang, X.; Chen, M.; Chen, H.; Yu, S. Alpha-tocopherol-based microemulsion improving the stability of carnosic acid and its electrochemical analysis of antioxidant activity. Coll. Surf. A Phys. Eng. Aspects 2019, 580, 123708. [Google Scholar] [CrossRef]
- Birtić, S.; Dussort, P.; Pierre, F.-X.; Bily, A.-C.; Roller, M. Carnosic acid. Phytochemistry 2015, 115, 9–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, N.; Vikas, P. Potential applications of ferulic acid from natural sources. BioTechnol. Rep. 2014, 4, 86–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagchi, D.; Moriyama, H.; Swaroop, A. Green Coffee Bean Extract in Human Health; CRC Press: Boca Raton, FL, USA, 2016; p. 92. [Google Scholar]
- Mojica, L.; Meyer, A.; Berhow, M.; González, E. Bean cultivars (Phaseolus vulgaris L.) have similar high antioxidant capacity, in vitro inhibition of α-amylase and α-glucosidase while diverse phenolic composition and concentration. Food Res. Intern. 2015, 69, 38–48. [Google Scholar] [CrossRef]
- Luthria, D.-L.; Pastor-Corrales, A.-M. Phenolic acids content of fifteen dry edible bean (Phaseolus vulgaris L.) varieties. J. Food Compos. Anal. 2006, 19, 205–211. [Google Scholar] [CrossRef]
- Oehlke, K.; Heins, A.; Stöckmann, H.; Schwarz, K. Impact of emulsifier microenvironments on acid–base equilibrium and activity of antioxidants. Food Chem. 2010, 118, 48–55. [Google Scholar] [CrossRef]
- Maqsood, S.; Benjakul, S. Comparative studies of four different phenolic compounds on in vitro antioxidative activity and the preventive effect on lipid oxidation of fish oil emulsion and fish mince. Food Chem. 2010, 119, 123–132. [Google Scholar] [CrossRef]
- Shin, J.-A.; Jeong, S.-H.; Jia, C.-H.; Hong, S.-T.; Lee, K.-T. Comparison of antioxidant capacity of 4-vinylguaiacol with catechin and ferulic acid in oil-in-water emulsion. Food Sci. Biotech. 2019, 28, 35–41. [Google Scholar] [CrossRef]
- Permin, A.; Bosc, V.; Soto, P.; Le Roux, E.; Maillard, M.-N. Lipid oxidation in oil-in-water emulsions rich in omega-3: Effect of aqueous phase viscosity, emulsifiers, and antioxidants. Eur. J. Lipid Sci. Technol. 2019, 121, 9. [Google Scholar]
- Trisha, S. Role of hesperdin, luteolin and coumaric acid in arthritis management: A Review. Inter. J. Phys. Nutr. Phys. Educ. 2018, 3, 1183–1186. [Google Scholar]
- Kehan, P.; Juanying, O.; Shiyi, O. p-Coumaric acid and its conjugates: Dietary sources, pharmacokinetic properties and biological activities. J. Sci. Food Agric. 2016, 96, 2952–2962. [Google Scholar]
- Nesovic, M.; Tosti, T.; Trifkovi, J.; Baosic, R.; Blagojevic, S.; Ignjatovic, L.; Tesic, Z. Physicochemical analysis and phenolic profile of polyfloral and honeydew honey from Montenegro. RSC Adv. 2020, 10, 2462. [Google Scholar] [CrossRef] [Green Version]
- Kannan, R.-R.; Arumugam, R.; Thangaradjou, R.; Thirunavukarasu, T.; Perumal, A. Phytochemical constituents, antioxidant properties and p-coumaric acid analysis in some seagrasses. Food Res. Intern. 2013, 54, 1229–1236. [Google Scholar] [CrossRef]
- Kavita, P.; Puneet, G. Rediscovering the therapeutic potential of Amaranthus species: A review. Egyp. J. Basic Appl. Sci. 2017, 3, 196–205. [Google Scholar]
- Pasko, P.; Sajewicz, M.; Corinstein, S.; Zachwieja, Z. Analysis of selected phenolic acids and flavonoids in Amaranthus cruentus and Chenopodium quinoa seeds and sprouts by HPLC. Acta Chromatogr. 2008, 20, 661–672. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.; Kim, M.-J.; Park, K.-W.; Lee, J.-H. Antioxidant properties of aqueous extract of roasted hulled barley in bulk oil or oil-in-water emulsion matrix. J. Food Sci. 2015, 80, 11. [Google Scholar] [CrossRef] [PubMed]
- Kiliç, I.; Yeşiloğlu, Y. Spectroscopic studies on the antioxidant activity of p-coumaric acid. Spectrochim Acta A Mol. Biomol. Spectrosc. 2013, 115, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Zhigang, H.; Shengguan, C.; Xuelei, Z.; Qiufeng, Q.; Huang, Y.; Dai, F.; Guoping, Z. Development of predictive models for total phenolics and free p-coumaric acid contents in barley grain by near-infrared spectroscopy. Food Chem. 2017, 227, 342–348. [Google Scholar]
- Park, J.; Gim, S.-Y.; Jeon, J.-Y.; Kim, M.-J.; Choi, H.-K.; Lee, J. Chemical profiles and antioxidant properties of roasted rice hull extracts in bulk oil and oil-in-water emulsion. Food Chem. 2019, 272, 242–250. [Google Scholar] [CrossRef]
- Siriamornpun, S.; Kaewseejan, N. Quality, bioactive compounds and antioxidant capacity of selected climacteric fruits with relation to their maturity Sci. Hortic. 2017, 221, 33–42. [Google Scholar] [CrossRef]
- European Medicinal Agency. Assessment Report on Angelica sinensis (Oliv.) Diels, radix. Committee on Herbal Medicinal Products (HMPC). 2013. EMA/HMPC/614586/2012. Available online: https://www.ema.europa.eu/en/documents/herbal-report/final-assessment-report-angelica-sinensis-oliv-diels-radix-first-version_en.pdf (accessed on 23 March 2019).
- Kim, J.; Soh, S.-Y.; Bae, H.; Nam, S.-Y. Antioxidant and phenolic contents in potatoes (Solanum tuberosum L.) and micropropagated potatoes. Appl. Biol. Chem. 2019, 62, 1. [Google Scholar] [CrossRef]
- Espinosa, R.R.; Inchingolo, R.; Alencar, S.-M.; Rodriguez-Estrada, M.-T.; Castro, I.A. Antioxidant activity of phenolic compounds added to a functional emulsion containing omega-3 fatty acids and plant sterol esters. Food Chem. 2018, 182, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Palencia, L.A.; Mertens-Talcott, S.U.; Talcott, S.T. Chemical Composition, Antioxidant Properties, and Thermal Stability of a Phytochemical Enriched Oil from Açai (Euterpe oleraceaMart.). J. Agric. Food Chem. 2008, 56, 4631–4636. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Yuan Jia, Y.; Lu, F. Angelica stem: A potential low-cost source of bioactive phthalides and phytosterols. Molecules 2018, 23, 3065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radmanesh, E.; Dianat, M.; Badavi, M.; Goudarzi, G.; Mard, S.A. The cardio protective effect of vanillic acid on hemodynamic parameters, malondialdehyde, and infract size in ischemia-reperfusion isolated rat heart exposed to PM. Iran J. Basic Med. Sci. 2017, 20, 760–768. [Google Scholar]
- Keller, S.; Locquet, N.; Cuvelier, M.-E. Partitioning of vanillic acid in oil-in-water emulsions: Impact of the Tween®40 emulsifier. Food Res. Int. 2016, 88, 61–69. [Google Scholar] [CrossRef]
- Vishnu, K.-V.; Chatterjee, N.-S.; Ajeeshkumar, K.-K.; Lekshmi, R.-K.; Tejpal, C.-S.; Mathew, S.; Ravishankar, C.N. Microencapsulation of sardine oil: Application of vanillic acid grafted chitosan as a bio-functional wall material. Carbohydr. Polym. 2017, 174, 540–548. [Google Scholar] [CrossRef]
- Mancuso, C.; Santangelo, R. Ferulic acid: Pharmacological and toxicological aspects. Food Chem. Toxicol. 2014, 65, 185–195. [Google Scholar] [CrossRef]
- Sgarbossa, A.; Giacomazza, D.; Martadi, C. Ferulic acid: A hope for Alzheimer’s disease therapy from plants. Nutrients 2015, 7, 5764–5782. [Google Scholar] [CrossRef]
- Ferreira, C.-S.; Pereyra, A.; Patriarca, A.; Mazzobre, M.-F.; Polak, T.; Abram, V.; Buera, M.-P.; Ulrih, N.-P. Phenolic compounds in extracts from Eucalyptus globulus leaves and Calendula officinalis flowers. J. Nat. Prod. Res. 2016, 2, 53–55. [Google Scholar]
- Manuja, R.; Sachdeva, S.; Jain, A.; Chaudhary, J. A comprehensive review on biological activities of p-hydroxy benzoic acid and its derivatives. Int. J. Pharm. Sci. Rev. Res. 2013, 22, 109–115. [Google Scholar]
- Rosa, L.-S.; Silva, N.-J.; Soares, N.-C.; Monteiro, M.-C.; Teodoro, A.-J. Anticancer properties of phenolic acids in colon cancer–A review. J. Nutr. Food Sci. 2016, 6, 2. [Google Scholar]
- Vinayagam, R.; Jayachandran, M.; Xu, B. Antidiabetic effects of simple phenolic acids: A comprehensive review. Phytother. Res. 2016, 30, 184–199. [Google Scholar] [CrossRef]
- Shahidi, F.; Ju Dong, Y. Bioactivities of phenolics by focusing on suppression of chronic diseases: A Review. Int. J. Mol. Sci. 2018, 19, 1573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chisvert, A.; Salvador, A. Cosmetic ingredients: From the cosmetic to the human body and the environment. Anal. Methods 2012, 5, 309–310. [Google Scholar] [CrossRef]
- Magnani, C.; Isaac, V.-L.; Correa, M.-A.; Salgado, H.-R. Caffeic acid: A review of its potential use in medications and cosmetics. Anal. Methods 2014, 6, 3203–3210. [Google Scholar] [CrossRef]
- De Oliveira, N.C.; Sarmento, M.S.; Nunes, E.; Porto, C.M.; Rosa, D.P.; Bona, S.; Rodrigues, G.; Marroni, N.P.; Pereira, P.; Picada, J.N.; et al. Rosmarinic acid as a protective agent against genotoxicity of ethanol in mice. Food Chem. Toxicol. 2012, 50, 1208–1214. [Google Scholar] [CrossRef]
- Paulo, F.; Santos, L. Microencapsulation of caffeic acid and its release using a w/o/w double emulsion method: Assessment of formulation parameters. Dry. Technol. 2019, 37, 950–961. [Google Scholar] [CrossRef]
- Sidoryk, K.; Jaromin, A.; Filipczak, N.; Cmoch, P.; Cybulski, M. Synthesis and antioxidant activity of caffeic acid derivatives. Molecules 2018, 23, 2199. [Google Scholar] [CrossRef] [Green Version]
- Espíndola, K.M.M.; Ferreira, R.G.; Narvaez, L.E.M.; Rosario, A.C.R.S.; Da Silva, A.H.M.; Silva, A.G.B.; Vieira, A.P.O.; Monteiro, M.C. Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front. Oncol. 2019, 9, 541. [Google Scholar] [CrossRef] [Green Version]
- Macías-Pérez, J.R.; Ramírez-Bello, J.; Vásquez-Garzón, V.R.; Salcido-Neyoy, M.E.; Martínez-Soriano, P.A.; Ruiz-Sánchez, M.B.; Angeles, E.; Villa-Treviño, S. The effect of caffeic acid phenethyl ester analogues in a modified resistant hepatocyte model. Anticancer Drugs 2013, 24, 394–405. [Google Scholar] [CrossRef]
- Guan, Y.; Chen, H.; Zhong, Q. Nanoencapsulation of caffeic acid phenethyl ester in sucrose fatty acid esters to improve activities against cancer cells. J. Food Eng. 2019, 246, 125–133. [Google Scholar] [CrossRef]
- Gießel, J.-M.; Loesche, A.; Csuk, R. Caffeic acid phenethyl ester (CAPE)-derivatives act as selective inhibitors of acetylcholinesterase. Eur. J. Med. Chem. 2019, 177, 259–268. [Google Scholar] [CrossRef]
- Koru, F.; Avcu, M.; Tanyuksel, A.; Ural, U.R.; Araz, E.; Sener, K. Cytotoxic effects of caffeic acid phenethyl ester (CAPE) on the human multiple myeloma cell line. Turk. J. Med. Sci. 2009, 39, 863–870. [Google Scholar]
- Zhang, Z.; Wang, D.; Qiao, S.; Wu, X.; Cao, S.; Wang, L.; Su, X.; Li, L. Metabolic and microbial signatures in rat hepatocellular carcinoma treated with caffeic acid and chlorogenic acid. Sci. Rep. 2017, 7, 4508. [Google Scholar] [CrossRef] [PubMed]
- Greenhill, C. Carnosic acid could be a new treatment option for patients with NAFLD or the metabolic syndrome. Nat. Rev. Gastroenterol. Hepatol. 2011, 8, 122. [Google Scholar] [CrossRef]
- Dickmann, L.-J.; VandenBrin, B.-M.; Lin, Y.-S. In vitro hepatotoxicity and cytochrome P450 induction and inhibition characteristics of carnosic acid, a dietary supplement with antiadipogenic properties. Drug Metab. Dispos. 2012, 40, 1263–1267. [Google Scholar] [CrossRef] [Green Version]
- Bahri, S.; Jameleddine, S.; Shlyonsky, V. Relevance of carnosic acid to the treatment of several health disorders: Molecular targets and mechanisms. Biomed. Pharmacother. 2016, 84, 569–582. [Google Scholar] [CrossRef]
- Einbond, L.-S.; Wu, H.-A.; Kashiwazaki, R.; He, K.; Roller, M.; Su, T.; Wang, X.; Goldsberry, S. Carnosic acid inhibits the growth of ER-negative human breast cancer cells and synergizes with curcumin. Fitoterapia 2012, 83, 1160–1168. [Google Scholar] [CrossRef]
- Solomonov, Y.; Hadad, N.; Levy, R. The combined anti-inflammatory effect of astaxanthin, lyc-O-mato and carnosic acid in vitro and in vivo in a mouse model of peritonitis. J. Nutr. Food Sci. 2018, 8, 653. [Google Scholar] [CrossRef]
- Kosuru, R.Y.; Roy, A.; Das, S.K.; Bera, S. Gallic acid and gallates in human health and disease: Do mitochondria hold the key to success? Mol. Nutr. Food Res. 2017, 10, 62. [Google Scholar] [CrossRef]
- Sourani, Z.-M.; Pourgheysari, B.-P.; Beshkar, P.-M.; Shirzad, H.-P.; Shirzad, M.-M. Gallic acid inhibits proliferation and induces apoptosis in lymphoblastic leukemia cell line (C121). Iran J. Med. Sci. 2016, 41, 525–530. [Google Scholar]
- Aborehab, N.-M.; Nada, O. Effect of gallic acid in potentiating chemotherapeutic effect of Paclitaxel in HeLa cervical cancer cells. Canc. Cell Intern. 2019, 19, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Yu, Y.; Ling, L.; Wang, Y.; Zhang, J.; Li, Y.; Duan, G. A C8-modified Graphene@mSiO2 composites based method for quantification of gallic acid in rat plasma after oral administration of Changtai granule and its application to pharmacokinetics. Biol. Pharm. Bull. 2017, 40, 1021–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paolini, A.; Curti, V.; Pasi, F.; Mazzini, G.; Nano, R.; Capelli, E. Gallic acid exerts a protective or an anti-proliferative effect on glioma T98G cells via dose-dependent epigenetic regulation mediated by mi RNAs. J. Oncol. 2015, 46, 1491–1497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Z.; Song, F.; Jin, Y.-C.; Zhang, W.-M.; Zhang, Y.; Liu, E.-J.; Zhou, D.; Bi, L.-L.; Yang, Q.; Li, H.; et al. Comparative pharmacokinetics of gallic acid after oral administration of gallic acid monohydrate in normal and isoproterenol-induced myocardial infarcted rats. Front. Pharmacol. 2018, 6, 328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nwokocha, C.; Palacios, J.; Simirgiotis, M.J.; Thomas, J.; Nwokocha, M.; Young, L.; Thompson, R.K.; Cifuentes, F.; Paredes, A.; Delgoda, R. Aqueous extract from leaf of Artocarpus altilis provides cardio-protection from isoproterenol induced myocardial damage in rats: Negative chronotropic and inotropic effects. J. Ethnoph. 2017, 203, 163–170. [Google Scholar] [CrossRef]
- Zamora-Ros, R.; Rothwell, J.-A.; Scalbert, A.; Knaze, V.; Romieu, I.; Slimani, N. Dietary intakes and food sources of phenolic acids in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Br. J. Nutr. 2013, 110, 1500–1511. [Google Scholar] [CrossRef] [Green Version]
- Uraji, M.; Kimura, M.; Inoue, Y.; Kawakami, K.; Kumagay, Y.; Harazono, K.; Hatanaka, T. Enzymatic production of ferulic acid from defatted rice bran by using a combination of bacterial enzymes. Appl. Biochem. Biotechnol. 2013, 171, 1085–1093. [Google Scholar] [CrossRef]
- Sung, J.-H.; Gim, S.-A.; Koh, P.-O. Ferulic acid attenuates the cerebral ischemic injury-induced decrease in peroxiredoxin-2 and thioredoxin expression. Neurosci. Lett. 2014, 30, 88–92. [Google Scholar] [CrossRef]
- Chowdhury, S.; Ghosh, S.; Rashid, K.; Sil, P.-C. Deciphering the role of ferulic acid against streptozotocin-induced cellular stress in the cardiac tissue of diabetic rats. Food Chem. Toxicol. 2016, 97, 187–198. [Google Scholar] [CrossRef]
- Baeza, G.; Bachmair, E.-M.; Wood, S.; Mateos, R.; Bravo, L.; de Roos, B. The colonic metabolites dihydrocaffeic acid and dihydroferulic acid are more effective inhibitors of in vitro platelet activation than their phenolic precursors. Food Funct. 2017, 8, 1333–1342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambothi, N.; Rajendra, P.; Agilan, B. Ferulic acid prevents ultraviolet-B radiation induced oxidative DNA damage in human dermal fibroblasts. Int. J. Nutr. Pharmacol. Neurol. Dis. 2014, 4, 203–213. [Google Scholar]
- Ambothi, K.; Prasad, N.-R.; Balupillai, A. Ferulic acid inhibits UVB-radiation induced photocarcinogenesis through modulating inflammatory and apoptotic signaling in Swiss albino mice. Food Chem. Toxicol. 2015, 82, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Russo, G.I.; Campisi, D.; Di Mauro, M.; Regis, F.; Reale, G.; Marranzano, M.; Ragusa, R.; Solinas, T.; Madonia, M.; Cimino, S.; et al. Dietary consumption of phenolic acids and prostate cancer: A case-control study in Sicily. Molecules 2017, 22, 2159. [Google Scholar] [CrossRef] [Green Version]
- Akdemir, F.E.; Albayrak, M.; Çalik, M.; Bayir, Y.; Gulcin, I. The protective effects of p-coumaric acid on acute liver and kidney damages induced by cisplatin. Biomedicines 2017, 5, 18. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, P.-S.; Victorelli, F.-D.; Fonseca-Santos, B.; Chorilli, M. A Review of analytical methods for p-coumaric acid in plant-based products, beverages, and biological matrices. Crit. Rev. Anal. Chem. 2019, 49, 21–31. [Google Scholar] [CrossRef]
- Boo, Y.-C. p-Coumaric acid as an active ingredient in cosmetics: A review focusing on its antimelanogenic effects. Antioxidants 2019, 8, 275. [Google Scholar] [CrossRef] [Green Version]
- Neog, M.-K.; Rasool, M. Targeted delivery of p-coumaric acid encapsulated mannosylated liposomes to the synovial macrophages inhibits osteoclast formation and bone resorption in the rheumatoid arthritis animal model. Eur. J. Pharm. Biopharm. 2018, 133, 162–175. [Google Scholar] [CrossRef]
- Janicke, B.; Hegardt, C.; Krogh, M.; Onning, G.; Akesson, B.; Cirenajwis, H.M.; Oredsson, S.M. The antiproliferative effect of dietary fiber phenolic compounds ferulic acid and p-coumaric acid on the cell cycle of Caco-2 cells. Nutr. Cancer. 2011, 63, 611–622. [Google Scholar] [CrossRef]
- Sharma, S.-H.; Chellappan, D.-R.; Chinnaswamy, P.; Nagarajan, S. Protective effect of p-coumaric acid against 1,2 dimethylhydrazine induced colonic preneoplastic lesions in experimental rats. Biomed. Pharmacother. 2017, 94, 577–588. [Google Scholar] [CrossRef]
- Amalan, V.; Natesan, V.; Dhananjayan, I.; Arumugam, R. Antidiabetic and antihyperlipidemic activity of p-coumaric acid in diabetic rats, role of pancreatic GLUT 2: In vivo approach. Biomed. Pharmacother. 2016, 84, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Vauzour, D.; Corona, G.; Spencer, J.P. Caffeic acid, tyrosol and p-coumaric acid are potent inhibitors of 5-S-cysteinyl-dopamine induced neurotoxicity. Arch. Biochem. Biophys. 2010, 501, 106–111. [Google Scholar] [CrossRef]
- Sunitha, M.-C.; Dhanyakrishnan, R.; PrakashKumar, B.; Nevin, K.-G. p-Coumaric acid mediated protection of H9c2 cells from Doxorubicin-induced cardiotoxicity: Involvement of augmented Nrf2 and autophagy. Biomed. Pharmacother. 2018, 102, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.-J.; Ku, S.-K.; Lee, W.; Lee, S.; Lee, T.; Song, K.-S.; Bae, J.-S. Barrier protective effects of rosmarinic acid on HMGB1 induced inflammatory responses in vitro and in vivo. J. Cell. Physiol. 2013, 228, 975–982. [Google Scholar] [CrossRef] [PubMed]
- Tsung-Hsien, T.; Chuang, L.-T.; Lien, T.-J.; Liing, Y.-R.; Chen, W.-Y.; Tsai, P.-J. Rosmarinus officinalis extract suppresses Propionibacterium acnes–induced inflammatory responses. J. Med. Food 2013, 16, 324–333. [Google Scholar]
- Ku, S.-K.; Yang, E.-J.; Song, K.-S.; Bae, J.-S. Rosmarinic acid down-regulates endothelial protein C receptor shedding in vitro and in vivo. Food Chem. Toxicol. 2013, 59, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Braidy, N.; Matin, A.; Rossi, F.; Chinain, M.; Laurent, D.; Guillemin, G.J. Neuroprotective effects of rosmarinic acid on ciguatoxin in primary human neurons. Neurotox. Res. 2014, 25, 226–234. [Google Scholar] [CrossRef]
- Nunes, S.; Madureira, A.-R.; Campos, D.; Sarmento, B.; Gomes, A.-R.; Pintado, M.; Reis, F. Therapeutic and nutraceutical potential of rosmarinic acid. Cytoprotective properties and pharmacokinetic profile. Crit. Rev. Food Sci. Nutr. 2017, 57, 1799–1806. [Google Scholar] [CrossRef]
- Hossan, M.S.; Rahman, S.; Bashar, A.B.M.A.; Jahan, R.; Al-Nahain, A.; Rahmatullah, M. Rosmarinic acid: A review of its anticancer action. World J. Pharmac. Sci. 2014, 3, 57–70. [Google Scholar]
- Alagawany, M.; El-Hack, M.E.A.; Farag, M.R.; Gopi, M.; Karthik, K.; Malik, Y.S.; Dhama, K. Rosmarinic acid: Modes of action, medicinal values and health benefits. Anim. Health Res. Rev. 2019, 1, 1–11. [Google Scholar] [CrossRef]
- Domitrović, R.; Skoda, M.; Marchesi, V.; Cvijanović, O.; Pernjak Pugel, E.; Stefan, M.-B. Rosmarinic acid ameliorates acute liver damage and fibrogenesis in carbon tetrachloride-intoxicated mice. Food Chem. Toxicol. 2013, 51, 370–378. [Google Scholar] [CrossRef]
- De Oliveira, J.-R.; Afonso CamargoPorto, S.-E.; De Oliveira, L.D. Rosmarinus officinalis L. (rosemary) as therapeutic and prophylactic agent. J. Biomed. Sci. 2019, 26, 5. [Google Scholar] [CrossRef]
- Luño, V.; Gil, L.; Olaciregui, M.; González, N.; Jerez, R.-A.; de Blas, I. Rosmarinic acid improves function and in vitro fertilising ability of boar sperm after cryopreservation. Cryobiology 2014, 69, 157–162. [Google Scholar] [CrossRef]
- Venkatachalam, K.; Gunasekaran, S.; Namasivayam, N. Biochemical and molecular mechanisms underlying the chemopreventive efficacy of rosmarinic acid in a rat colon cancer. Eur. J. Pharmacol. 2016, 15, 37–50. [Google Scholar] [CrossRef]
- Mathew, S.; Halamaa, A.; Kadera, S.-A.; Choea, M.; Mohney, R.-P.; Malekc, J.-A.; Suhrea, K. Metabolic changes of the blood metabolome after a date fruit challenge. J. Funct. Foods 2018, 49, 267–276. [Google Scholar] [CrossRef]
- Wang, L.; Sweet, D.H. Potential for food-drug interactions by dietary phenolic acids on human organic anion transporters 1 (SLC22A6), 3 (SLC22A8), and 4 (SLC22A11). Biochem. Pharmacol. 2012, 15, 1088–1095. [Google Scholar] [CrossRef]
- Dianat, M.; Hamzavi, G.-H.; Badavi, M.; Samarbafzadeh, A. Effects of Losartan and vanillic acid co-administration on ischemia-reperfusion-induced oxidative stress in isolated rat heart. Iran Red. Crescent Med. J. 2014, 16, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-J.; Kim, M.-K.; Um, J.; Hong, S.-H. The beneficial effect of vanillic acid on ulcerative colitis. Molecules 2010, 15, 7208–7217. [Google Scholar] [CrossRef]
- Erdem, M.-G.; Cinkilic, N.; Vatan, O.; Yilmaz, D.; Bagdas, D.; Bilaloglu, R. Genotoxic and anti-genotoxic effects of vanillic acid against mitomycin C-induced genomic damage in human lymphocytes in vitro. Asian Pac. J. Cancer Pre. 2012, 13, 4993–4998. [Google Scholar] [CrossRef] [Green Version]
- Krga, I.; Vidovica, N.; Milenkovicb, D.; Ristica, A.; Stojanovica, F.; Morand, C.; Glibeti, M. Effects of anthocyanins and their gut metabolites on adenosine diphosphateinduced platelet activation and their aggregation with monocytes and neutrophils. Arch. Biochem. Biophys. 2018, 645, 34–41. [Google Scholar] [CrossRef]
- Chellammal, J.; Singh, H.; Kakalij, R.-M.; Kshirsagar, R.-P.; Kumar, B.-H.; Komakula, S.-B.; Diwan, P.M. Cognitive effects of vanillic acid against streptozotocin-induced neurodegeneration in mice. Pharmac. Biol. 2015, 53, 630–636. [Google Scholar]
- Yemis, C.-P.; Pagotto, F.; Bach, S.; Delaquis, P. Effect of vanillin, ethyl vanillin, and vanillic acid on the growth and heat resistance of Cronobacter species. J. Food Prot. 2011, 74, 2062–2069. [Google Scholar] [CrossRef]
- Jungbauer, A.; Medjakovic, S. Anti-inflammatory properties of culinary herbs and spices that ameliorate the effects of metabolic syndrome. Maturitas 2012, 71, 227–239. [Google Scholar] [CrossRef]
- Khalifa, I.; Zhu, W.; Li, K.K.; Li, C.M. Polyphenols of mulberry fruits as multifaceted compounds: Compositions, metabolism, health benefits, and stability—A structural review. J. Funct. Foods 2018, 40, 28–43. [Google Scholar] [CrossRef]
- Fernandes, A.-S.; Mazzei, J.-L.; Evangelista, H.; Marques, M.-R.; Ferraz, E.-R.; Felzenszwalb, I. Protection against UV-induced oxidative stress and DNA damage by Amazon moss extracts. J. Photochem. Photobiol. B 2018, 183, 331–341. [Google Scholar] [CrossRef]
- Chandrasekara, A.; Daugelaite, J.; Shahidi, F. DNA scission and LDL cholesterol oxidation inhibition and antioxidant activities of Bael (Aegle marmelos) flower extracts. J. Tradit. Complement. Med. 2018, 8, 428–435. [Google Scholar] [CrossRef]
- Xiao, Z.; Fang, L.; Niu, Y.; Yu, H. Effect of cultivar and variety on phenolic compounds and antioxidant activity of cherry wine. Food Chem. 2015, 186, 69–73. [Google Scholar] [CrossRef]
- Thompson, K.; Pederick, W.; Singh, I.; Santhakumar, A.B. Anthocyanin supplementation in alleviating thrombogenesis in overweight and obese population: A randomized, double-blind, placebo-controlled study. J. Funct. Foods 2017, 32, 131–138. [Google Scholar] [CrossRef]
- Padmanabhan, M.; Geetha, A. The modulating effect of Persea americana fruit extract on the level of expression of fatty acid synthase complex, lipoprotein lipase, fibroblast growth factor-21 and leptin--A biochemical study in rats subjected to experimental hyperlipidemia and obesity. Phytomedicine 2015, 22, 939–945. [Google Scholar]
- Chkhikvishvili, I.; Sanikidze, T.; Gogia, N.; Mchedlishvili, T.; Enukidze, M.; Machavariani, M.; Vinokur, Y.; Rodov, V. Rosmarinic acid-rich extracts of summer savory (Satureja hortensis L.) protect Jurkat T cells against oxidative stress. Oxid. Med. Cell. Long. 2013, 456253, 1–9. [Google Scholar]
- Pérez-Sánchez, A.; Barrajón-Catalán, E.; Ruiz-Torres, V.; Agulló-Chazarra1, L.; Herranz-López, M.; Valdés, A.; Cifuentes, A.; Micol, V. Rosemary (Rosmarinus officinalis) extract causes ROS-induced necrotic cell death and inhibits tumor growth in vivo. Sci. Rep. 2019, 9, 808. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, C.; Tracee, R.-P.; Brigham, A.; Ceurvels, J.; Clubb, J.; Curtiss, W. An evidence-based systematic review of rosemary (Rosmarinus officinalis) by the Natural Standard Research Collaboration. J. Diet. Suppl. 2010, 7, 351–413. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Salcedo, E.M.; Mena, P.; García-Viguera, C.; Martínez, J.J.; Hernández, F. Phytochemical evaluation of white (Morus alba L.) and black (Morus nigra L.) mulberry fruits, a starting point for the assessment of their beneficial properties. J. Funct. Foods 2015, 12, 399–408. [Google Scholar] [CrossRef]
- Andrade, J.-M.; Faustino, C.; Garcia, C.; Ladeiras, D.; Reis, C.-P.; Rijo, P. Rosmarinus officinalis L. An update review of its phytochemistry and biological activity. Future Sci. OA 2018, 4, FSO283. [Google Scholar] [CrossRef] [Green Version]
- Moore, J.; Yousef, M.; Tsiani, E. Anticancer effects of rosemary (Rosmarinus officinalis L.) extract and rosemary extract polyphenols. Nutrients 2016, 8, 731. [Google Scholar] [CrossRef] [PubMed]
- Jeong, N.; Phan, H.; Jong-Whan, C. Anti-cancer effects of polyphenolic compounds in epidermal growth factor receptor tyrosine kinase inhibitor-resistant non-small cell lung cancer. Pharmacogn. Mag. 2017, 13, 595–599. [Google Scholar]
- Trivellini, A.; Lucchesini, M.; Maggini, R.; Mosadegh, H.; Villamarin, T.S.S.; Vernieri, P.; Mensuali-Sodi, A.; Pardossi, A.; Mensuali-Sodi, A. Lamiaceae phenols as multifaceted compounds: Bioactivity, industrial prospects and role of “positive-stress”. Ind. Crops Prod. 2016, 83, 241–254. [Google Scholar] [CrossRef]
- Hilbig, J.; Policarpi, P.-B.; Grinevicius, V.-M.; Mota, N.-S.; Toaldo, I.-M.; Luiz, M.-T.; Pedrosa, R.-C.; Block, J.-M. Aqueous extract from pecan nut [Carya illinoinensis (Wangenh) C. Koch] shell show activity against breast cancer cell line MCF-7 and Ehrlich ascites tumor in Balb-C mice. J. Ethnoph. 2017, 211, 256–266. [Google Scholar] [CrossRef]
- Simin, N.; Orčić, D.; Četojević-Simin, D.D.; Mimica-Dukic, N.; Anačkov, G.; Beara, I.; Zaletel, I.; Bozin, B. Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of small yellow onion (Allium flavum L. subsp. flavum, Alliaceae). LWT Food Sci. Technol. 2013, 54, 139–146. [Google Scholar] [CrossRef]
- Simin, N.; Dragana, M.-C.; Pavic, A.; Orcic, D.; Nemes, I.; Cetojevic-Simin, D. An overview of the biological activities of less known wild onions (genus Allium sect. Codonoprasum). Biol. Serbic. 2019, 41, 57–62. [Google Scholar]
Phenolic Acid Structure | Natural Source | Amount(g/kg, Dry Basis) | Literature |
---|---|---|---|
Caffeic acid | Coffee | 0.90 a | [22] |
Blueberry | 1.47 a | [22] | |
Yerba mate | 1.50 | [18] | |
Banana | 0.23–0.31 | [70] | |
Mango | 1.00–1.76 | [70] | |
Eucalyptus globulus | 0.2–2.9 | [21,79] | |
Gallic acid | Black tea | 0.8 | [29] |
banana | 1.10–1.24 | [70] | |
mango | 11.45–34.49 | [70] | |
berries | 0.03–0.09 a | [20] | |
chestnut | 3.50–9.10 a | [20] | |
Rosmarinic acid | Rosmarinus officinalis | 0.16–12.86 | [38,39] |
Salvia officinialis | 1.18 a–21.86 | [39] | |
oregano species | 0.05–25.63 | [38,39] | |
thyme | 0.08–6.81 | [38,39] | |
Sweet basil | 10.86 | [39] | |
Pink savory (S. thymbra) | 19.50 | [40] | |
Carnosic acid | Rosemary leaves | 40–100 | [51] |
(R. officinalis) | |||
salvia species | 0.1–21.8 | [51] | |
Sage (S. officinalis) leaves | 15–25 | [45,50] | |
Ferulic acid | Cereal grains | Up to 2 | [80] |
Cell walls of grains | 13.51–33.00 | [52,81] | |
Flaxseed | 4.10 (as glucoside) | [53] | |
artichoke | 2.75 | [52,79] | |
coffee | 0.09–0.14 | [53] | |
eggplant, redbeet, spinach, peanut | 0.07–0.35 | [53] | |
grapefruit, and orange | |||
Banana | 0.49–0.53 | [70] | |
Mango | 0.75 | [70] | |
Beans | 0.8 | [55] | |
Acai (Euterpe oleracea) oil | 0.10 | [71] | |
p-Coumaric acid | Strawberries | 1.11 | [20] |
Berries | 0.01–0.95 | [20,61] | |
Pear | 0.01–0.45 | [61] | |
Banana | 1.05 | [70] | |
Mango | 0.90 | [70] | |
Peanuts | 1.03 a | [20] | |
Onion peel | 0.58 | [61] | |
Honey | 0.002–0.005 | [62] | |
Mushrooms | Traces–3.70 | [63] | |
Amaranthus cruentus | 0.028–0.042 | [65] | |
Vanillic acid | Banana | 0.12–0.37 | [70] |
Mango | 0.47–3.76 | [70] | |
Acai (Euterpe oleracea) | 0.002 | [74] | |
Angelica sinensis | 1.1–1.3 | [75] | |
Potato tuber (Solanum tuberosum) | 0.02-0.04 | [72] |
Phenolic Acid. | Experimental Conditions | Conclusion of Study/Health Effect | Reference |
---|---|---|---|
Caffeic acid (CA) & caffeic acid phenyl ester (CAPE) | Treatment of rats with CA (20 mg/kg body wt). | CA caused suppression of tumor growth in HCC cells (HepG2)/reduction of tumor invasion at liver metastasis. | [91] |
CAPE and its analogs (20 mg/kg body wt) in rats. | CA chemoprotective effect on cell proliferation, p56 activation of hepatic tumors (HCC). | [92] | |
CA (100 mg/kg) in the rat microbiota | CA reduce certain biomarkers that indicate liver injury | [96] | |
Carnosic acid (CarA) | Treatment of human breast cancer cells with 20 μg/mL CarA | CarA activated the expression of antioxidant/apoptosis genes resulting in protection against breast cancer. | [100] |
P450 enzyme inhibition was examined in human hepatocytes and microsomes at presence of 4-10 μM of CarA | Increased enzyme activity at 10 mM of CarA, compared to drugs/need for CarA safety assessment before its use against hepatotoxicity | [98] | |
Gallic acid (GA) | Treatment of T98G human cells for 24 h with GA (in the range 1-100 μg/mL). | GA exerts a protective anti-proliferative effect on glioma T98G cells via dose-dependent epigenetic regulation mediated by miRNAs. | [106] |
Oral administration of GA monohydrate (50 and 100 mg/kg body wt) in normal myocardial infracted rats. | Cardioprotective effect of GA. | [107] | |
Ferulic acid (FA) | Treatment of Dawley rats with FA (100 mg/kg body wt). | FA exerted a neuroprotective role by attenuating decreases of peroxiredoxin-2 and thioredoxin levels in neuronal cell injury. | [111] |
Treatment in the skin of salbino mice exposed to UVB (180 mJ/cm2) for 30 weeks. | FA protected against carcinogenesis and tumor formation. | [115] | |
p-coumaric (p-CA) | Treatment of Caco-2 cells with 150 μM p-CA for 24 h, | p-CA protective effect against the development of colon cancer retarding the cell cycle progression | [121] |
Treatment of rats (50-200 mg/kg body wt) challenged with colon specific procarcinogen DMH. | p-CA exhibits a significant chemo-preventive potential at 100 mg/kg | [123] | |
Treatment of cultures of mice cortical neuron with p-CA (1 mM) against cysteinyldopamine-induced neurotoxicity. | p-CA provided the best neuroprotection, compared to other phenolics (CA and GA). | [124] | |
Rosmarinic Acid (RA) | Study of RA effect (0.01 mg/mL) on cell viability and normal cellular function in human neuronal cells | RA at 0.01 mg/mL (but not higher) exerted a neuroprotective effect generating significant decrease in CTX-mediated extracellular LDH activity compared to control. | [129] |
Treatment of mice (100 mg/kg body wt) and study of the effect on ethanol-induced DNA damage. | Anti-genotoxic capacity of RA against DNA damage (via comet assay) | [134] | |
Supplementation of rats with RA (5–20 mg/kg body wt). | RA protected treated rats from the deleterious effects caused by colon carcinogen, 1,2-dimethylhydrazine. | [136] | |
Vanillic acid (VA) | Supplementation of male rats (0–10 mg/kg body wt) for 10 days. | VA was effective against the risk of myocardial dysfunction. | [76] |
In vitro examination of the effect on mitomycin C-induced genomic damage in human lymphocytes. | VA (at 1 µg/mL) significantly reduced DNA damage cells but at a higher (2 µg/mL) itself exerted genotoxic effects on DNA. | [137] | |
Supplementation of 5 groups of mice with VA (5–100 mg/kg body wt) for 28 days | VA at 50 and 100 mg/kg dose significantly (p < 0.001) improved the habituation memory of mice, and increased the antioxidant capacity. | [143] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiokias, S.; Proestos, C.; Oreopoulou, V. Phenolic Acids of Plant Origin—A Review on Their Antioxidant Activity In Vitro (O/W Emulsion Systems) Along with Their in Vivo Health Biochemical Properties. Foods 2020, 9, 534. https://doi.org/10.3390/foods9040534
Kiokias S, Proestos C, Oreopoulou V. Phenolic Acids of Plant Origin—A Review on Their Antioxidant Activity In Vitro (O/W Emulsion Systems) Along with Their in Vivo Health Biochemical Properties. Foods. 2020; 9(4):534. https://doi.org/10.3390/foods9040534
Chicago/Turabian StyleKiokias, Sotirios, Charalampos Proestos, and Vassiliki Oreopoulou. 2020. "Phenolic Acids of Plant Origin—A Review on Their Antioxidant Activity In Vitro (O/W Emulsion Systems) Along with Their in Vivo Health Biochemical Properties" Foods 9, no. 4: 534. https://doi.org/10.3390/foods9040534
APA StyleKiokias, S., Proestos, C., & Oreopoulou, V. (2020). Phenolic Acids of Plant Origin—A Review on Their Antioxidant Activity In Vitro (O/W Emulsion Systems) Along with Their in Vivo Health Biochemical Properties. Foods, 9(4), 534. https://doi.org/10.3390/foods9040534