Composition, Mineral and Fatty Acid Profiles of Milk from Goats Fed with Different Proportions of Broccoli and Artichoke Plant By-Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Facilities
2.2. Experimental Design
2.3. Analysed Variables
2.4. Calculations and Statistical Analysis
3. Results
3.1. Diet Effects on Body Weight and Feed Consumption
3.2. Milk Yield, Macro-Composition, and SCC
3.3. Milk Mineral Content
3.4. Milk Fatty Acid Profile
3.5. Plasma Metabolic Profile
4. Discussion
4.1. Diet Effects on Body Weight and Feed Consumption
4.2. Milk Yield, Macro-Composition, and SCC
4.3. Milk Mineral Content
4.4. Milk Fatty Acid Profile
4.5. Plasma Metabolic Profile
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guo, M. Goat milk. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Finglas, P., Toldra, F., Eds.; Academic Press: Cambridge, MA, USA, 2003; pp. 2944–2949. [Google Scholar]
- Pulina, G.; Milán, M.; Lavín, M.; Theodoridis, A.; Morin, E.; Capote, J.; Thomas, D.; Francesconi, A.; Caja, G. Invited review: Current production trends, farm structures, and economics of the dairy sheep and goat sectors. J. Dairy Sci. 2018, 101, 6715–6729. [Google Scholar] [CrossRef] [Green Version]
- Turck, D. Cow’s milk and goat’s milk. World Rev. Nutr. Diet 2013, 108, 56–62. [Google Scholar] [PubMed]
- Chen, L.; Li, X.; Li, Z.; Deng, L. Analysis of 17 elements in cow, goat, buffalo, yak, and camel milk by inductively coupled plasma mass spectrometry (ICP-MS). RSC Adv. 2020, 10, 6736–6742. [Google Scholar] [CrossRef]
- Djordjevic, J.; Ledina, T.; Baltic, M.Z.; Trbovic, D.; Babic, M.; Bulajic, S. Fatty acid profile of milk. IOP Conf. Ser. Earth Environ. Sci. 2019, 333, 012057. [Google Scholar] [CrossRef]
- González-Arrojo, A.; Soldado, A.; Vicente, F.; Fernández Sánchez, M.L.; Sanz-Medel, A.; de la Roza-Delgado, B. Changes on levels of essential trace elements in selenium naturally enriched milk. J. Food Nutr. Res. 2016, 4, 303–308. [Google Scholar]
- Halmemies-Beauchet-Filleau, A.; Shingfield, K.; Simpura, I.; Kokkonen, T.J.; Jaakkola, S.; Toivonen, V.; Vanhatalo, A. Effect of incremental amounts of camelina oil on milk fatty acid composition in lactating cows fed diets based on a mixture of grass and red clover silage and concentrates containing camelina expeller. J. Dairy Sci. 2017, 100, 305–324. [Google Scholar] [CrossRef] [Green Version]
- Hilali, M.; Rischkowsky, B.; Iniguez, L.; Mayer, H.K.; Schreiner, M. Changes in the milk fatty acid profile of Awassi sheep in response to supplementation with agro-industrial by-products. Small Rumin. Res. 2018, 166, 93–100. [Google Scholar] [CrossRef]
- Cappucci, A.; Alves, S.P.; Bessa, R.J.; Buccioni, A.; Mannelli, F.; Pauselli, M.; Viti, C.; Pastorelli, R.; Roscini, V.; Serra, A.; et al. Effect of increasing amounts of olive crude phenolic concentrate in the diet of dairy ewes on rumen liquor and milk fatty acid composition. J. Dairy Sci. 2018, 101, 4992–5005. [Google Scholar] [CrossRef]
- Schulz, F.; Westreicher-Kristen, E.; Molkentin, J.; Knappstein, K.; Susenbeth, A. Effect of replacing maize silage with red clover silage in the diet on milk fatty acid composition in cows. J. Dairy Sci. 2018, 101, 7156–7167. [Google Scholar] [CrossRef] [Green Version]
- Monllor, P.; Romero, G.; Sendra, E.; Atzori, A.S.; Diaz, J.R. Short-term effect of the inclusion of silage Artichoke by-products in diets of dairy goats on milk quality. Animals 2020, 10, 339. [Google Scholar] [CrossRef] [Green Version]
- Caputo, A.R.; Morone, G.; Di Napoli, M.A.; Rufrano, D.; Sabia, E.; Paladino, F.; Sepe, L.; Claps, S. Effect of destoned olive cake on the aromatic profile of cows’ milk and dairy products: Comparison of two techniques for the headspace aroma profile analysis. Ital. J. Agron. 2015, 10, 15. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/faostat/en/#data/FO (accessed on 4 April 2019).
- Hernández, F.; Pulgar, M.A.; Cid, J.M.; Moreno, R.; Ocio, E. Nutritive assessment of artichoke crop residues (Cynara scolymus L): Sun dried leaves and whole plant silage. Arch. Zootec 1992, 41, 257–264. [Google Scholar]
- Wernli, C.; Thames, I. Utilization of fodder residue of artichoke (Cynara scolymus L.) as silage. I. Factors affecting its conservation. Av. Prod. Anim. 1989, 14, 79–89. [Google Scholar]
- Ros, M.; Pascual, J.A.; Ayuso, M.; Morales, A.B.; Miralles, J.R.; Solera, C. Estrategias Sostenibles para un Manejo Integral de los Residuos y Subproductos Orgánicos de la Industria Agroalimentaria. Proyecto Life+ Agrowaste; CEBAS-CSIC, CTC y AGRUPAL: Murcia, España, 2012. [Google Scholar]
- Wiedenhoeft, M.H.; Barton, B.A. Management and environment effects on brassica forage quality. Agron. J. 1907, 86, 227–232. [Google Scholar] [CrossRef]
- Shinners, K.J.; Wepner, A.D.; Muck, R.E.; Weimer, P.J. Aerobic and anaerobic storage of single-pass, chopped corn stover. BioEnergy Res. 2010, 4, 61–75. [Google Scholar] [CrossRef]
- Meneses, M.; Megías, M.D.; Madrid, J.; Martínez-Teruel, A.; Hernández, F.; Oliva, J. Evaluation of the phytosanitary, fermentative and nutritive characteristics of the silage made from crude artichoke (Cynara scolymus L.) by-product feeding for ruminants. Small Rumin. Res. 2007, 70, 292–296. [Google Scholar] [CrossRef]
- Monllor, P.; Muelas, R.; Roca, A.; Sendra, E.; Romero, G.; Díaz, J.R. Nutritive and fermentative evaluation of silages made from plant of artichoke and artichoke and broccoli by-product. In Proceedings of the XLII Nationas and XVIII International Congress of Spanish Society of Sheep and Goat Husbandry (SEOC), Salamanca, Spain, 20–22 September 2017; Spanish Society of Sheep and Goat Husbandry: Sevilla, Spain, 2017; pp. 139–145. [Google Scholar]
- Marsico, G.; Ragni, M.; Vicenti, A.; Jambrenghi, A.C.; Tateo, A.; Giannico, F.; Vonghia, G. The quality of meat from lambs and kids reared on feeds based on Artichoke (Cynara Scolymus L.) bracts. Acta Hortic. 2005, 681, 489–494. [Google Scholar] [CrossRef]
- Jaramillo, D.; Buffa, M.; Rodríguez, M.; Pérez-Baena, I.; Guamis, B.; Trujillo, A.-J. Effect of the inclusion of artichoke silage in the ration of lactating ewes on the properties of milk and cheese characteristics during ripening. J. Dairy Sci. 2010, 93, 1412–1419. [Google Scholar] [CrossRef] [Green Version]
- Salman, F.M.; El-Nomeary, Y.A.A.; Abedo, A.A.; Abd El-Rahman, H.H.; Mohamed, M.I.; Ahmed, S.M. Utilization of artichoke (Cynara scolymus) by-products in sheep feeding. Am.-Eurasian J. Agric. Environ. Sci. 2014, 14, 624–630. [Google Scholar]
- Muelas, R.; Monllor, P.; Romero, G.; Sayas-Barberá, E.; Navarro, C.; Diaz, J.R.; Sendra, E. Milk technological properties as affected by including Artichoke by-products silages in the diet of dairy goats. Foods 2017, 6, 112. [Google Scholar] [CrossRef] [Green Version]
- Fernández, C.; Sánchez-Séiquer, P.; Navarro, M.J.; Garcés, C. Modeling the voluntary dry matter intake in Murciano-Granadina dairy goats. In Sustainable Grazing, Nutritional Utilization and Quality of Sheep and Goat Products; Molina, A.E., Ben, S.H., Biala, K., Morand-Fehr, P., Eds.; CIHEAM: Zaragoza, Spain, 2005; pp. 395–399. [Google Scholar]
- INRA. Alimentation des Bovins, Ovins et Caprins; Jarrige, R., Ed.; INRA: Paris, France, 1988; p. 471. [Google Scholar]
- AOAC. Official Methods of Analysis, 16th ed.; Cunniff, P., Ed.; Association of Official Analytical Chemists: Washington, WA, USA, 1999. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary neutral detergent fibre and nonstarch polysacacharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Kim, D.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003, 81, 321–326. [Google Scholar] [CrossRef]
- Liu, F.-X.; Fu, S.-F.; Bi, X.-F.; Chen, F.; Liao, X.-J.; Hu, X.-S.; Wu, J. Physico-chemical and antioxidant properties of four mango (Mangifera indica L.) cultivars in China. Food Chem. 2013, 138, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. 1988, 23, 103–116. [Google Scholar]
- Kramer, J.K.G.; Fellner, V.; Dugan, M.E.R.; Sauer, F.D.; Mossoba, M.M.; Yurawecz, M.P. Evaluating acid and base catalysts in the methylation of milk and rumen fatty acids with special emphasis on conjugated dienes and total trans fatty acids. Lipids 1997, 32, 1219–1228. [Google Scholar] [CrossRef]
- Gravert, H.O. Dairy Cattle Production; Elsevier Science: New York, NY, USA, 1987; p. 234. [Google Scholar]
- Romeu-Nadal, M.; Morera-Pons, S.; Casteltratamiento, A.I.; López-Sabater, M.C. Comparison of two methods for the extraction of fat from human milk. Anal. Chim. Acta 2004, 513, 457–461. [Google Scholar] [CrossRef]
- Nudda, A.; McGuire, M.; Battacone, G.; Pulina, G. Seasonal variation in conjugated linoleic acid and vaccenic acid in milk fat of sheep and its transfer to cheese and ricotta. J. Dairy Sci. 2005, 88, 1311–1319. [Google Scholar] [CrossRef] [Green Version]
- Ulbricht, T.; Southgate, D. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Lock, A.; Garnsworthy, P. Seasonal variation in milk conjugated linoleic acid and Δ9-desaturase activity in dairy cows. Livest. Prod. Sci. 2003, 79, 47–59. [Google Scholar] [CrossRef]
- Jackson, N.; Forbes, T.J. The voluntary intake by cattle of four silages differing in dry matter content. Anim. Sci. 1970, 12, 591–599. [Google Scholar] [CrossRef]
- Schettini, M.A.; Prigge, E.C.; Nestor, E.L. Influence of mass and volume of ruminal contents on voluntary intake and digesta passage of a forage diet in steers. J. Anim. Sci. 1999, 77, 1896–1904. [Google Scholar] [CrossRef] [PubMed]
- Baumont, R. Palatabilité et comportement alimentaire chez le ruminant. INRA Prod. Anim. 1996, 9, 349–358. [Google Scholar]
- Meneses, M. Evaluación Nutritiva y Fermentativa del Ensilado de dos Subproductos Agroindustriales, Brócoli (Brassica oleracea, L. var. Itálica) y Alcachofa (Cynara Scolymus, L) para su Empleo en la Alimentación Animal. Ph.D. Thesis, University of Murcia, Murcia, Spain, 2002. [Google Scholar]
- Molina-Alcaide, E.; Morales-García, E.; Martín-García, A.; Ben Salem, H.; Nefzaoui, A.; Sanz-Sampelayo, M.; Morales-García, Y.E. Effects of partial replacement of concentrate with feed blocks on nutrient utilization, microbial N flow, and milk yield and composition in goats. J. Dairy Sci. 2010, 93, 2076–2087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, C.; Pérez-Baena, I.; Marti, J.; Palomares, J.; Jorro-Ripoll, J.; Segarra, J. Use of orange leaves as a replacement for alfalfa in energy and nitrogen partitioning, methane emissions and milk performance of murciano-granadina goats. Anim. Feed. Sci. Technol. 2019, 247, 103–111. [Google Scholar] [CrossRef]
- León, J.; Macciotta, N.P.; Gama, L.T.; Barba, C.; Delgado, J. Characterization of the lactation curve in Murciano-Granadina dairy goats. Small Rumin. Res. 2012, 107, 76–84. [Google Scholar] [CrossRef]
- Van Knegsel, A.T.; Brand, H.V.D.; Dijkstra, J.; Van Straalen, W.; Heetkamp, M.; Tamminga, S.; Kemp, B. Dietary energy source in dairy cows in early lactation: Energy partitioning and milk composition. J. Dairy Sci. 2007, 90, 1467–1476. [Google Scholar] [CrossRef] [Green Version]
- Jimeno, V.; Rebollar, P.G.; Castro, T. Nutrición y alimentación del caprino de leche en sistemas intensivos de explotación. In Proceedings of the Alimentación Práctica del Caprino de Leche en Sistemas Intensivos. XIX Curso de Especialización FEDNA, Madrid, Spain, 23–24 October 2003; pp. 155–178. [Google Scholar]
- Mellado, M.; García, J. Effects of abortion and stage of lactation on chemical composition and mineral content of goat milk from mixed-breed goat on rangeland. APCBEE Procedia 2014, 8, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Rey-Crespo, F.; Miranda, M.; López-Alonso, M. Essential trace and toxic element concentrations in organic and conventional milk in NW Spain. Food Chem. Toxicol. 2013, 55, 513–518. [Google Scholar] [CrossRef]
- Pastorino, A.; Hansen, C.; McMahon, D. Effect of pH on the chemical composition and structure-function relationships of cheddar cheese. J. Dairy Sci. 2003, 86, 2751–2760. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.B. Optimal diets for prevention of coronary heart disease. JAMA 2002, 288, 2569–2578. [Google Scholar] [CrossRef]
- Collomb, M.; Bisig, W.; Bütikofer, U.; Sieber, R.; Bregy, M.; Etter, L. Fatty acid composition of mountain milk from Switzerland: Comparison of organic and integrated farming systems. Int. Dairy J. 2008, 18, 976–982. [Google Scholar] [CrossRef]
- Castro-Carrera, T.; Toral, P.G.; Frutos, P.; McEwan, N.R.; Hervás, G.; Abecia, L.; Pinloche, E.; Girdwood, S.; Belenguer, A. Rumen bacterial community evaluated by 454 pyrosequencing and terminal restriction fragment length polymorphism analyses in dairy sheep fed marine algae. J. Dairy Sci. 2014, 97, 1661–1669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buccioni, A.; Pauselli, M.; Viti, C.; Minieri, S.; Pallara, G.; Roscini, V.; Rapaccini, S.; Trabalza-Marinucci, M.; Lupi, P.; Conte, G.; et al. Milk fatty acid composition, rumen microbial population, and animal performances in response to diets rich in linoleic acid supplemented with chestnut or quebracho tannins in dairy ewes. J. Dairy Sci. 2015, 98, 1145–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, M.; Alves, S.P.; Cabo, Â.; Guerreiro, O.; Stilwell, G.; Dentinho, M.T.; Bessa, R.J.B. Modulation ofin vitrorumen biohydrogenation byCistus ladanifertannins compared with other tannin sources. J. Sci. Food Agric. 2016, 97, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Correddu, F.; Fancello, F.; Chessa, L.; Atzori, A.; Pulina, G.; Nudda, A. Effects of supplementation with exhausted myrtle berries on rumen function of dairy sheep. Small Rumin. Res. 2019, 170, 51–61. [Google Scholar] [CrossRef]
- Nudda, A.; Correddu, F.; Atzori, A.; Marzano, A.; Battacone, G.; Nicolussi, P.; Bonelli, P.; Pulina, G. Whole exhausted berries of Myrtus communis L. supplied to dairy ewes: Effects on milk production traits and blood metabolites. Small Rumin. Res. 2017, 155, 33–38. [Google Scholar] [CrossRef]
- Nudda, A.; Buffa, G.; Atzori, A.S.; Cappai, M.G.; Caboni, P.; Fais, G.; Pulina, G. Small amounts of agro-industrial byproducts in dairy ewes diets affects milk production traits and hematological parameters. Anim. Feed. Sci. Technol. 2019, 251, 76–85. [Google Scholar] [CrossRef]
- Baldin, M.; Dresch, R.; De Souza, J.; Fernandes, D.; Gama, M.; Harvatine, K.; Oliveira, D. CLA induced milk fat depression reduced dry matter intake and improved energy balance in dairy goats. Small Rumin. Res. 2014, 116, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Rivas, J.; Rossini, M.; Colmenares, O.; Salvador, A.; Morantes, M.; Valerio, D. Effect of feeding on the profile metabolic goats in canary in the tropics. In Proceedings of the 4th Simposium of the Latinomerican Asociation in Animal Science, Quevedo, Ecuador, 13–15 November 2014; pp. 125–132. [Google Scholar]
- Friggens, N.; Duvaux-Ponter, C.; Etienne, M.; Mary-Huard, T.; Schmidely, P. Characterizing individual differences in animal responses to a nutritional challenge: Toward improved robustness measures. J. Dairy Sci. 2016, 99, 2704–2718. [Google Scholar] [CrossRef]
- Bonanno, A.; Di Grigoli, A.; Di Trana, A.; Di Gregorio, P.; Tornambè, G.; Bellina, V.; Claps, S.; Maggio, G.; Todaro, M. Influence of fresh forage-based diets and αS1-casein (CSN1S1) genotype on nutrient intake and productive, metabolic, and hormonal responses in milking goats. J. Dairy Sci. 2013, 96, 2107–2117. [Google Scholar] [CrossRef]
Item | BB | AP |
---|---|---|
Chemical Composition | ||
DM (g/kg of FM, as fed) | 154 | 258 |
OM | 821 | 828 |
CP | 174 | 78.1 |
CF | 214 | 296 |
NDF | 430 | 571 |
ADF | 326 | 374 |
ADL | 63.4 | 108 |
EE | 32.1 | 34.6 |
TP | 6.73 | 4.96 |
VFA and Fermentative Metabolites | ||
Lactate | 30.8 | 17.0 |
Acetate | 117 | 35.2 |
Propionate | 14.6 | n.d. |
Butyrate | 3.80 | 8.56 |
Ethanol | 14.6 | 3.25 |
Ammonia N | 1.65 | 0.149 |
Item | Diets | ||||||
---|---|---|---|---|---|---|---|
C | AP25 | AP40 | AP60 | BB25 | BB40 | BB60 | |
Ingredients (g/100 g DM) | |||||||
Alfalfa hay | 38.0 | 14.7 | - | - | 13.5 | 8.50 | 4.60 |
Oat | 16.0 | 15.0 | 13.0 | 8.0 | 35.0 | 26.5 | 26.6 |
Barley | 9.50 | 9.00 | 8.00 | 4.51 | 5.50 | 3.72 | 1.23 |
Corn | 9.08 | 8.43 | 8.00 | 4.35 | 5.16 | 3.60 | 1.19 |
Dried sugar beet pulp | 7.36 | 7.00 | 6.50 | 3.53 | 4.18 | 3.00 | 0.960 |
Sunflower meal | 3.36 | 3.12 | 3.00 | 1.61 | 2.00 | 1.33 | 0.440 |
Peas | 2.50 | 2.32 | 2.09 | 1.20 | 1.42 | 0.990 | 0.330 |
Cottonseed | 2.50 | 2.32 | 2.09 | 1.20 | 1.42 | 0.990 | 0.330 |
Soybean meal 44% | 4.00 | 6.00 | 10.0 | 12.0 | 2.00 | 2.00 | 1.00 |
Corn DDGS | 3.00 | 3.00 | 2.50 | 1.38 | 2.00 | 1.14 | 0.380 |
Sunflower seeds | 2.00 | 1.74 | 2.40 | 1.00 | 1.07 | 0.740 | 0.250 |
Beans | 1.25 | 1.16 | 1.05 | 0.600 | 1.00 | 0.500 | 0.160 |
Wheat | 1.00 | 0.770 | 1.00 | 0.400 | 0.470 | 0.330 | 0.110 |
Soy hulls | 0.420 | 0.390 | 0.350 | 0.200 | 0.240 | 0.160 | 0.050 |
Silage | - | 25.0 | 40.0 | 60.0 | 25.0 | 40.0 | 60.0 |
kg DM offered/day/animal | 2.24 | 2.26 | 2.20 | 2.30 | 2.22 | 2.21 | 2.20 |
Chemical Composition | |||||||
DM (g/kg FM) | 893 | 554 | 448 | 361 | 438 | 334 | 254 |
g/kg DM | |||||||
OM | 935 | 915 | 901 | 884 | 916 | 904 | 885 |
CP | 162 | 160 | 163 | 157 | 162 | 165 | 169 |
CF | 195 | 202 | 196 | 237 | 180 | 180 | 183 |
NDF | 376 | 391 | 382 | 432 | 359 | 355 | 353 |
ADF | 243 | 248 | 239 | 281 | 225 | 226 | 231 |
ADL | 56.5 | 55.1 | 49.5 | 55.2 | 48.0 | 47.0 | 46.7 |
EE | 41.9 | 36.5 | 35.1 | 30.5 | 41.3 | 38.5 | 34.7 |
TP | 3.87 | 4.18 | 5.42 | 5.34 | 4.60 | 5.42 | 6.68 |
IVDMD | 715 | 715 | 710 | 665 | 780 | 747 | 757 |
1ME (Mcal/kg DM) | 2.37 | 2.30 | 2.29 | 2.19 | 2.39 | 2.36 | 2.29 |
VFA and Fermentative Metabolites (g/kg DM) | |||||||
Lactate | n.d. | 14.2 | 23.2 | 24.5 | 33.1 | 41.2 | 56.0 |
Acetate | n.d. | 4.91 | 6.04 | 11.9 | 15.1 | 11.0 | 37.8 |
Propionate | n.d. | n.d. | n.d. | n.d. | 2.63 | n.d. | 4.79 |
Butyrate | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Ethanol | n.d. | 1.50 | 1.80 | 1.69 | 9.64 | 12.5 | 23.2 |
Ammonia N | 0.166 | 0.628 | 0.741 | 1.01 | 3.99 | 4.26 | 7.73 |
Fatty Acids Profile (g/100 g Total Fatty Acids) | |||||||
C6:0 | 0.061 | 0.109 | 0.485 | 0.352 | 0.059 | 0.025 | 0.498 |
C12:0 | 0.183 | 0.286 | 0.151 | 0.050 | 0.242 | 0.328 | 0.146 |
C14:0 | 0.440 | 0.502 | 0.413 | 0.357 | 0.542 | 0.539 | 0.465 |
C16:0 | 17.2 | 18.1 | 18.3 | 17.3 | 19.8 | 17.7 | 21.2 |
C16:1 c9 | 0.300 | 0.348 | 0.369 | 0.364 | 0.374 | 0.312 | 0.592 |
C18:0 | 3.25 | 3.08 | 2.93 | 3.63 | 2.96 | 3.34 | 2.76 |
C18:1 c9 | 26.4 | 25.1 | 22.8 | 31.3 | 30.1 | 34.3 | 21.9 |
C18:1 c11 | 1.06 | 1.11 | 1.33 | 1.12 | 2.00 | 2.23 | 3.74 |
C18:2n6 | 44.0 | 42.0 | 40.5 | 32.3 | 35.5 | 29.4 | 29.4 |
C18:3n3 | 4.07 | 4.79 | 6.75 | 6.43 | 5.79 | 8.18 | 13.0 |
C20:0 | 0.463 | 0.757 | 0.884 | 1.19 | 0.493 | 0.679 | 0.838 |
C20:1n9 | 0.323 | 0.408 | 0.300 | 0.336 | 0.464 | 0.386 | 0.423 |
C22:0 | 0.457 | 0.546 | 0.519 | 0.960 | 0.393 | 0.784 | 0.640 |
C24:0 | 0.336 | 0.493 | 0.392 | 0.411 | 0.365 | 0.600 | 0.652 |
SFA | 23.3 | 24.7 | 26.4 | 26.8 | 25.5 | 24.6 | 29.5 |
MUFA | 28.2 | 27.6 | 26.1 | 33.7 | 33.0 | 37.5 | 27.5 |
PUFA | 48.7 | 48.3 | 47.7 | 40.0 | 41.5 | 38.1 | 43.2 |
Mineral Profile | |||||||
Na (g/kg DM) | 2.89 | 5.83 | 7.34 | 12.1 | 2.37 | 5.28 | 5.09 |
Mg (g/kg DM) | 2.66 | 3.24 | 3.05 | 3.63 | 2.06 | 2.52 | 2.43 |
K (g/kg DM) | 13.5 | 14.3 | 14.1 | 17.8 | 17.8 | 19.4 | 30.1 |
Ca (g/kg DM) | 5.90 | 10.8 | 11.2 | 17.0 | 5.62 | 8.91 | 7.49 |
P (g/kg DM) | 2.76 | 4.09 | 3.69 | 3.56 | 3.40 | 3.61 | 4.18 |
S (g/kg DM) | 2.89 | 3.45 | 3.06 | 3.78 | 3.40 | 4.27 | 6.58 |
Se (mg/kg DM) | 0.198 | 0.190 | 0.150 | 0.243 | 0.183 | 0.135 | 0.167 |
Zn (mg/kg DM) | 49.4 | 44.2 | 41.3 | 34.1 | 43.6 | 42.5 | 36.9 |
Cu (mg/kg DM) | 6.15 | 6.42 | 5.83 | 6.76 | 5.68 | 4.67 | 5.41 |
Fe (mg/kg DM) | 129 | 414 | 287 | 460 | 175 | 161 | 235 |
Mn (mg/kg DM) | 42.1 | 47.7 | 44.2 | 54.0 | 38.5 | 34.6 | 35.7 |
Variable | Diets | Significance | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | AP25 | AP40 | AP60 | BB25 | BB40 | BB60 | SEM | Diet | Sampling | Diet x Sampling | |
BW (kg) | 42.9 a | 41.6 ab | 42.2 a | 40.2 bc | 41.9 ab | 41.9 ab | 38.7 c | 0.69 | *** | *** | *** |
Milk yield (kg/day) | 2.24 a | 2.15 ab | 2.14 abc | 1.92 bcd | 1.90 cde | 1.76 de | 1.66 e | 0.090 | *** | ** | *** |
LSCC (Log10 cell/mL) | 5.53 | 5.67 | 5.58 | 5.68 | 5.54 | 5.82 | 5.68 | 0.109 | n.s | ** | ** |
FCM (3.5%; kg/day) | 2.31 ab | 2.42 a | 2.26 ab | 2.17 abc | 2.03 bc | 2.00 bc | 1.88 c | 0.120 | ** | ** | * |
Fat (%) | 3.76 b | 4.25 ab | 4.06 ab | 4.29 ab | 4.02 ab | 4.25 ab | 4.58 a | 0.218 | ** | n.s. | * |
Protein (%) | 3.39 | 3.42 | 3.52 | 3.39 | 3.34 | 3.34 | 3.42 | 0.088 | n.s. | n.s. | n.s. |
UDM (%) | 7.15 b | 7.68 ab | 7.59 ab | 7.68 ab | 7.36 ab | 7.61 ab | 8.01 a | 0.275 | * | n.s. | * |
True protein (%) | 3.16 | 3.18 | 3.27 | 3.15 | 3.11 | 3.11 | 3.18 | 0.078 | n.s. | n.s. | n.s. |
Casein (%) | 2.68 | 2.69 | 2.76 | 2.66 | 2.65 | 2.65 | 2.72 | 0.061 | n.s. | *** | n.s. |
Whey protein (%) | 0.470 | 0.484 | 0.507 | 0.491 | 0.456 | 0.465 | 0.474 | 0.024 | n.s. | *** | ** |
Lactose (%) | 4.25 | 4.16 | 4.20 | 4.16 | 4.23 | 4.20 | 4.18 | 0.045 | n.s. | *** | ** |
TS (%) | 12.0 b | 12.5 ab | 12.4 ab | 12.4 ab | 12.2 ab | 12.4 ab | 12.9 a | 0.28 | * | * | * |
NFTS (%) | 8.75 | 8.67 | 8.81 | 8.63 | 8.70 | 8.67 | 8.75 | 0.084 | n.s. | *** | n.s. |
Ash (%) | 0.639 | 0.615 | 0.648 | 0.625 | 0.638 | 0.627 | 0.652 | 0.024 | n.s. | n.s. | * |
Milk urea (mg/L) | 617 ab | 587 abc | 591 abc | 641 a | 558 bc | 588 abc | 542 c | 23.0 | ** | n.s. | n.s. |
Mineral | Diets | ||||||||
---|---|---|---|---|---|---|---|---|---|
C | AP25 | AP40 | AP60 | BB25 | BB40 | BB60 | SEM | Significance | |
Na (g/kg DM) | 2.59 | 2.40 | 2.23 | 2.36 | 2.53 | 2.41 | 2.68 | 0.113 | n.s. |
Mg (g/kg DM) | 0.888 | 0.837 | 0.835 | 0.932 | 0.884 | 0.813 | 0.853 | 0.047 | n.s. |
K (g/kg DM) | 12.0 | 11.5 | 11.2 | 11.8 | 12.1 | 10.9 | 11.5 | 0.51 | n.s. |
Ca (g/kg DM) | 8.85 | 7.56 | 8.64 | 8.81 | 8.07 | 7.85 | 7.81 | 0.495 | n.s. |
P (g/kg DM) | 6.00 | 5.16 | 6.37 | 6.08 | 5.43 | 6.05 | 6.11 | 0.412 | n.s. |
S (g/kg DM) | 2.45 | 2.29 | 2.44 | 2.45 | 2.35 | 2.40 | 2.37 | 0.107 | n.s. |
Se (mg/kg DM) | 0.102 | 0.095 | 0.127 | 0.117 | 0.091 | 0.105 | 0.093 | 0.010 | n.s. |
Zn (mg/kg DM) | 18.6 | 21.3 | 17.1 | 28.3 | 25.9 | 20.4 | 23.5 | 2.60 | n.s. |
Cu (mg/kg DM) | 0.697 | 0.538 | 1.11 | 0.397 | 0.357 | 0.382 | 0.420 | 0.367 | n.s. |
Fe (mg/kg DM) | 2.95 | 2.16 | 2.26 | 2.72 | 2.11 | 2.22 | 2.34 | 0.557 | n.s. |
Mn (mg/kg DM) | 0.203 b | 0.198 b | 0.233 a | 0.201 b | 0.222 ab | 0.185 b | 0.192 b | 0.010 | * |
Fatty Acid | Diets | ||||||||
---|---|---|---|---|---|---|---|---|---|
C | AP25 | AP40 | AP60 | BB25 | BB40 | BB60 | SEM | Significance | |
C4:0 | 2.21 | 2.66 | 2.53 | 2.57 | 2.53 | 2.62 | 2.67 | 0.586 | n.s. |
C6:0 | 3.05 | 3.59 | 3.41 | 3.51 | 3.54 | 3.55 | 3.61 | 0.795 | n.s. |
C7:0 | 0.052 ab | 0.060 ab | 0.070 ab | 0.046 b | 0.073 ab | 0.071 ab | 0.077 a | 0.024 | * |
C8:0 | 4.11 | 4.57 | 4.67 | 4.32 | 4.64 | 4.77 | 4.28 | 0.981 | n.s. |
C9:0 | 0.065 b | 0.077 ab | 0.095 a | 0.088 ab | 0.102 a | 0.102 a | 0.102 a | 0.023 | * |
C10:0 | 13.2 | 15.0 | 14.7 | 14.5 | 15.6 | 15.6 | 15.3 | 3.03 | n.s. |
C10:1 c9 | 0.037 | 0.040 | 0.033 | 0.036 | 0.047 | 0.036 | 0.034 | 0.017 | n.s. |
C11:0 | 0.197 ab | 0.171 bc | 0.186 abc | 0.157 c | 0.190 ab | 0.201 a | 0.193 ab | 0.022 | ** |
C12:0 | 3.23 a | 2.81 bc | 3.10 abc | 2.66 c | 3.11 abc | 3.31 ab | 2.93 abc | 0.274 | *** |
C12:1 c9 | 0.032 | 0.024 | 0.035 | 0.030 | 0.039 | 0.037 | 0.024 | 0.012 | n.s. |
iso C13:0 | 0.017 b | 0.016 b | 0.026 ab | 0.028 a | 0.027 a | 0.016 b | 0.019 ab | 0.008 | * |
anteiso C13:0 | 0.025 | 0.025 | 0.030 | 0.030 | 0.030 | 0.031 | 0.026 | 0.008 | n.s. |
iso C14:0 | 0.055 b | 0.045 b | 0.060 b | 0.067 ab | 0.063 ab | 0.058 b | 0.084 a | 0.019 | ** |
C14:0 | 7.62 ab | 7.08 ab | 6.92 ab | 6.74 b | 7.59 ab | 7.56 ab | 7.76 a | 0.568 | * |
iso C15:0 | 0.174 abcd | 0.130 b | 0.178 abc | 0.184 a | 0.163 abcd | 0.154 bc | 0.152 bcd | 0.021 | *** |
anteiso C15:0 | 0.226 a | 0.170 c | 0.208 ab | 0.223 a | 0.189 bc | 0.181 c | 0.181 c | 0.021 | *** |
C14:1 c9 | 0.073 bc | 0.062 c | 0.067 bc | 0.076 abc | 0.071 bc | 0.080 ab | 0.090 a | 0.011 | *** |
C15:0 | 0.652 bc | 0.524 d | 0.617 c | 0.753 ab | 0.675 bc | 0.717 b | 0.818 a | 0.066 | *** |
C15:1 | 0.070 a | 0.042 d | 0.048 cd | 0.064 ab | 0.055 bc | 0.061 ab | 0.055 bcd | 0.011 | *** |
iso C16:0 | 0.176 c | 0.147 d | 0.188 bc | 0.225 a | 0.178 c | 0.204 ab | 0.218 a | 0.022 | *** |
C16:0 | 21.5 ab | 22.3 ab | 20.4 ab | 20.5 b | 22.1 ab | 22.0 ab | 23.9 a | 1.67 | ** |
C16:1 t4 | 0.039 ab | 0.003 b | 0.040 ab | 0.070 a | 0.003 b | 0.024 ab | 0.048 ab | 0.049 | * |
C16:1 t5 | 0.023 ab | 0.005 ab | 0.029 ab | 0.043 a | 0.000 b | 0.007 ab | 0.042 ab | 0.036 | * |
C16:1 t6-7 | 0.105 | 0.089 | 0.112 | 0.139 | 0.097 | 0.060 | 0.085 | 0.148 | n.s. |
C16:1 t9 | 0.193 | 0.168 | 0.187 | 0.166 | 0.188 | 0.175 | 0.137 | 0.114 | n.s. |
C16:1 t10 | 0.028 | 0.002 | 0.020 | 0.013 | 0.030 | 0.007 | 0.012 | 0.034 | n.s. |
C16:1 t11-12 | 0.012 | 0.041 | 0.023 | 0.048 | 0.019 | 0.063 | 0.041 | 0.037 | n.s. |
C16:1 c7 | 0.203 | 0.182 | 0.205 | 0.204 | 0.191 | 0.178 | 0.176 | 0.043 | n.s. |
C16:1 c9 | 0.436 c | 0.449 bc | 0.491 bc | 0.542 ab | 0.482 bc | 0.475 bc | 0.617 a | 0.080 | ** |
C16:1 c10 | 0.029 ab | 0.000 b | 0.031 ab | 0.047 a | 0.000 b | 0.012 ab | 0.033 ab | 0.040 | * |
C16:1 c11 | 0.000 | 0.002 | 0.004 | 0.006 | 0.000 | 0.003 | 0.011 | 0.009 | n.s. |
iso C17:0 | 0.249 ab | 0.234 ab | 0.275 a | 0.223 ab | 0.207 ab | 0.184 b | 0.165 b | 0.060 | ** |
anteiso C17:0 | 0.287 a | 0.218 bc | 0.263 ab | 0.293 a | 0.257 ab | 0.180 c | 0.282 a | 0.049 | *** |
C17:0 | 0.555 b | 0.485 b | 0.516 b | 0.703 a | 0.536 b | 0.541 b | 0.636 a | 0.058 | *** |
C17:1 c6-7 | 0.040 | 0.046 | 0.050 | 0.049 | 0.041 | 0.056 | 0.034 | 0.018 | n.s. |
C17:1 c8 | 0.000 b | 0.002 b | 0.000 b | 0.003 b | 0.002 b | 0.014 b | 0.035 a | 0.012 | *** |
C17:1 c9 | 0.104 b | 0.114 b | 0.121 b | 0.195 a | 0.119 b | 0.159 a | 0.215 a | 0.023 | *** |
isoC18:0 | 0.034 ab | 0.041 ab | 0.047 b | 0.047 ab | 0.034 b | 0.057 a | 0.053 ab | 0.013 | * |
C18:0 | 14.1 a | 12.5 ab | 13.2 ab | 12.2 ab | 12.7 a | 11.8 ab | 9.9 b | 0.85 | *** |
C18:1 t4 | 0.068 ab | 0.085 a | 0.067 ab | 0.049 bc | 0.082 a | 0.043 c | 0.045 c | 0.016 | *** |
C18:1 t5 | 0.030 ab | 0.024 b | 0.031 ab | 0.033 ab | 0.038 a | 0.017 b | 0.026 ab | 0.011 | ** |
C18:1 t6-8 | 0.196 a | 0.166 abc | 0.180 ab | 0.134 d | 0.146 bcd | 0.171 abc | 0.123 cd | 0.027 | ** |
C18:1 t9 | 0.269 a | 0.271 ab | 0.245 abc | 0.234 bcd | 0.233 bcd | 0.213 abcd | 0.193 d | 0.028 | ** |
C18:1 t10 | 0.276 a | 0.235 ab | 0.230 ab | 0.205 b | 0.220 ab | 0.235 ab | 0.219 b | 0.047 | * |
C18:1 t11 | 1.30 a | 1.33 a | 1.35 a | 1.25 ab | 0.98 bc | 0.95 c | 0.81 c | 0.169 | *** |
C18:1 t12 | 0.492 a | 0.471 a | 0.460 abc | 0.396 b | 0.383 bcd | 0.377 bcd | 0.317 d | 0.049 | *** |
C18:1 t13-14 | 0.059 | 0.000 | 0.058 | 0.000 | 0.062 | 0.114 | 0.037 | 0.117 | n.s. |
C18:1 c9 | 18.0 ab | 17.6 ab | 18.2 ab | 19.0 a | 16.3 b | 16.9 ab | 175 ab | 1.45 | * |
C18:1 c11 | 0.043 ab | 0.055 ab | 0.038 ab | 0.005 b | 0.045 ab | 0.155 a | 0.052 ab | 0.121 | * |
C18:1 c12 | 0.587 a | 0.565 abc | 0.581 a | 0.536 abc | 0.511 bc | 0.569 ab | 0.511c | 0.047 | ** |
C18:1 c13 | 0.124 | 0.116 | 0.112 | 0.115 | 0.115 | 0.119 | 0.112 | 0.019 | n.s. |
C18:1 c14 | 0.424 a | 0.395 ab | 0.375 ab | 0.326 b | 0.371 b | 0.365 b | 0.329 b | 0.040 | ** |
C18:1 c15 | 0.206 | 0.192 | 0.195 | 0.213 | 0.198 | 0.208 | 0.209 | 0.028 | n.s. |
C18:2 c9,t13 | 0.294 a | 0.229 abc | 0.246 ab | 0.188 c | 0.220 bc | 0.220 abc | 0.174 abc | 0.044 | ** |
C18:2 t8,c13 | 0.098 a | 0.084 ab | 0.083 ab | 0.089 ab | 0.074 b | 0.089 ab | 0.092 ab | 0.019 | * |
C18:2 t9,12 | 0.000 | 0.000 | 0.007 | 0.057 | 0.000 | 0.000 | 0.008 | 0.034 | n.s. |
C18:2 c9,t12 | 0.154 a | 0.117 ab | 0.112 b | 0.104 b | 0.106 b | 0.107 b | 0.101 b | 0.031 | ** |
C18:2 t11,c15 | 0.011 ab | 0.004 b | 0.014 a | 0.017 a | 0.013 ab | 0.010 b | 0.017 a | 0.008 | ** |
C18:2n6 | 2.59 abcd | 2.40 ab | 2.42 ab | 2.53 a | 2.10 c | 2.26 bc | 1.98 bcd | 0.193 | *** |
C20:0 | 0.233 d | 0.267 bc | 0.280 b | 0.350 a | 0.237 cd | 0.241 cd | 0.225 d | 0.029 | *** |
C18:3n6 | 0.025 | 0.022 | 0.027 | 0.023 | 0.015 | 0.010 | 0.019 | 0.014 | n.s. |
C20:1 c9 | 0.012 ab | 0.010 b | 0.017 ab | 0.029 a | 0.000 b | 0.007 b | 0.008 b | 0.015 | ** |
C20:1 c11 | 0.038 | 0.050 | 0.053 | 0.049 | 0.052 | 0.053 | 0.040 | 0.018 | n.s. |
C18:3n3 | 0.183 b | 0.145 c | 0.152 bc | 0.242 a | 0.156 bc | 0.179 bc | 0.173 bc | 0.025 | *** |
CLA c9,t11 | 0.486 bc | 0.510 abc | 0.527 ab | 0.538 ab | 0.370 bc | 0.377 c | 0.344 bc | 0.064 | ** |
CLA t9,c11 | 0.044 b | 0.032 c | 0.038 bc | 0.058 a | 0.030 c | 0.032 c | 0.035 bc | 0.009 | *** |
CLA t10,c12 | 0.024 | 0.026 | 0.029 | 0.039 | 0.013 | 0.010 | 0.024 | 0.024 | n.s. |
CLA t12,14 | 0.017 | 0.012 | 0.023 | 0.025 | 0.009 | 0.006 | 0.022 | 0.017 | n.s. |
∑CLA | 0.528 a | 0.550 a | 0.549 a | 0.532 a | 0.529 a | 0.531 a | 0.482 b | 0.019 | *** |
C20:2n6 | 0.033 | 0.027 | 0.038 | 0.040 | 0.044 | 0.036 | 0.034 | 0.015 | n.s. |
C20:3n9 | 0.070 b | 0.061 b | 0.075 b | 0.116 a | 0.080 b | 0.060 b | 0.069 b | 0.017 | *** |
C22:0 | 0.023 | 0.027 | 0.019 | 0.025 | 0.018 | 0.021 | 0.027 | 0.015 | n.s. |
C20:3n3 | 0.000 b | 0.004 b | 0.013 b | 0.031 a | 0.000 b | 0.000 b | 0.000 b | 0.012 | *** |
C20:4n6 | 0.152 a | 0.126 b | 0.151 a | 0.165 a | 0.158 a | 0.146 ab | 0.153 a | 0.018 | *** |
C23:0 | 0.021 bc | 0.019 c | 0.030 abc | 0.047 a | 0.045 a | 0.029 abc | 0.038 ab | 0.015 | ** |
C20:4n3 | 0.001 | 0.001 | 0.001 | 0.001 | 0.010 | 0.001 | 0.001 | 0.009 | n.s. |
C22:2n6 | 0.000 c | 0.026 b | 0.001 c | 0.009 bc | 0.051 a | 0.023 b | 0.057 a | 0.015 | *** |
C24:0 | 0.049 | 0.031 | 0.047 | 0.073 | 0.126 | 0.036 | 0.042 | 0.092 | n.s. |
Variable | Diets | ||||||||
---|---|---|---|---|---|---|---|---|---|
C | AP25 | AP40 | AP60 | BB25 | BB40 | BB60 | SEM | Significance | |
SFA | 72.2 | 73.0 | 72.2 | 70.9 | 75.1 | 74.2 | 73.6 | 2.19 | n.s. |
MUFA | 23.3 | 22.7 | 23.5 | 24.5 | 21.1 | 21.8 | 22.6 | 1.90 | n.s. |
PUFA | 4.11 ab | 3.86 abc | 3.87 abc | 4.24 a | 3.40 d | 3.56 cd | 3.50 bcd | 0.335 | *** |
UFA | 27.4 | 26.6 | 27.4 | 28.7 | 24.5 | 25.4 | 26.1 | 2.21 | n.s. |
SFA/UFA | 2.64 | 2.77 | 2.64 | 2.50 | 3.10 | 2.95 | 2.85 | 0.326 | n.s. |
SCFA | 22.9 | 26.1 | 25.7 | 24.7 | 26.6 | 26.9 | 25.7 | 5.38 | n.s. |
MCFA | 36.2 b | 35.6 b | 34.3 b | 34.8 b | 36.5 b | 36.6 b | 39.4 a | 2.79 | * |
LCFA | 39.8 abc | 37.4 abc | 38.7 abc | 41.6 ab | 36.4 abc | 35.4 bc | 36.0 c | 2.88 | ** |
n3 | 0.182 b | 0.151 b | 0.164 b | 0.275 a | 0.157 b | 0.178 b | 0.174 b | 0.034 | *** |
n6 | 2.78 a | 2.55 abc | 2.60 ab | 2.79 a | 2.30 c | 2.44 bc | 2.18 bc | 0.218 | *** |
n6/n3 | 15.4 abc | 17.3 ab | 17.4 a | 10.3 d | 14.8 abc | 13.8 bc | 12.3 cd | 2.33 | *** |
AI | 2.11 b | 2.11 bc | 1.95 cd | 1.83 d | 2.37 a | 2.28 ab | 2.31 ab | 0.127 | *** |
TI | 3.32 b | 3.30 b | 3.09 cd | 2.94 d | 3.65 a | 3.39 b | 3.36 abc | 0.141 | *** |
DI C14:0 | 0.010 abc | 0.009 abc | 0.010 abc | 0.011 c | 0.009 abc | 0.011 bc | 0.012 a | 0.001 | *** |
DI C16:0 | 0.050 b | 0.044 b | 0.055 ab | 0.061 a | 0.044 b | 0.048 b | 0.050 ab | 0.009 | ** |
DI C18:0 | 1.55 bc | 1.72 bc | 1.67 b | 1.80 ab | 1.54 d | 1.75 bc | 2.08 a | 0.049 | *** |
Variable | Diets | Significance | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | AP25 | AP40 | AP60 | BB25 | BB40 | BB60 | SEM | Diet | Sampling | Diet x Sampling | |
Glucose (mg/dL) | 44.6 bc | 47.7 ab | 45.0 bc | 48.3 ab | 42.5 c | 49.5 a | 50.0 a | 1.52 | *** | *** | *** |
Plasma urea (mg/dL) | 52.0 a | 50.7 a | 50.9 a | 49.2 a | 38.8 bc | 39.8 b | 33.2 c | 2.14 | *** | ** | *** |
BHB (mmol/L) | 0.336 bc | 0.522 a | 0.424 ab | 0.376 bc | 0.421 ab | 0.299 c | 0.304 c | 0.040 | *** | n.s. | ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monllor, P.; Romero, G.; Atzori, A.S.; Sandoval-Castro, C.A.; Ayala-Burgos, A.J.; Roca, A.; Sendra, E.; Díaz, J.R. Composition, Mineral and Fatty Acid Profiles of Milk from Goats Fed with Different Proportions of Broccoli and Artichoke Plant By-Products. Foods 2020, 9, 700. https://doi.org/10.3390/foods9060700
Monllor P, Romero G, Atzori AS, Sandoval-Castro CA, Ayala-Burgos AJ, Roca A, Sendra E, Díaz JR. Composition, Mineral and Fatty Acid Profiles of Milk from Goats Fed with Different Proportions of Broccoli and Artichoke Plant By-Products. Foods. 2020; 9(6):700. https://doi.org/10.3390/foods9060700
Chicago/Turabian StyleMonllor, Paula, Gema Romero, Alberto S. Atzori, Carlos A. Sandoval-Castro, Armín J. Ayala-Burgos, Amparo Roca, Esther Sendra, and José Ramón Díaz. 2020. "Composition, Mineral and Fatty Acid Profiles of Milk from Goats Fed with Different Proportions of Broccoli and Artichoke Plant By-Products" Foods 9, no. 6: 700. https://doi.org/10.3390/foods9060700
APA StyleMonllor, P., Romero, G., Atzori, A. S., Sandoval-Castro, C. A., Ayala-Burgos, A. J., Roca, A., Sendra, E., & Díaz, J. R. (2020). Composition, Mineral and Fatty Acid Profiles of Milk from Goats Fed with Different Proportions of Broccoli and Artichoke Plant By-Products. Foods, 9(6), 700. https://doi.org/10.3390/foods9060700