Prediction of Degreening Velocity of Broccoli Buds Using Hyperspectral Camera Combined with Artificial Neural Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Preparation
2.2. Determination of Spectral Data by the Hyperspectral Camera System
2.3. Destructive Measurement of Chlorophyll Content in Broccoli
2.4. Constraction of a Model to Predict the Velocity of Chlorophyll Reduction
2.5. Precision of a Proposed Equation
3. Results and Discussion
Author Contributions
Funding
Conflicts of Interest
Nomenclature
a* | color axis of the Commission International de l’Eclairage (CIE) |
A | constant |
b | deviation between individual and mean measured degradation velocity of chlorophyll (mg·g−1·d−1) |
b* | color axis defined by CIE |
bias (mean of deviation b) | |
B | weighted connection between input and hidden layers in an artificial neural networks |
c | constant (mg·g−1·d−1) |
C | chlorophyll concentration (mg·g−1) |
d | input data: δ2 R (2nd derivative of spectral reflectance) |
D | weighted connection between hidden and output layers in an artificial neural networks (mg·g−1·d−1) |
H | hidden node in an artificial neural networks |
H° | hue angle [tan−1 (b*/a*)] |
k | measured velocity of chlorophyll degradation (mg·g−1·d−1) |
estimated velocity of chlorophyll degradation (mg·g−1·d−1) | |
m | total number of independent variables |
n | total number of samples |
l | total number of hidden nodes |
R | spectral reflectance from broccoli buds |
t | storage time (d) |
X | sum of weighted input signals into a hidden node |
δ | differential operator |
Subscript | |
i | a sample |
j | an independent variable |
h | a hidden node |
t | at an arbitrary storage time |
0 | at the start of storage |
References
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#home (accessed on 29 February 2020).
- Nestle, M. Broccoli sprouts in cancer prevention. Nutr. Rev. 1998, 56, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Makino, Y.; Nishimura, Y.; Oshita, S.; Mizosoe, T.; Akihiro, T. Storage in high-barrier pouches increases the sulforaphane concentration in broccoli florets. PLoS ONE 2018, 13, e0192342. [Google Scholar] [CrossRef] [PubMed]
- Makino, Y.; Hashizume, M.; Boerzhijin, S.; Akihiro, T.; Yamada, T.; Okazaki, K. Influence of cold or frozen storage on temporal changes in sulforaphane and objective taste values of broccoli (Brassica oleracea var. italica) florets. Environ. Control Biol. 2019, 57, 45–51. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Talalay, P.; Cho, C.G.; Posner, G.H. A major inducer of anticarcinogenic protective enzymes from broccoli-isolation and elucidation of structure. Proc. Nat. Acad. Sci. USA 1992, 89, 2399–2403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shewfelt, R.L.; Heaton, E.K.; Batal, K.M. Nondestructive color measurement of fresh broccoli. J. Food Sci. 1984, 49, 1612–1613. [Google Scholar] [CrossRef]
- Aiamla-or, S.; Shigyo, M.; Ito, S.; Yamauchi, N. Involvement of chloroplast peroxidase on chlorophyll degradation in postharvest broccoli florets and its control by UV-B treatment. Food Chem. 2014, 165, 224–231. [Google Scholar] [CrossRef] [Green Version]
- Altschul, V.R.; Smart, T.A. Einfluß von chlorophyll und von pyrrol auf das serumcholesterin von kaninchen. Arzneim. Forsch. 1961, 11, 762–763. [Google Scholar]
- Yamashita, K.; Nohara, Y.; Kumagai, M.; Namiki, M. Effect of chlorophyll on plasma lipids in rats. J. Home Econ. Jpn. 1991, 42, 589–594. [Google Scholar]
- Lipton, W.J.; Harris, C.M. Controlled atmosphere effects on the market quality of stored broccoli (Brassica oleracea L., Italica Group). J. Am. Soc. Hort. Sci. 1974, 99, 200–205. [Google Scholar]
- Jacobsson, A.; Nielsen, T.; Sjoholm, I. Effects of type of packaging material on shelf-life of fresh broccoli by means of changes in weight, colour and texture. Eur. Food Res. Technol. 2004, 218, 157–163. [Google Scholar] [CrossRef]
- Ren, K.; Tu, K.; Pan, L.Q.; Chen, Y.Y. Kinetic modelings of broccoli color changes during chilled storage. J. Food Process. Preserv. 2006, 30, 180–193. [Google Scholar] [CrossRef]
- Kasim, R.; Kasim, M.U.; Erkal, S. The effect of packaging after 1-MCP treatment on color changes and chlorophyll degradation of broccoli (Brassica oleracea var. italica cv. Monopoly). J. Food Agric. Environ. 2007, 5, 48–51. [Google Scholar]
- Treitz, P.M.; Howarth, P.J. Hyperspectral remote sensing for estimating biophysical parameters of forest ecosystems. Prog. Phys. Geogr. 1999, 23, 359–390. [Google Scholar] [CrossRef]
- Park, B.; Lu, R. Hyperspectral Imaging Technology in Food and Agriculture; Springer Science + Business Media LLC: New York, NY, USA, 2015; pp. 3–403. [Google Scholar]
- Qin, J.W.; Burks, T.F.; Ritenour, M.A.; Bonn, W.G. Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence. J. Food Eng. 2009, 93, 183–191. [Google Scholar] [CrossRef]
- Ariana, D.P.; Lu, R.F. Evaluation of internal defect and surface color of whole pickles using hyperspectral imaging. J. Food Eng. 2010, 96, 583–590. [Google Scholar] [CrossRef]
- Ariana, D.P.; Lu, R.F. Hyperspectral waveband selection for internal defect detection of pickling cucumbers and whole pickles. Comput. Electron. Agric. 2010, 74, 137–144. [Google Scholar] [CrossRef]
- Ahn, D.; Choi, J.Y.; Kim, H.C.; Cho, J.S.; Moon, K.D.; Park, T. Estimating the composition of food nutrients from hyperspectral signals based on deep neural networks. Sensors 2019, 19, 1560. [Google Scholar] [CrossRef] [Green Version]
- Feng, C.H.; Makino, Y.; Yoshimura, M.; Rodríguez-Pulido, F.J. Estimation of adenosine triphosphate content in ready-to-eat sausages with different storage days using hyperspectral imaging coupled with R statistics. Food Chem. 2018, 264, 419–426. [Google Scholar] [CrossRef]
- Goetz, A.F.H.; Vane, G.; Solomon, J.; Rock, B.N. Imaging spectrometry for earth remote sensing. Science 1985, 228, 1147–1153. [Google Scholar] [CrossRef]
- Nicotra, A.B.; Hofmann, M.; Siebke, K.; Ball, M.C. Spatial patterning of pigmentation in evergreen leaves in response to freezing stress. Plant Cell Environ. 2003, 26, 1893–1904. [Google Scholar] [CrossRef]
- Xue, L.; Yang, L. Deriving leaf chlorophyll content of green-leafy vegetables from hyperspectral reflectance. ISPRS J. Photogramm. Remote Sens. 2009, 64, 97–106. [Google Scholar] [CrossRef]
- Kabakeris, T.; Poth, A.; Intress, J.; Schmidt, U.; Geyer, M. Detection of postharvest quality loss in broccoli by means of non-colorimetric reflection spectroscopy and hyperspectral imaging. Comput. Electron. Agric. 2015, 118, 322–331. [Google Scholar] [CrossRef]
- Global Food Losses and Food Waste. Available online: http://www.fao.org/3/mb060e/mb060e.pdf (accessed on 29 February 2020).
- Williams, P.; Norris, K. Chemical principles of near-infrared technology, Data analysis: Wavelength selection method, Neural networks in near-infrared spectroscopy, Implementation of near-infrared technology. In Near-Infrared Technology, 2nd ed.; American Association of Cereal Chemists, Inc.: St Paul, MN, USA, 2001; pp. 19–37, 39–58, 101–107, 145–169. [Google Scholar]
- Marini, F. Artificial neural networks in foodstuff analyses: Trends and perspectives A review. Anal. Chim. Acta 2009, 635, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Makino, Y.; Isami, A.; Suhara, T.; Goto, K.; Oshita, S.; Kawagoe, Y.; Kuroki, S.; Purwanto, Y.A.; Ahmad, U. Nondestructive evaluation of anthocyanin concentration and soluble solid content at the vine and blossom ends of green mature mangoes during storage by hyperspectral spectroscopy. Food Sci. Technol. Res. 2015, 21, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Porra, R.J.; Thompson, W.A.; Kriedemann, P.E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta 1989, 975, 384–394. [Google Scholar] [CrossRef]
- Van Boekel, M.A.J.S. Kinetic modelling in food science: A case study on chlorophyll degradation in olives. J. Sci. Food Agric. 2000, 80, 3–9. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Peiris, K.H.S.; Dull, G.G.; Leffler, R.G.; Kays, S.J. Near-infrared (NIR) spectrometric technique for nondestructive determination of soluble solids content in processing tomatoes. J. Am. Soc. Hortic. Sci. 1998, 123, 1089–1093. [Google Scholar] [CrossRef]
- O’Neil, M.J. The Merck Index, 14th ed.; Merck & Co. Inc.: Whitehouse Station, NJ, USA, 2006; pp. 356–357. [Google Scholar]
- Griffiths, D.E.; Wharton, D.C. Studies of the electron transport system. XXXV. Purification and properties of cytochrome oxidase. J. Biol. Chem. 1961, 236, 1850–1856. [Google Scholar]
- Makino, Y.; Ichimura, M.; Kawagoe, Y.; Oshita, S. Cytochrome c oxidase as a cause of variation in oxygen uptake rates among vegetables. J. Am. Soc. Hortic. Sci. 2007, 132, 239–245. [Google Scholar] [CrossRef] [Green Version]
- Mester, P.; Wagner, M.; Rossmanith, P. Biased spectroscopic protein quantification in the presence of ionic liquids. Anal. Bioanal. Chem. 2010, 397, 1763–1766. [Google Scholar] [CrossRef] [PubMed]
- Nicolai, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- Makino, Y.; Ichimura, M.; Oshita, S.; Kawagoe, Y.; Yamanaka, H. Estimation of oxygen uptake rate of tomato (Lycopersicon esculentum Mill.) fruits by artificial neural networks modelled using near-infrared spectral absorbance and fruit mass. Food Chem. 2010, 121, 533–539. [Google Scholar] [CrossRef]
- Siripatrawan, U.; Makino, Y.; Kawagoe, Y.; Oshita, S. Rapid detection of Escherichia coli contamination in packaged fresh spinach using hyperspectral imaging. Talanta 2011, 85, 276–281. [Google Scholar] [CrossRef] [PubMed]
Exemplar or Variables | Calibration Set (n = 110) | Validation Set (n = 60) | ||||
---|---|---|---|---|---|---|
Range | Mean | SD 1 | Range | Mean | SD 1 | |
Chlorophyll degradation velocity (mg·g−1·d−1) | −3.39 × 10−3–(−1.05 × 10−3) | 1.97 × 10−3 | 4.88 × 10−4 | −3.92 × 10−3–(−1.21 × 10−3) | 1.97 × 10−3 | 4.83 × 10−4 |
405 nm | −2.50 × 10−5–1.48 × 10−5 | −6.60 × 10−6 | 8.38 × 10−6 | −3.80 × 10−5–7.73 × 10−6 | −1.20 × 10−5 | 8.95 × 10−6 |
420 nm | −1.70 × 10−5–5.72 × 10−6 | −8.40 × 10−6 | 5.09 × 10−6 | −1.80 × 10−5–3.83 × 10−6 | −7.90 × 10−6 | 5.21 × 10−6 |
440 nm | 3.76 × 10−6–1.19 × 10−5 | 7.13 × 10−6 | 1.69 × 10−6 | 3.70 × 10−6–1.25 × 10−5 | 7.78 × 10−6 | 1.87 × 10−6 |
455 nm | −6.90 × 10−6–(−2.90 × 10−6) | −4.70 × 10−6 | 8.17 × 10−7 | −6.30 × 10−6–(−3.10 × 10−6) | −4.80 × 10−6 | 7.58 × 10−7 |
475 nm | −3.10 × 10−6–4.65 × 10−6 | −5.30 × 10−7 | 1.45 × 10−6 | −3.20 × 10−6–4.71 × 10−6 | −8.30 × 10−7 | 1.50 × 10−6 |
530 nm | −3.80 × 10−5–(−7.40 × 10−6) | −1.90 × 10−5 | 5.54 × 10−6 | −4.10 × 10−5–(-8.60 × 10−6) | −1.80 × 10−5 | 5.60 × 10−6 |
595 nm | −2.70 × 10−6–6.40 × 10−6 | 4.61 × 10−7 | 1.76 × 10−6 | −2.00 × 10−6–5.80 × 10−6 | 8.28 × 10−7 | 1.66 × 10−6 |
605 nm | −2.40 × 10−5–(−9.30 × 10−6) | −1.6 × 10−5 | 2.64 × 10−6 | −2.00 × 10−5–(-9.50 × 10−6) | −1.6 × 10−5 | 2.64 × 10−6 |
615 nm | −3.30 × 10−7–2.46 × 10−6 | 1.14 × 10−6 | 6.51 × 10−7 | −5.70 × 10−7–2.76 × 10−6 | 1.19 × 10−6 | 6.71 × 10−7 |
640 nm | 2.40 × 10−6–9.81 × 10−6 | 6.24 × 10−6 | 1.42 × 10−6 | 2.39 × 10−6–9.22 × 10−6 | 6.63 × 10−6 | 1.46 × 10−6 |
670 nm | 1.95 × 10−5–9.14 × 10−5 | 4.74 × 10−5 | 1.32 × 10−5 | 2.10 × 10−5–1.01 × 10−4 | 4.57 × 10−5 | 1.41 × 10−5 |
725 nm | −1.20 × 10−4–2.28 × 10−5 | −4.40 × 10−5 | 2.90 × 10−5 | −1.40 × 10−4–1.66 × 10−6 | −4.80 × 10−5 | 3.12 × 10−5 |
790 nm | 3.68 × 10−6–6.55 × 10−5 | 3.67 × 10−5 | 1.55 × 10−5 | 1.14 × 10−5–7.99 × 10−5 | 3.91 × 10−5 | 1.54 × 10−5 |
870 nm | −8.90 × 10−6–7.72 × 10−6 | 4.00 × 10−7 | 3.53 × 10−6 | −5.90 × 10−6–7.42 × 10−6 | 3.23 × 10−7 | 3.23 × 10−6 |
960 nm | 3.61 × 10−5–1.07 × 10−4 | 7.14 × 10−5 | 1.51 × 10−5 | 2.79 × 10−5–1.02 × 10−4 | 6.97 × 10−5 | 1.85 × 10−5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makino, Y.; Kousaka, Y. Prediction of Degreening Velocity of Broccoli Buds Using Hyperspectral Camera Combined with Artificial Neural Networks. Foods 2020, 9, 558. https://doi.org/10.3390/foods9050558
Makino Y, Kousaka Y. Prediction of Degreening Velocity of Broccoli Buds Using Hyperspectral Camera Combined with Artificial Neural Networks. Foods. 2020; 9(5):558. https://doi.org/10.3390/foods9050558
Chicago/Turabian StyleMakino, Yoshio, and Yumi Kousaka. 2020. "Prediction of Degreening Velocity of Broccoli Buds Using Hyperspectral Camera Combined with Artificial Neural Networks" Foods 9, no. 5: 558. https://doi.org/10.3390/foods9050558
APA StyleMakino, Y., & Kousaka, Y. (2020). Prediction of Degreening Velocity of Broccoli Buds Using Hyperspectral Camera Combined with Artificial Neural Networks. Foods, 9(5), 558. https://doi.org/10.3390/foods9050558