Antioxidant Properties of Sourdoughs Made with Whole Grain Flours of Hull-Less Barley or Conventional and Pigmented Wheat and by Selected Lactobacilli Strains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grain Cultivation and Milling
2.2. Functional Characterization of Flours
2.2.1. Extraction of the Soluble (SPAs) and Cell Wall-Bound Phenolic Acids (CWBPAs) and Quantification by Means of RP-HPLC/DAD
2.2.2. Extraction and Quantification of Total Anthocyanins
2.2.3. Determination of Antioxidant Capacity (AC) by Means of the FRAP Assay
2.2.4. Determination of Antioxidant Capacity by Means of the ABTS Assay
2.3. Microorganisms and Culture Conditions
2.4. Proteolytic Activity of Lactic Acid Bacteria
2.5. Peptidase Activity of Lactic Acid Bacteria
2.6. Sourdough Fermentation and Water-Soluble Extracts
2.7. Enumeration of Lactic Acid Bacteria
2.8. Determination of pH and Total Titratable Acidity
2.9. Ex Vivo Assays
2.10. Statistical Analysis
3. Results
3.1. Flour Functional Characterization
3.2. LAB Proteolytic and Peptidase Activities
3.3. LAB Pro-Technological Properties
3.4. Selection of LAB Strain/Flour Combinations
3.5. LAB Acidification Kinetics
3.6. Intracellular Reactive Oxygen Species (ROS) Assay
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rieder, A.; Holtekjølen, A.K.; Sahlstrøm, S.; Moldestad, A. Effect of barley and oat flour types and sourdoughs on dough rheology and bread quality of composite wheat bread. J. Cereal Sci. 2012, 55, 44–52. [Google Scholar] [CrossRef]
- Călinoiu, L.F.; Vodnar, D.C. Whole grains and phenolic acids: A review on bioactivity, functionality, health benefits and bioavailability. Nutrients 2018, 10, 1615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, L.; Cao, W.; Chi, H.; Wang, J.; Zhang, H.; Liu, J.; Sun, B. Whole cereal grains and potential health effects: Involvement of the gut microbiota. Food Res. Int. 2018, 103, 84–102. [Google Scholar] [CrossRef] [PubMed]
- Slavin, J. Whole grains and human health. Nutr. Res. Rev. 2004, 17, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Topping, D. Cereal complex carbohydrates and their contribution to human health. J. Cereal Sci. 2007, 46, 220–229. [Google Scholar] [CrossRef]
- Abdel-Aal, E.S.M.; Young, J.C.; Rabalski, I. Anthocyanin composition in black, blue, pink, purple, and red cereal grains. J. Agric. Food Chem. 2006, 54, 4696–4704. [Google Scholar] [CrossRef]
- Hu, C.; Cai, Y.Z.; Li, W.; Corke, H.; Kitts, D.D. Anthocyanin characterization and bioactivity assessment of a dark blue grained wheat (Triticum aestivum L. cv. Hedong Wumai) extract. Food Chem. 2007, 104, 955–961. [Google Scholar] [CrossRef]
- Siebenhandl, S.; Grausgruber, H.; Pellegrini, N.; Del Rio, D.; Fogliano, V.; Pernice, R.; Berghofer, E. Phytochemical profile of main antioxidants in different fractions of purple and blue wheat, and black barley. J. Agric. Food Chem. 2007, 55, 8541–8547. [Google Scholar] [CrossRef]
- Ficco, D.B.M.; Borrelli, G.M.; Giovanniello, V.; Platani, C.; De Vita, P. Production of anthocyanin-enriched flours of durum and soft pigmented wheats by air-classification, as a potential ingredient for functional bread. J. Cereal Sci. 2018, 79, 118–126. [Google Scholar] [CrossRef]
- Pasqualone, A.; Bianco, A.M.; Paradiso, V.M.; Summo, C.; Gambacorta, G.; Caponio, F.; Blanco, A. Production and characterization of functional biscuits obtained from purple wheat. Food Chem. 2015, 180, 64–70. [Google Scholar] [CrossRef]
- Bartl, P.; Albreht, A.; Skrt, M.; Tremlová, B.; Ošťádalová, M.; Šmejkal, K.; Vovk, I.; Ulrih, N.P. Anthocyanins in purple and blue wheat grains and in resulting bread: Quantity, composition, and thermal stability. Int. J. Food Sci. Nutr. 2015, 66, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Pontonio, E.; Dingeo, C.; Di Cagno, R.; Blandino, M.; Gobbetti, M.; Rizzello, C.G. Brans from hull-less barley, emmer and pigmented wheat varieties: From by-products to bread nutritional improvers using selected lactic acid bacteria and xylanase. Int. J. Food Microbiol. 2020, 313, 108384. [Google Scholar] [CrossRef] [PubMed]
- Ficco, D.B.M.; De Simone, V.; De Leonardis, A.M.; Giovanniello, V.; Del Nobile, M.A.; Padalino, L.; Lecce, L.; Borrelli, G.M.; De Vita, P. Use of purple durum wheat to produce naturally functional fresh and dry pasta. Food Chem. 2016, 205, 187–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sovrani, V.; Blandino, M.; Scarpino, V.; Reyneri, A.; Coïsson, J.D.; Travaglia, F.; Locatelli, M.; Bordiga, M.; Montella, R.; Arlorio, M. Bioactive compound content, antioxidant activity, deoxynivalenol and heavy metal contamination of pearled wheat fractions. Food Chem. 2012, 135, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Brennan, C.S.; Cleary, L.J. The potential use of cereal (1→ 3, 1→ 4)-β-D-glucans as functional food ingredients. J. Cereal Sci. 2005, 42, 1–13. [Google Scholar] [CrossRef]
- Gill, S.; Vasanthan, T.; Ooraikul, B.; Rossnagel, B. Wheat bread quality as influenced by the substitution of waxy and regular barley flours in their native and extruded forms. J. Cereal Sci. 2002, 36, 219–237. [Google Scholar] [CrossRef]
- Salmenkallio-Marttila, M.; Katina, K.; Autio, K. Effects of bran fermentation on quality and microstructure of high-fiber wheat bread. Cereal Chem. 2001, 78, 429–435. [Google Scholar] [CrossRef]
- Gobbetti, M.; De Angelis, M.; Di Cagno, R.; Calasso, M.; Archetti, G.; Rizzello, C.G. Novel insights on the functional/nutritional features of the sourdough fermentation. Int. J. Food Microbiol. 2019, 302, 103–113. [Google Scholar] [CrossRef]
- Coda, R.; Di Cagno, R.; Gobbetti, M.; Rizzello, C.G. Sourdough lactic acid bacteria: Exploration of non-wheat cereal-based fermentation. Food Microbiol. 2014, 37, 51–58. [Google Scholar] [CrossRef]
- Carnevali, P.; Ciati, R.; Leporati, A.; Paese, M. Liquid sourdough fermentation: Industrial application perspectives. Food Microbiol. 2007, 24, 150–154. [Google Scholar] [CrossRef]
- Coda, R.; Rizzello, C.G.; Gobbetti, M. Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of γ-aminobutyric acid (GABA). Int. J. Food Microbiol. 2010, 137, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Katina, K.; Poutanen, K. Nutritional aspects of cereal fermentation with lactic acid bacteria and yeast. In Handbook on Sourdough Biotechnology; Springer: Boston, MA, USA, 2013; pp. 229–244. [Google Scholar]
- Venturi, M.; Galli, V.; Pini, N.; Guerrini, S.; Granchi, L. Use of selected lactobacilli to increase γ-aminobutyric acid (GABA) content in sourdough bread enriched with amaranth flour. Foods 2019, 8, 218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minervini, F.; De Angelis, M.; Di Cagno, R.; Gobbetti, M. Ecological parameters influencing microbial diversity and stability of traditional sourdough. Int. J. Food Microbiol. 2014, 171, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Shewry, P.R.; Ward, J.L. Phenolic acids in wheat varieties in the HEALTHGRAIN diversity screen. J. Agric. Food Chem. 2008, 56, 9732–9739. [Google Scholar] [CrossRef]
- Giordano, D.; Locatelli, M.; Travaglia, F.; Bordiga, M.; Reyneri, A.; Coisson, J.D.; Blandino, M. Bioactive compound and antioxidant activity distribution in roller-milled and pearled fractions of conventional and pigmented wheat varieties. Food Chem. 2017, 233, 483–491. [Google Scholar] [CrossRef]
- Serpen, A.; Gökmen, V.; Fogliano, V. Solvent effects on total antioxidant capacity of foods measured by direct quencer procedure. J. Food Compos. Anal. 2012, 26, 52–57. [Google Scholar] [CrossRef]
- Pepe, O.; Villani, F.; Oliviero, D.; Greco, T.; Coppola, S. Effect of proteolytic starter cultures as leavening agents of pizza dough. Int. J. Food Microbiol. 2003, 84, 319–326. [Google Scholar] [CrossRef]
- Macedo, A.C.; Vieira, M.; Poças, R.; Malcata, F.X. Peptide hydrolase system of lactic acid bacteria isolated from Serra da Estrela cheese. Int. Dairy J. 2000, 10, 769–774. [Google Scholar] [CrossRef]
- Galli, V.; Mazzoli, L.; Luti, S.; Venturi, M.; Guerrini, S.; Paoli, P.; Vincenzini, M.; Granchi, L.; Pazzagli, L. Effect of selected strains of lactobacilli on the antioxidant and anti-inflammatory properties of sourdough. Int. J. Food Microbiol. 2018, 286, 55–65. [Google Scholar] [CrossRef]
- Zwietering, M.H.; Jongeberger, I.; Roumbouts, F.M.; Van’t Riet, K. Modelling of bacterial growth curve. Appl. Environ. Microbiol. 1990, 56, 1875–1881. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Aal, E.-S.M.; Hucl, P. Composition and stability of anthocyanins in blue-grained wheat. J. Agric. Food Chem. 2003, 51, 2174–2180. [Google Scholar] [CrossRef] [PubMed]
- Liatis, S.; Tsapogas, P.; Chala, E.; Dimosthenopoulos, C.; Kyriakopoulos, K.; Kapantais, E.; Katsilambros, N. The consumption of bread enriched with betaglucan reduces LDL-cholesterol and improves insulin resistance in patients with type 2 diabetes. Diabetes Metab. 2009, 35, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Mesci, B.; Erbakan, A.N.; Yildiz, K. Dietary Breads and Impact on Postprandial Parameters. In Flour and Breads and their Fortification in Health and Disease Prevention; Victor, R.P., Ross Watson, R., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 405–412. [Google Scholar]
- Blandino, M.; Locatelli, M.; Gazzola, A.; Coïsson, J.D.; Giacosa, S.; Travaglia, F.; Bordiga, M.; Reyneri, A.; Rolle, L.; Arlorio, M. Hull-less barley pearling fractions: Nutritional properties and their effect on the functional and technological quality in bread-making. J. Cereal Sci. 2015, 65, 48–56. [Google Scholar] [CrossRef]
- Holtekjølen, A.K.; Kinitz, C.; Knutsen, S.H. Flavanol and bound phenolic acid contents in different barley varieties. J. Agric. Food Chem. 2006, 54, 2253–2260. [Google Scholar] [CrossRef] [PubMed]
- Holtekjølen, A.K.; Bvre, A.B.; Rødbotten, M.; Berg, H.; Knutsen, S.H. Antioxidant properties and sensory profiles of breads containing barley flour. Food Chem. 2008, 110, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Gobbetti, M.; Rizzello, C.G.; Di Cagno, R.; De Angelis, M. How the sourdough may affect the functional features of leavened baked goods. Food Microbiol. 2014, 37, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Coda, R.; Rizzello, C.G.; Pinto, D.; Gobbetti, M. Selected lactic acid bacteria synthesize antioxidant peptides during sourdough fermentation of cereal flours. Appl. Environ. Microbiol. 2012, 78, 1087–1096. [Google Scholar] [CrossRef] [Green Version]
- Gänzle, M.G.; Loponen, J.; Gobbetti, M. Proteolysis in sourdough fermentations: Mechanisms and potential for improved bread quality. Trends Food Sci. Technol. 2008, 19, 513–521. [Google Scholar] [CrossRef]
- Zotta, T.; Ricciardi, A.; Parente, E. Enzymatic activities of lactic acid bacteria isolated from Cornetto di Matera sourdoughs. Int. J. Food Microbiol. 2007, 115, 165–172. [Google Scholar] [CrossRef]
- Zhao, C.J.; Schieber, A.; Gänzle, M.G. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations—A review. Food Res. Int. 2016, 89, 39–47. [Google Scholar] [CrossRef]
- De Vuyst, L.; Neysens, P. The sourdough microflora: Biodiversity and metabolic interactions. Trends Food Sci. Technol. 2005, 16, 43–56. [Google Scholar] [CrossRef]
- Luti, S.; Mazzoli, L.; Ramazzotti, M.; Galli, V.; Venturi, M.; Marino, G.; Lehmann, M.; Guerrini, S.; Granchi, L.; Paoli, P.; et al. Antioxidant and anti-inflammatory properties of sourdoughs containing selected Lactobacilli strains are retained in breads. Food Chem. 2020, 322, 126710. [Google Scholar] [CrossRef] [PubMed]
Species | Strains |
---|---|
Lactobacillus brevis | Fi6; Fi7; Fi30; Fi33; Fi35; Fi44; Fi45; Fi49; Fi50; Fi63, Fi67; Fi68 |
Lactobacillus farciminis | Fi1; Fi2; Fi11; Fi14; Fi17; Fi20; Fi29; Fi32; Fi41; Fi42; Fi43; Fi51; Fi70 |
Lactobacillus plantarum | Fi8; Fi13; Fi15; Fi27; Fi31; Fi34; Fi40; Fi52; Fi53; Fi54; Fi55; Fi58; Fi60; Fi61; Fi62 |
Lactobacillus rossiae | Fi4; Fi9; Fi10; Fi12; Fi16; Fi19; Fi21; Fi22; Fi24; Fi25; Fi28; Fi37; Fi38; Fi39; Fi59; Fi69 |
Lactobacillus sanfranciscensis | Fi3; Fi5; Fi18; Fi23; Fi26; Fi36; Fi46; Fi47; Fi48; Fi56; Fi57; Fi64; Fi65; Fi66 |
Cereal | Cultivar | CWBPAs 1 | SPAs 1 | TAC | AC-FRAP | AC-ABTS |
---|---|---|---|---|---|---|
(mg/kg) | (mg/kg) | (mg cya/kg) | (mmol TE/kg) | (mmol TE/kg) | ||
Red-grained wheat | Aubusson | 710 ± 29 b | 63.6 ± 3.9 b | - | 7.5 ± 0.5 b | 18.8 ± 0.9 b |
Blue-grained wheat | Skorpion | 897 ± 19 a | 84.7 ± 3.7 a | 22.8 ± 0.4 | 7.9 ± 0.6 b | 19.9 ± 0.7 b |
Naked barley | Rondo | 957 ± 7 a | 37.2 ± 3.2 c | - | 23.6 ± 1.5 a | 31.9 ± 1.8 a |
p (F) | <0.001 | 0.001 | - | <0.001 | <0.001 |
Strain | ∆pH (pH Unit) | µ Max (−∆pHh−1) | Lag Phase (h) |
---|---|---|---|
L. plantarum Fi8 | 2.376 ± 0.326 | 0.345 ± 0.028 | 2.224 ± 0.283 bc |
L. plantarum Fi13 | 2.172 ± 0.349 | 0.370 ± 0.029 | 3.279 ± 0.236 c |
L. plantarum Fi15 | 2.309 ± 0.124 | 0.391 ± 0.019 | 1.368 ± 0.207 ab |
L. plantarum Fi27 | 1.966 ± 0.088 | 0.434 ± 0.028 | 1.282 ± 0.205 ab |
L. plantarum Fi58 | 1.977 ± 0.121 | 0.416 ± 0.031 | 2.227 ± 0.207 bc |
L. farciminis Fi14 | 2.232 ± 0.289 | 0.373 ± 0.028 | 2.904 ± 0.232 c |
L. farciminis Fi17 | 2.337 ± 0.163 | 0.348 ± 0.016 | 1.624 ± 0.211 ab |
L. sanfranciscensis Fi18 | 1.989 ± 0.095 | 0.362 ± 0.015 | 2.279 ± 0.135 bc |
L. rossiae Fi19 | 2.208 ± 0.117 | 0.365 ± 0.017 | 1.578 ± 0.183 ab |
L. rossiae Fi40 | 2.251 ± 0.106 | 0.349 ± 0.013 | 0.977 ± 0.197 a |
Strain | ∆pH (pH Unit) | µ Max (−∆pHh−1) | Lag Phase (h) |
---|---|---|---|
L. plantarum Fi15 | 1.399 ± 0.081 | 0.310 ± 0.022 | 2.611 ± 0.178 |
L. plantarum Fi31 | 1.188 ± 0.180 | 0.364 ± 0.098 | 3.456 ± 0.457 |
L. plantarum Fi58 | 1.266 ± 0.126 | 0.328 ± 0.068 | 2.799 ± 0.355 |
L. farciminis Fi32 | 1.208 ± 0.246 | 0.381 ± 0.049 | 2.646 ± 0.355 |
L. farciminis Fi70 | 1.169 ± 0.150 | 0.352 ± 0.082 | 3.284 ± 0.408 |
L.sanfranciscensis Fi33 | 1.158 ± 0.165 | 0.373 ± 0.096 | 3.680 ± 0.411 |
L. rossiae Fi19 | 1.143 ± 0.134 | 0.423 ± 0.102 | 4.019 ± 0.335 |
L. rossiae Fi40 | 1.122 ± 0.106 | 0.464 ± 0.098 | 4.364 ± 0.253 |
L. rossiae Fi21 | 1.268 ± 0.097 | 0.417 ± 0.069 | 3.110 ± 0.274 |
L. brevis Fi30 | 1.293 ± 0.089 | 0.368 ± 0.062 | 2.741 ± 0.290 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galli, V.; Venturi, M.; Guerrini, S.; Blandino, M.; Luti, S.; Pazzagli, L.; Granchi, L. Antioxidant Properties of Sourdoughs Made with Whole Grain Flours of Hull-Less Barley or Conventional and Pigmented Wheat and by Selected Lactobacilli Strains. Foods 2020, 9, 640. https://doi.org/10.3390/foods9050640
Galli V, Venturi M, Guerrini S, Blandino M, Luti S, Pazzagli L, Granchi L. Antioxidant Properties of Sourdoughs Made with Whole Grain Flours of Hull-Less Barley or Conventional and Pigmented Wheat and by Selected Lactobacilli Strains. Foods. 2020; 9(5):640. https://doi.org/10.3390/foods9050640
Chicago/Turabian StyleGalli, Viola, Manuel Venturi, Simona Guerrini, Massimo Blandino, Simone Luti, Luigia Pazzagli, and Lisa Granchi. 2020. "Antioxidant Properties of Sourdoughs Made with Whole Grain Flours of Hull-Less Barley or Conventional and Pigmented Wheat and by Selected Lactobacilli Strains" Foods 9, no. 5: 640. https://doi.org/10.3390/foods9050640
APA StyleGalli, V., Venturi, M., Guerrini, S., Blandino, M., Luti, S., Pazzagli, L., & Granchi, L. (2020). Antioxidant Properties of Sourdoughs Made with Whole Grain Flours of Hull-Less Barley or Conventional and Pigmented Wheat and by Selected Lactobacilli Strains. Foods, 9(5), 640. https://doi.org/10.3390/foods9050640