New Edible Packaging Material with Function in Shelf Life Extension: Applications for the Meat and Cheese Industries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. The Development of the Edible Film Used for Packaging
2.3. Testing of Physical Characteristics
2.4. Solubility Testing
2.5. Mechanical Properties
2.6. Application of the Edible Films on Packaged Products
2.6.1. Design of the Experiment
2.6.2. Determination of Peroxide Index
2.6.3. Determination of Color
2.6.4. Water Activity Index Determination
2.6.5. Microbiological Assessment
2.7. Statistical Evaluation
3. Results and Discussion
3.1. Evaluation of the Characteristics of the New Material
3.2. Evaluation of Packaged Products
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hammam, A. Technological, applications, and characteristics of edible films and coatings: A review. Sn Appl. Sci. 2019. [Google Scholar] [CrossRef] [Green Version]
- Cazon, P.; Velasquez, G.; Ramirez, J.; Vazquez, M. Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocoll. 2017, 68, 136–148. [Google Scholar] [CrossRef]
- Bustos, R.; Alberti, F.; Matiacevich, S. Edible antimicrobial films based on microencapsulated lemongrass oil. J. Food Sci. Technol. 2016, 53, 832–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Baek, S.; Song, K. Physical and antioxidant properties of alginate films prepared from Sargassum fulvellum with black chokeberry extract. Food Packag. Shelf Life 2018, 18, 157–163. [Google Scholar] [CrossRef]
- Adjouman, D.; Charlemagne, N.; Brou Roger, K.; Souleymane, C.; Georges, A.; Sindic, M.; Achille, T. Effect of glycerol, peanut oil and soybean lecithin contents on the properties of biodegradable film of improved cassava starches from Côte d’Ivoire. Int. J. Environ. Agric. Biotechnol. 2018, 3, 1432–1440. [Google Scholar] [CrossRef]
- Youssef, M.; Assem, M.; El-Sayed, S.; Salama, H.; Abd El-Salam, M. Utilization of Edible Films and Coatings as Packaging Materials for Preservation of Cheeses. J. Package Technol. Res. 2017, 1, 87–99. [Google Scholar] [CrossRef]
- Bergo, P.; Sobral PJ, A.; Prison, J.M. Effect of glycerol on physical properties of cassava starch films. J. Food Process. Preserv. 2010, 34, 401–410. [Google Scholar] [CrossRef]
- Gil-Díaz, M.; Santos-Delgado, M.; Rubio-Barroso, S.; Polo-Díez, L. Free D-amino acids determination in ready-to-eat cooked ham irradiated with electron-beam by indirect chiral HPLC. Meat Sci. 2009, 82, 24–29. [Google Scholar] [CrossRef]
- Galgano, F.; Favati, F.; Bonadio, M.; Lorusso, V.; Romano, P. Role of biogenic amines as index of freshness in beef meat packed with different biopolymeric materials. Food Res. Int. 2009, 42, 1147–1152. [Google Scholar] [CrossRef]
- Ruiz-Navajas, Y.; Viuda-Martos, M.; Barber, X.; Sendra, E.; Perez-Alvarez, J.; Fernández-López, J. Effect of chitosan edible films added with Thymus moroderi and Thymus piperella essential oil on shelf-life of cooked cured ham. J. Food Sci. Technol. 2015, 52, 6493–6501. [Google Scholar] [CrossRef] [Green Version]
- Souza, V.; Pires, J.; Vieira, E.; Coelhoso, I.; Duarte, M.; Fernando, A. Shelf Life Assessment of Fresh Poultry Meat Packaged in Novel Bionanocomposite of Chitosan/Montmorillonite Incorporated with Ginger Essential Oil. Coatings 2018, 8, 177. [Google Scholar] [CrossRef] [Green Version]
- Khalila, A.; Saurabha, C.; Tyea, Y.; Laia, T.; Easaa, A.; Rosamahb, E.; Fazitaa, M.; Syakira, M.; Adnanc, A.; Fizreea, H.; et al. Seaweed based sustainable films and composites for food and pharmaceutical applications: A review. Renew. Sustain. Energy Rev. 2017, 77, 353–362. [Google Scholar] [CrossRef]
- Gao, C.; Pollet, E.; Avérous, L. Properties of glycerol-plasticized alginate films obtained by thermo-mechanical mixing. Food Hydrocoll. 2017, 63, 414–420. [Google Scholar] [CrossRef]
- Fenoradosoa, T.A.; Ali, G.; Delattre, C.; Laroche, C.; Petit, E.; Wadouachi, A.; Michaud, P. Extraction and characterization of an alginate from the brown seaweed Sargassum turbinarioidesGrunow. J. Appl. Phycol. 2010, 22, 131–137. [Google Scholar] [CrossRef]
- Davoodi, F.; Naji, M. Study of the effect of sodium alginate coating containing pomegranate peel extract on chemical, sensory and microbial quality of walnut kernel. Environ. Health Eng. Manag. J. 2018, 5, 249–257. [Google Scholar] [CrossRef]
- Nieto, M. Structure and function of polysaccharide gum-basededible films and coatings. In Edible Films and Coatings for Food Applications; Embuscado, M.E., Huber, K.C., Eds.; Springer Science: New York, NY, USA, 2009; pp. 57–112. [Google Scholar] [CrossRef]
- Riquelme, N.; Miranda, M.; Matiacevich, S. Effect of processing conditions on the optical properties of films based on alginate, caseinate and lemongrass oil. CyTA-J. Food 2016, 14, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Natrajan, D.; Srinvasan, S.; Sundar, K.; Ravindran, A. Formulation of essential oil-loaded chitosan- alginate nanocapsules. J. Food Drug Anal. 2015, 23, 560–568. [Google Scholar] [CrossRef] [Green Version]
- Phan, D.; Debeaufort, F.; Luu, D.; Voilley, A. Functional properties of edible agar-based and starch-based films for food quality preservation. J. Agric. Food Chem. 2005, 53, 973–981. [Google Scholar] [CrossRef]
- Rhim, J.W. Effect of PLA lamination on performance characteristics ofagar/-carrageenan/clay bio-nanocomposite film. Food Res. Int. 2013, 51, 714–722. [Google Scholar] [CrossRef]
- Gimenez, B.; Lopez de Lacey, A.; Perez-Santín, E.; Lopez-Caballero, M.E.; Montero, P. Release of active compounds from agar and agar-gelatin films withgreen tea extract. Food Hydrocoll. 2013, 30, 264–271. [Google Scholar] [CrossRef]
- Sousa, A.; Goncalves, M. Strategies to improve the mechanical strength and water resistance of agar films for food packaging applications. Carbohydr. Polym. 2015, 132, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Puscaselu, R.; Gutt, G.; Amariei, S. Biopolymer-based Films Enriched with Stevia rebaudiana Used for the Development of Edible and Soluble Packaging. Coatings 2019, 9, 360. [Google Scholar] [CrossRef] [Green Version]
- Karagöza, S.; Demirdövenb, A. Effect of chitosan coatings with and without Stevia rebaudiana and modified atmosphere packaging on quality of cold stored fresh-cut apples. LWT-Food Sci. Technol. 2019, 108, 332–337. [Google Scholar]
- Cazon, P.; Vazquez, M.; Velasquez, G. Regenerated cellulose films with chitosan and polyvinyl alcohol: Effect of the moisture content on the barrier, mechanical and optical properties. Carbohydr. Polym. 2020, 236, 116031. [Google Scholar] [CrossRef] [PubMed]
- Puscaselu, R.; Gutt, G.; Amariei, S. Rethinking the Future of Food Packaging: Biobased Edible Films for Powdered Food and Drinks. Molecules 2019, 24, 3136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phan, T.; Debeaufort, D.; Voilley, A.; Luu, D. Biopolymer interaction affects the functional properties of edible films based on agar, cassava starch and arabynoxylan blends. J. Food Eng. 2009, 90, 548–558. [Google Scholar] [CrossRef]
- Puscaselu, R.; Amariei, S. The application of the Peleg model in order to obtain completely soluble materials for food product packaging. J. Appl. Package. Res. 2018, 10, 98–106. [Google Scholar]
- Wang, L.F.; Rhim, J.W. Preparation and application og agar/alginate/collagen ternary blend functional food packaging films. Int. J. Biol. Macromol. 2015, 80, 460–468. [Google Scholar] [CrossRef]
- ASTM D882—Standard Test Method for Tensile Properties of Thin Plastic Sheeting. Available online: https://www.astm.org/Standards/D882 (accessed on 1 February 2020).
- Suput, D.; Lazic, V.; Popovic, S.; Hromis, N. Edible films and coatings—Sources, properties and applications. Food Feed Res. 2015, 42, 11–22. [Google Scholar] [CrossRef]
- Rikans, L.; Hornb, K. Lipid peroxidation, antioxidant protection and aging. Biochim. Et Biophys. Acta 1997, 1362, 116–127. [Google Scholar] [CrossRef] [Green Version]
- Purcarea, C. Controlul şi analiza cărnii şi a Preparatelor Din Carne, Peşte şi produse piscicole, Ouă şi produse avicole. In Indrumǎtor de Laborator; EdituraUniversitătii Oradea: Oradea, Romania, 2015; pp. 51–55. ISBN 978-606-10-1468-2. [Google Scholar]
- Mehta, B.; Darji, V.; Aparnathi, K. Comparison of five analytical methods for the determination of peroxide value in oxidized ghee. Food Chem. 2015, 185, 449–453. [Google Scholar] [CrossRef] [PubMed]
- Atef, M.; Rezaei, M.; Behrooz, R. Characterization of physical, mechanical, and antibacterial properties of agar-cellulose bionanocomposite films incorporated with savory essential oil. Food Hydrocoll. 2015, 45, 150–157. [Google Scholar] [CrossRef]
- Siah, W.M.; Aminah, A.; Ishak, A. Edible films from seaweed (Kappaphycus alvarezii). Int. Food Res. J. 2015, 22, 2230–2236. [Google Scholar]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Pérez-Álvarez, J. Effect of added citrus fibre and spice essential oils on quality characteristics and shelf-life of mortadella. Meat Sci. 2010, 85, 568–576. [Google Scholar] [CrossRef]
- Ouattara, B.; Ronald, E.; Simard, R.; Piette, G.; Begin, A.; Holley, R. Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. Int. J. Food Microbiol. 2000, 62, 139–148. [Google Scholar] [CrossRef]
Physical and Optical Properties | |||||||
---|---|---|---|---|---|---|---|
Thickness, µm | Retraction Ratio, % | Transmittance, % | Color | ||||
L * | A * | B * | |||||
47.20 ± 0.18 | 35.78 ± 0.13 | 92.19 ± 0.88 | 93.79 ± 0.24 | −6.79 ± 0.04 | 20.03 ± 0.57 | ||
Mechanical Properties | |||||||
Tensile Strength, MPa | Elongation, % | Breaking Point, g | Roughness, nm | Adhesiveness, g * s | |||
3.00 ± 0.34 | 84.80 ± 0.81 | 6646.995 ± 3.563 | 175.00 ± 0.8 | −116.11 ± 0.98 | |||
The Rehydration Capacity | |||||||
Time (min) | 1 | 3 | 5 | 7 | 10 | 15 | 20 |
Rr, % | 2394 | 2770 | 2840 | 3676 | 4135 | 4570 | 5022 |
SR, % | 665,000 | 683.840 | 1,118,000 | 1,267,800 | 1,451,900 | 1,760,740 | 2,087,020 |
Initial Moment (t0) | Month 3 | Month 5 | |
---|---|---|---|
Sliced and packaged cheese, g | 5.06 ± 0.005 | 4.89 ± 0.25 | 4.08 ± 0.46 |
Sliced and packaged prosciutto, g | 5.09 ±0.004 | 4.75 ± 0.12 | 4.17 ± 0.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gheorghita, R.; Amariei, S.; Norocel, L.; Gutt, G. New Edible Packaging Material with Function in Shelf Life Extension: Applications for the Meat and Cheese Industries. Foods 2020, 9, 562. https://doi.org/10.3390/foods9050562
Gheorghita R, Amariei S, Norocel L, Gutt G. New Edible Packaging Material with Function in Shelf Life Extension: Applications for the Meat and Cheese Industries. Foods. 2020; 9(5):562. https://doi.org/10.3390/foods9050562
Chicago/Turabian StyleGheorghita (Puscaselu), Roxana, Sonia Amariei, Liliana Norocel, and Gheorghe Gutt. 2020. "New Edible Packaging Material with Function in Shelf Life Extension: Applications for the Meat and Cheese Industries" Foods 9, no. 5: 562. https://doi.org/10.3390/foods9050562
APA StyleGheorghita, R., Amariei, S., Norocel, L., & Gutt, G. (2020). New Edible Packaging Material with Function in Shelf Life Extension: Applications for the Meat and Cheese Industries. Foods, 9(5), 562. https://doi.org/10.3390/foods9050562