Hypolipidemic and Hypoglycaemic Effect of Wholemeal Bread with Amaranth (Amaranthus dubius Mart. ex Thell.) on Sprague Dawley Rats †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Obtaining Amaranth Flour
2.2. Preparation of the Breads
2.3. Experimental Diets
2.4. Animals and Housing Conditions
2.5. Induction of Hyperglycaemia and Hyperlipidaemia
2.6. Experimental Diets Assay
2.7. Biochemical Analysis of Serum
2.8. Statistical Analysis
3. Results
3.1. Induction of the Hyperglycaemia and Hyperlipidaemia
3.2. Effect of Diets Consumption on Zoometric Parameters
3.3. Effect of Diets Consumption on Serum Biochemical Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care 2004, 27, 1047–1053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tourlouki, E.; Matalas, A.L.; Panagiotakos, D.B. Dietary habits and cardiovascular disease risk in middle-aged and elderly populations: A review of evidence. Clin. Interv. Aging 2009, 4, 319–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, D.; Griendling, K.K.; Landmesser, U.; Hornig, B.; Drexler, H. Role of oxidative stress in atherosclerosis. Am. J. Cardiol. 2003, 91 (Suppl.3), 7A–11A. [Google Scholar] [CrossRef]
- Leon, B.M.; Maddox, T.M. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J. Diabetes 2015, 6, 1246–1258. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhang, P.; Wang, J.; Gregg, E.W.; Yang, W.; Gong, Q.; Li, H.; Li, H.; Jiang, Y.; An, Y.; et al. The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: A 20-year follow-up study. Lancet 2008, 371, 1783–1789. [Google Scholar] [CrossRef]
- Liu, G.; Li, Y.; Hu, Y.; Zong, G.; Li, S.; Rimm, E.B.; Hu, F.B.; Manson, J.E.; Rexrode, K.M.; Shin, H.J.; et al. Influence of lifestyle on incident cardiovascular disease and mortality in patients with diabetes mellitus. J. Am. Coll. Cardiol. 2018, 71, 2867–2876. [Google Scholar] [CrossRef]
- Matía-Martín, P.; Lecumberri-Pascual, E.; Calle-Pascual, A.L. Nutrición y síndrome metabólico. Rev. Esp. Salud Pública 2007, 81, 489–505. [Google Scholar] [CrossRef] [Green Version]
- Sanz-Penella, J.M.; Tamayo-Ramos, J.A.; Sanz, Y.; Haros, M. Phytate reduction in bran-enriched bread by phytase-producing bifidobacteria. J. Agric. Food Chem. 2009, 57, 10239–10244. [Google Scholar] [CrossRef]
- Sami, W.; Ansari, T.; Butt, N.S.; Ab Hamid, M.R. Effect of diet on type 2 diabetes mellitus: A review. Int. J. Health Sci. 2017, 11, 65–71. [Google Scholar]
- Aleixandre, A.; Miguel, M. Dietary fiber in the prevention and treatment of metabolic syndrome: A review. Crit. Rev. Food Sci. Nutr. 2008, 48, 905–912. [Google Scholar] [CrossRef]
- Develaraja, S.; Reddy, A.; Yadav, M.; Jain, S.; Yadav, H. Whole grains in amelioration of metabolic derangements. J. Nutr. Health Food Sci. 2016, 4, 1–11. [Google Scholar]
- European Commission. Whole Grain. Health Promotion and Disease Prevention Knowledge Gateway. EU Science Hub, 2019. Available online: https://ec.europa.eu/jrc/en/health-knowledge-gateway/promotion-prevention/nutrition/whole-grain (accessed on 17 May 2019).
- Gan, R.Y.; Lui, W.Y.; Wu, K.; Chan, C.L.; Dai, S.H.; Sui, Z.Q.; Corke, H. Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review. Trends Food Sci. Technol. 2017, 59, 1–14. [Google Scholar] [CrossRef]
- Paśko, P.; Bartoń, H.; Fołta, M.; Gwiżdż, J. Evaluation of antioxidant activity of amaranth (Amaranthus cruentus) grain and by-products (flour, popping, cereal). Rocz. Panstw. Zakl. Hig. 2007, 58, 35–40. [Google Scholar] [PubMed]
- Jnawali, P.; Kumar, V.; Tanwar, B. Celiac disease: Overview and considerations for development of gluten-free foods. Food Sci. Human Wellness 2016, 5, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Mozaffarian, D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: A comprehensive review. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef]
- López, D.N.; Galante, M.; Robson, M.; Boeris, V.; Spelzini, D. Amaranth, quinoa and chia protein isolates: Physicochemical and structural properties. Int. J. Biol. Macromol. 2018, 109, 152–159. [Google Scholar] [CrossRef] [Green Version]
- Costea, M.; Weaver, S.E.; Tardif, F.J. The biology of Canadian weeds. 130. Amaranthus retroflexus L., A. powellii S. Watson and A. hybridus L. Can. J. Plant Sci. 2004, 84, 631–668. [Google Scholar]
- Omami, E.N.; Hammes, P.S.; Robbertse, P.J. Differences in salinity tolerance for growth and water-use efficiency in some amaranth (Amaranthus spp.) genotypes. New Zeal. J. Crop Hort. 2006, 34, 11–22. [Google Scholar] [CrossRef]
- Matteucci, S.D.; Pla, L.; Colma, A. Recolección sistemática de germoplasmas de Amaranthus spp. en ecosistemas secos del estado Falcón, Venezuela. Rev. Fac. Agron. LUZ 1999, 16, 356–370. [Google Scholar]
- Acevedo, I.; García, O.; Acevedo, I.; Perdomo, C. Valor nutritivo del bledo (Amaranthus spp.) identificado en el municipio Morán, estado Lara. Agrollanía 2007, 4, 77–93. [Google Scholar]
- Carmona, W. Las especies del género Amaranthus (Amaranthaceae) en Venezuela. Rev. Fac. Agron. LUZ 2007, 24(Special issue 1), 190–195. [Google Scholar]
- Olivares, E.; Peña, E. Bioconcentración de elementos minerales en Amaranthus dubius (bledo, pira), creciendo silvestre en cultivos del estado Miranda, Venezuela, y utilizado en alimentación. Interciencia 2009, 34, 604–611. [Google Scholar]
- Montero-Quintero, K.; Moreno-Rojas, R.; Molina, E.; Sánchez-Urdaneta, A.B. Composición química del Amaranthus dubius: Una alternativa para la alimentación humana y animal. Rev. Fac. Agron. LUZ 2011, 28 (Suppl. 1), 619–627. [Google Scholar]
- Molina, E.; González-Redondo, P.; Moreno-Rojas, R.; Montero-Quintero, K.; Ferrer, R.; Sánchez-Urdaneta, A.B. Toxic and antinutritional substances content of Amaranthus dubius Mart. ex Thell. Effect of plant part and harvesting season. Rev. Fac. Agron. LUZ 2016, 33, 19–38. [Google Scholar]
- Molina, E.; González-Redondo, P.; Montero, K.; Ferrer, R.; Moreno-Rojas, R.; Sánchez-Urdaneta, A. Efecto de la época de recolecta y órgano de la planta sobre el contenido de metales de Amaranthus dubius Mart. ex Thell. Interciencia 2011, 36, 386–391. [Google Scholar]
- Czerwiński, J.; Bartnikowska, E.; Leontowicz, H.; Lange, E.; Leontowicz, M.; Katrich, E.; Trakhtenberg, S.; Gorinstein, S. Oat (Avena sativa L.) and amaranth (Amaranthus hypochondriacus) meals positively affect plasma lipid profile in rats fed cholesterol-containing diets. J. Nutr. Biochem. 2004, 15, 622–629. [Google Scholar]
- Kim, H.K.; Kim, M.J.; Cho, H.Y.; Kim, E.K.; Shin, D.H. Antioxidative and anti-diabetic effects of amaranth (Amaranthus esculantus) in streptozotocin-induced diabetic rats. Cell. Biochem. Funct. 2006, 24, 195–199. [Google Scholar] [CrossRef]
- Orona-Tamayo, D.; Paredes-López, O. Amaranth−Sustainable crop for the 21st century: Food properties and nutraceuticals for improving human health. In Sustainable Protein Sources; Nadathur, S.R., Wanasundara, J.P.D., Scanlin, L., Eds.; Academic Press: London, UK, 2016; pp. 239–256. [Google Scholar]
- Molina, E.; González-Redondo, P.; Moreno-Rojas, R.; Montero-Quintero, K.; Sánchez-Urdaneta, A. Effect of the inclusion of Amaranthus dubius in diets on carcass characteristics and meat quality of fattening rabbits. J. Appl. Anim. Res. 2018, 46, 218–223. [Google Scholar] [CrossRef] [Green Version]
- Molina, E.; González-Redondo, P.; Moreno-Rojas, R.; Montero-Quintero, K.; Chirinos-Quintero, N.; Sánchez-Urdaneta, A. Evaluation of haematological, serum biochemical and histopathological parameters of growing rabbits fed Amaranthus dubius. J. Anim. Physiol. Anim. Nutr. 2018, 102, e525–e533. [Google Scholar] [CrossRef]
- Dewettinck, K.; Van Bockstaele, F.V.; Kühne, B.; Van de Walle, D.; Courtens, T.M.; Gellynck, X. Nutritional value of bread: Influence of processing, food interaction and consumer perception. J. Cereal Sci. 2008, 48, 243–257. [Google Scholar] [CrossRef]
- Augustin, L.S.; Franceschi, S.; Jenkins, D.J.A.; Kendall, C.W.C.; La Vecchia, C. Glycemic index in chronic disease: A review. Eur. J. Clin. Nutr. 2002, 56, 1049–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bautista-Castaño, I.; Serra-Majem, L. Relationship between bread consumption, body weight, and abdominal fat distribution: Evidence from epidemiological studies. Nutr. Rev. 2012, 70, 218–233. [Google Scholar] [CrossRef] [PubMed]
- Bodroža-Solarov, M.; Filipčev, B.; Kevrešan, Ž.; Mandić, A.; Šimurina, O. Quality of bread supplemented with popped Amaranthus cruentus grain. J. Food Process. Eng. 2008, 31, 602–618. [Google Scholar] [CrossRef]
- Mujica-Sánchez, A.; Berti-Díaz, M.; Izquierdo, J. El Cultivo del Amaranto (Amaranthus spp.): Producción, Mejoramiento Genético y Utilización; FAO: Rome, Italy, 1997. [Google Scholar]
- Jacobsen, S.E.; Iteno, K.; Mujica, A. Amaranto como un cultivo nuevo en el norte de Europa. Agron. Trop. 2002, 52, 109–119. [Google Scholar]
- Zapotoczny, P.; Markowski, M.; Majewska, K.; Ratajski, A.; Konopko, H. Effect of temperature on the physical, functional, and mechanical characteristics of hot-air-puffed amaranth seeds. J. Food Eng. 2006, 76, 469–476. [Google Scholar] [CrossRef]
- Sanz-Penella, J.M.; Wronkoswska, M.; Soral-Smietana, M.; Haros, M. Effect of whole amaranth flour on bread properties and nutritive value. LWT Food Sci. Technol. 2013, 50, 679–685. [Google Scholar] [CrossRef] [Green Version]
- Miranda-Ramos, K.C.; Sanz-Ponce, N.; Haros, C.M. Evaluation of technological and nutritional quality of bread enriched with amaranth flour. LWT Food Sci. Technol. 2019, 114, 108418. [Google Scholar] [CrossRef]
- Escudero, N.L.; Albarracín, G.J.; Lucero-López, R.V.; Giménez, M.S. Antioxidant activity and phenolic content of flour and protein concentrate of Amaranthus cruentus seeds. J. Food Biochem. 2011, 35, 1327–1341. [Google Scholar] [CrossRef]
- Montero-Quintero, K.C.; Moreno-Rojas, R.; Molina, E.A. Colina-Barriga MS and Sánchez-Urdaneta AB, Efecto del consumo de panes integrales con amaranto (Amaranthus dubius Mart; ex Thell.) sobre la respuesta glicémica y parámetros bioquímicos en ratas Sprague dawley. Nutr. Hosp. 2015, 31, 313–320. [Google Scholar]
- Colina, M.S. La Magia de la Panadería. Trigo, Harina y Pan, 2nd ed.; Máximo Segundo Colina Barriga: Zulia, Venezuela, 2018. [Google Scholar]
- AOAC International. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2005. [Google Scholar]
- AOAC International. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2000. [Google Scholar]
- FAO. Food Energy—Methods of Analysis and Conversion Factors; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003. [Google Scholar]
- European Parliament and Council, Directive 2010/63/EU of 22 September 2010 on the protection of animals used for scientific purposes. Off. J. Eur. Union 2010, L276, 33–79.
- Baños, G.; Carvajal, K.; Cardoso, G.; Zamora, J.; Franco, M. Vascular reactivity and effect of serum in a rat model of hypertriglyceridemia and hypertension. Am. J. Hypertens. 1997, 10, 379–388. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, A.A.; Hernández-Díaz, G.; Lara-Barcelata, M.; Angulo-Guerrero, O.; Oliart-Ros, R.M. Effects of fish oil on hypertension, plasma lipids, and tumor necrosis factor-α in rats with sucrose-induced metabolic syndrome. J. Nutr. Biochem. 2004, 15, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Itokawa, M.; Hirao, A.; Nagahama, H.; Otsuka, M.; Ohtsu, T.; Furutani, N.; Hirao, K.; Hatta, T.; Shibata, S. Time-restricted feeding of rapidly digested starches causes stronger entrainment of the liver clock in PER2::LUCIFERASE knock-in mice. Nutr. Res. 2013, 33, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Hostmark, A.T.; Berg, J.E.; Osland, A.; Simonsen, S.; Vatne, K. Lipoprotein-related coronary risk factor in patients with angiographically defined coronary artery disease and controls: Improved group separation by indexes reflecting the balance between low- and high-density lipoproteins. Coron. Artery Dis. 1991, 2, 679–684. [Google Scholar]
- Kim, D.H.; Soh, K.S. Experimental study of Pinus densiflora Siebold et Zuccarini on hyperlipidemia and lipid in rats. J. Pharm. 2007, 10, 109–119. [Google Scholar]
- Vasanji, Z.; Cantor, E.J.F.; Juric, D.; Moyen, M.; Netticadan, T. Alterations in cardiac contractile performance and sarcoplasmic reticulum function in sucrose-fed rats is associated with insulin resistance. Am. J. Physiol. Cell Physiol. 2006, 291, C772–C780. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.K.; Chin, K.J.; Suhaimi, F.H.; Fairus, A.; Ima-Nirwana, S. Animal models of metabolic syndrome: A review. Nutr. Metab. 2016, 13, 65. [Google Scholar] [CrossRef] [Green Version]
- Girard, A.; Madani, S.; Boukortt, F.; Cherkaoui-Malki, M.; Belleville, J.; Prost, J. Fructose-enriched diet modifies antioxidant status and lipid metabolism in spontaneously hypertensive rats. Nutrition 2006, 22, 758–766. [Google Scholar] [CrossRef]
- Gupta, S.; Sharma, S.B.; Bansal, S.K.; Prabhu, K.M. Antihyperglycemic and hypolipidemic activity of aqueous extract of Cassia auriculata L. leaves in experimental diabetes. J. Ethnopharmacol. 2009, 123, 499–503. [Google Scholar] [CrossRef]
- Han, K.H.; Kim, S.J.; Shimada, K.I.; Hashimoto, N.; Yamauchi, H.; Fukushima, M. Purple potato flake reduces serum lipid profile in rats fed a cholesterol-rich diet. J. Function. Foods 2013, 5, 974–980. [Google Scholar] [CrossRef]
- Guo, W.L.; Shi, F.F.; Li, L.; Xu, J.X.; Chen, M.; Wu, L.; Hong, J.L.; Qian, M.; Bai, W.D.; Liu, B.; et al. Preparation of a novel Grifola frondosa polysaccharide-chromium (III) complex and its hypoglycemic and hypolipidemic activities in high fat diet and streptozotocin-induced diabetic mice. Int. J. Biol. Macromol. 2019, 131, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.M.Y.; Huxley, R.R.; Wildman, R.P.; Woodward, M. Indices of abdominal obesity are better discriminators of cardiovascular risk factors than BMI: A meta-analysis. J. Clin. Epidemiol. 2008, 61, 646–653. [Google Scholar] [CrossRef]
- Fox, C.S.; Massaro, J.M.; Hoffmann, U.; Pou, K.M.; Maurovich-Horvat, P.; Liu, C.Y.; Vasan, R.S.; Murabito, J.M.; Maigs, J.B.; Cupples, L.A.; et al. Abdominal visceral and subcutaneous adipose tissue compartments. Association with metabolic risk factors in the Framingham Heart Study. Circulation 2007, 116, 39–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakane, N.; Dohi, S.; Sakata, K.; Hagiwara, S.I.; Morimoto, T.; Uchida, T.; Katashima, M.; Yanagisawa, Y.; Yasumasu, T.J.; J-VALUE Study Group. Effects of visceral fat accumulation awareness on a web-based weight-loss program: Japanese study of visceral adiposity and lifestyle information—Utilization and evaluation (J-VALUE). ISRN Obesity 2013, 473764, 1–7. [Google Scholar] [CrossRef]
- Arellano, M.A.L.; Albarracín, G.; Arce, S.; Mucciarelli, S. Estudio comparativo de hojas de Beta vulgaris con Amaranthus dubius Mart. ex Thell. Phyton-Int. J. Exp. Bot. 2004, 73, 193–197. [Google Scholar]
- Ray, T.K.; Mansell, K.M.; Knight, L.C.; Malmud, L.S.; Owen, O.E.; Boden, G. Long-term effects of dietary fiber on glucose tolerance and gastric emptying in noninsulin-dependent diabetic patients. Am. J. Clin. Nutr. 1983, 37, 376–381. [Google Scholar] [CrossRef] [Green Version]
- Adewale-Adeneye, A.; Oluwatoyin-Agbaje, E. Hypoglycemic and hypolipidemic effects of fresh leaf aqueous extract of Cymbopogon citratus Stapf. in rats. J. Ethnopharmacol. 2007, 112, 440–444. [Google Scholar] [CrossRef]
- Jeong, S.C.; Jeong, Y.T.; Yang, B.K.; Islam, R.; Koyyalamudi, S.R.; Pang, G.; Cho, K.Y.; Song, C.H. White button mushroom (Agaricus bisporus) lowers blood glucose and cholesterol levels in diabetic and hypercholesterolemic rats. Nutr. Res. 2010, 30, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Mayne, P.D. Clinical Chemistry in Diagnosis and Treatment; Arnold/Hodder Headline: London, UK, 1996. [Google Scholar]
- Tsoupras, A.; Lordan, R.; Zabetakis, I. Inflanmation, not cholesterol, is a cause of chronic disease. Nutrients 2018, 10, 604. [Google Scholar] [CrossRef] [Green Version]
- Panchal, S.K.; Brown, L. Cholestrol versus inflammation as a cause of chronic diseases. Nutrients 2019, 11, 2332. [Google Scholar] [CrossRef] [Green Version]
- Zunft, H.J.F.; Lüder, W.; Harde, A.; Haber, B.; Graubaum, H.J.; Koebnick, C.; Grünwald, J. Carob pulp preparation rich in insoluble fibre lowers total and LDL cholesterol in hypercholesterolemic patients. Eur. J. Nutr. 2003, 42, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Van Bennekum, A.M.; Nguyen, D.V.; Schulthess, G.; Hauser, H.; Phillips, M.C. Mechanisms of cholesterol-lowering effects of dietary insoluble fibres: Relationships with intestinal and hepatic cholesterol parameters. Brit. J. Nutr. 2005, 94, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Morales, C.; Nieto, A.; Quiroga, L.; Quicazan, M. Validación del método y determinación de fibra dietética soluble e insoluble en harina de trigo y pan. Vitae 2012, 19 (Suppl. 1), S340–S342. [Google Scholar]
- Venturi, M.; Galli, V.; Pini, N.; Guerrini, S.; Granchi, L. Use of selected lactobacilli to increase aminobutyric acid (GABA) content in sourdough bread enriched with amaranth flour. Foods 2019, 8, 218. [Google Scholar] [CrossRef] [Green Version]
Experimental Diets | ||||
---|---|---|---|---|
CD (Ratarina®) | ABD10 | ABD20 | CBD | |
Ingredients of breads | ||||
Bread | - | 900.0 | 900.0 | 900.0 |
Oil | - | 50.0 | 50.0 | 50.0 |
Vitamin–mineral premix † | - | 50.0 | 50.0 | 50.0 |
Proximate composition | ||||
Dry matter | 913.2 | 918.1 | 919.2 | 912.2 |
Ash (minerals) | 78.1 | 20.0 | 31.4 | 13.2 |
Crude protein | 262.0 | 183.7 | 189.2 | 155.8 |
Ether extract | 21.3 | 70.0 | 86.9 | 10.4 |
Crude fibre | 62.5 | 17.3 | 30.0 | 9.7 |
NFE ‡ | 489.3 | 627.1 | 581.7 | 723.1 |
TDN § | - | 806.2 | 803.2 | 790.1 |
Energy (kcal·kg−1) | 3447 | 3942 | 3986 | 3648 |
Control | Consuming Sucrose Water | 95% CI | p | |
---|---|---|---|---|
Biochemical Parameters (mg·dL−1) | ||||
GLU | 112.91 | 135.08 | (−33.85, −10.49) | 0.011 |
TC | 100.77 | 133.90 | (8.53, 57.73) | 0.011 |
TG | 144.30 | 260.13 | (−163.47, −68.18) | <0.001 |
HDL-C | 22.70 | 20.75 | (−3.78, 7.68) | 0.484 |
LDL-C | 37.99 | 72.35 | (16.65, 52.06) | <0.001 |
VLDL-C | 51.77 | 28.77 | (−32.52, −13.47) | <0.001 |
TC/HDL-C | 5.56 | 6.09 | (−0.93, 2.01) | 0.455 |
TC/LDL-C | 3.77 | 1.64 | (−3.35, −0.91) | 0.002 |
HDL-C/LDL-C | 0.63 | 0.28 | (−0.58, −0.11) | 0.007 |
TP † | 7.86 | 7.52 | (−0.07, 0.75) | 0.011 |
Zoometric Parameters | ||||
Body weight (g) | 410.90 | 414.50 | (−75.61, 98.99) | 0.394 |
Body length (cm) | 23.58 | 23.70 | (−2.02, 2.12) | 0.165 |
Abdominal circumference (cm) | 20.28 | 20.27 | (−2.84, 0.60) | 0.572 |
Body Mass Index | 0.74 | 0.74 | (−0.24, 0.08) | 0.356 |
Diets | Sex | Abdominal Circumference (cm) | |||||||
---|---|---|---|---|---|---|---|---|---|
Before † | p-Value | 95% CI | After ‡ | p-Value | 95% CI | ||||
F | |||||||||
CD(N) vs. CD(E) | 16.95 | 18.88 | 0.905 | (−5.29, 1.44) | 16.85 | 19.38 | 0.460 | (−5.89, 0.84) | |
CD(N) vs. CBD(E) | 16.95 | 17.63 | 0.999 | (−4.04, 2.69) | 16.85 | 18.13 | 0.999 | (−4.64, 2.09) | |
CD(N) vs. ABD10(E) | 16.95 | 17.13 | 0.999 | (−3.54, 3.19) | 16.85 | 13.25 | 0.022 | (0.23, 6.97) | |
CD(N) vs. ABD20(E) | 16.95 | 17.23 | 0.999 | (−3.64, 3.09) | 16.85 | 12.25 | 0.0004 | (1.23, 7.97) | |
CD(E) vs. CBD(E) | 18.88 | 17.63 | 0.999 | (−2.12, 4.62) | 19.38 | 18.13 | 0.999 | (−2.13, 4.62) | |
CD(E) vs. ABD10(E) | 18.88 | 17.13 | 0.963 | (−1.62, 5.12) | 19.38 | 13.25 | <0.001 | (2.76, 9.49) | |
CD(E) vs. ABD20(E) | 18.88 | 17.23 | 0.981 | (−1.72, 5.02) | 19.38 | 12.25 | <0.001 | (3.76, 10.49) | |
CBD(E) vs. ABD10(E) | 17.63 | 17.13 | 0.999 | (−2.87, 3.87) | 18.13 | 13.25 | 0.001 | (1.51, 8.24) | |
CBD(E) vs. ABD20(E) | 17.63 | 17.23 | 0.999 | (−2.97, 3.77) | 18.13 | 12.25 | <0.001 | (2.51, 9.24) | |
ABD10(E) vs. ABD20(E) | 17.13 | 17.23 | 0.999 | (−3.47, 3.27) | 13.25 | 12.25 | 0.987 | (−2.37, 4.37) | |
M | |||||||||
CD(N) vs. CD(E) | 21.28 | 21.70 | 0.999 | (−3.19, 3.54) | 22.45 | 22.00 | 0.999 | (−2.92, 3.82) | |
CD(N) vs. CBD(E) | 21.28 | 21.28 | 0.999 | (−2.77, 3.97) | 22.45 | 21.28 | 0.999 | (−2.19, 4.54) | |
CD(N) vs. ABD10(E) | 21.28 | 21.40 | 0.998 | (−2.89, 3.84) | 22.45 | 17.33 | <0.001 | (1.76, 8.49) | |
CD(N) vs. ABD20(E) | 21.28 | 22.78 | 0.998 | (−4.27, 2.47) | 22.45 | 16.13 | <0.001 | (2.96, 9.69) | |
CD(E) vs. CBD(E) | 21.70 | 21.28 | 0.999 | (−2.94, 3.79) | 22.00 | 21.28 | 0.965 | (−2.64, 4.09) | |
CD(E) vs. ABD10(E) | 21.70 | 21.40 | 0.999 | (−3.07, 3.66) | 22.00 | 17.33 | <0.001 | (1.31, 8.04) | |
CD(E) vs. ABD20(E) | 21.70 | 22.78 | 0.995 | (−4.44, 2.29) | 22.00 | 16.13 | <0.001 | (2.51, 9.24) | |
CBD(E) vs. ABD10(E) | 21.28 | 21.40 | 0.999 | (−3.49, 3.24) | 21.28 | 17.33 | 0.006 | (0.58, 7.32) | |
CBD(E) vs. ABD20(E) | 21.28 | 22.78 | 0.995 | (−4.87, 1.87) | 21.28 | 16.13 | <0.001 | (1.78, 8.52) | |
ABD10(E) vs. ABD20(E) | 21.40 | 22.78 | 0.999 | (−4.74, 1.99) | 17.33 | 16.13 | 0.999 | (−2.17, 4.57) |
Sex | Female | Male | ||||||
---|---|---|---|---|---|---|---|---|
Diets | Means | p-Value | 95% CI | Means | p-Value | 95% CI | ||
GLU (mg·dL−1) | ||||||||
CD(N) vs. CD(E) | 124.13 | 163.20 | 0.092 | (−81.14, 3.00) | 119.63 | 174.10 | 0.003 | (−96.55, −12.40) |
CD(N) vs. CBD(E) | 124.13 | 173.10 | 0.010 | (−91.05, −6.90) | 119.63 | 164.48 | 0.027 | (−86.92, −2.78) |
CD(N) vs. ABD10(E) | 124.13 | 148.08 | 0.744 | (−66.02, 18.12) | 119.63 | 166.30 | 0.018 | (−88.75, −4.60) |
CD(N) vs. ABD20(E) | 124.13 | 153.70 | 0.432 | (−71.65, 12.50) | 119.63 | 152.55 | 0.271 | (−75.00, 9.15) |
CD(E) vs. CBD(E) | 163.20 | 173.10 | 0.999 | (−51.97, 32,17) | 174.10 | 164.48 | 0.999 | (−32.45, 51.60) |
CD(E) vs. ABD10(E) | 163.20 | 148.08 | 0.989 | (−32.57, 51.57) | 174.10 | 166.30 | 0.999 | (−34.27, 49.87) |
CD(E) vs. ABD20(E) | 163.20 | 153.70 | 0.999 | (−31.42, 52.72) | 174.10 | 152.55 | 0.854 | (−20.52, 63.62) |
CBD(E) vs. ABD10(E) | 173.10 | 148.08 | 0.687 | (−17.05, 67.10) | 164.48 | 166.30 | 0.999 | (−43.90, 40.25) |
CBD(E) vs. ABD20(E) | 173.10 | 153.70 | 0.925 | (−22.67, 61.47) | 164.48 | 152.55 | 0.999 | (−30.15, 54.00) |
ABD10(E) vs. ABD20(E) | 148.08 | 173.10 | 0.998 | (−47.70, 36.45) | 166.30 | 152.55 | 0.995 | (−28.32, 55.82) |
SEM = 8.3651 | ||||||||
TC (mg·dL−1) | ||||||||
CD(N) vs. CD(E) | 133.78 | 128.13 | 0.976 | (−36.91, 48.21) | 148.88 | 137.68 | 0.999 | (−31.36, 53.76) |
CD(N) vs. CBD(E) | 133.78 | 117.80 | 0.984 | (−26.58, 58.53) | 148.88 | 115.23 | 0.257 | (−8.91, 76.21) |
CD(N) vs. ABD10(E) | 133.78 | 108.20 | 0.673 | (−16.98, 68.13) | 148.88 | 100.23 | 0.013 | (6.09, 91.21) |
CD(N) vs. ABD20(E) | 133.78 | 114.90 | 0.949 | (−23.68, 61.11) | 148.88 | 109.13 | 0.088 | (−2.81, 82.31) |
CD(E) vs. CBD(E) | 128.13 | 117.80 | 0.998 | (−51.97, 32.17) | 137.68 | 115.23 | 0.827 | (−20.11, 65.01) |
CD(E) vs. ABD10(E) | 128.13 | 108.20 | 0.917 | (−32.57, 51.57) | 137.68 | 100.23 | 0.136 | (−5.11, 80.01) |
CD(E) vs. ABD20(E) | 128.13 | 114.90 | 0.997 | (−31.42, 52.72) | 137.68 | 109.13 | 0.506 | (−14.01, 71.11) |
CBD(E) vs. ABD10(E) | 117.80 | 108.20 | 0.999 | (−32.96, 52.16) | 115.23 | 100.23 | 0.991 | (−27.56, 57.56) |
CBD(E) vs. ABD20(E) | 117.80 | 114.90 | 0.999 | (−39.66, 45.46) | 115.23 | 109.13 | 0.999 | (−36.46, 48.66) |
ABD10(E) vs. ABD20(E) | 108.20 | 114.90 | 0.999 | (−49.26, 35.86) | 100.23 | 109.13 | 0.999 | (−51.46, 33.66) |
SEM = 8.4617 | ||||||||
TG (mg·dL−1) | ||||||||
CD(N) vs. CD(E) | 137.13 | 215.88 | 0.173 | (−171.61, 14.11) | 152.03 | 308.73 | <0.001 | (−249.56, −63.84) |
CD(N) vs. CBD(E) | 137.13 | 178.07 | 0.945 | (−133.81, 51.91) | 152.03 | 232.33 | 0.153 | (−173.16, 12.56) |
CD(N) vs. ABD10(E) | 137.13 | 99.68 | 0.998 | (−55.41, 130.31) | 152.03 | 170.53 | 0.998 | (−111.36, 74.36) |
CD(N) vs. ABD20(E) | 137.13 | 109.73 | 0.949 | (−65.46, 120.26) | 152.03 | 109.13 | 0.999 | (−83.89, 101.84) |
CD(E) vs. CBD(E) | 215.88 | 178.07 | 0.969 | (−55.06, 130.66) | 308.73 | 143.05 | 0.207 | (−16.46, 169.26) |
CD(E) vs. ABD10(E) | 215.88 | 99.68 | 0.004 | (23.34, 209.06) | 308.73 | 170.53 | 0.0003 | (45.34, 231.06) |
CD(E) vs. ABD20(E) | 215.88 | 109.73 | 0.013 | (13.29, 199.01) | 308.73 | 143.05 | <0.001 | (72.81, 258.54) |
CBD(E) vs. ABD10(E) | 178.07 | 99.68 | 0.178 | (−14.46, 171.26) | 232.33 | 170.53 | 0.519 | (−31.06, 154.66) |
CBD(E) vs. ABD20(E) | 178.07 | 109.73 | 0.360 | (−24.51, 161.21) | 232.33 | 109.13 | 0.050 | (−3.59, 182.14) |
ABD10(E) vs. ABD20(E) | 99.68 | 109.73 | 0.999 | (−102.91, 82.81) | 170.53 | 109.13 | 0.998 | (−65.39, 120.34) |
SEM = 18.4642 |
Sex | Female | Male | ||||||
---|---|---|---|---|---|---|---|---|
Diets | Means | p-Value | 95% CI | Means | p-Value | 95% CI | ||
HDL-C (mg·dL−1) | ||||||||
CD(N) vs. CD(E) | 22.76 | 18.21 | 0.999 | (−16.13, 25.23) | 19.70 | 22.99 | 0.979 | (−23.96, 17.39) |
CD(N) vs. CBD(E) | 22.76 | 19.02 | 0.986 | (−16.94, 24.42) | 19.70 | 19.45 | 0.999 | (−20.43, 20.93) |
CD(N) vs. ABD10(E) | 22.76 | 47.80 | 0.007 | (−45.71, −4.36) | 19.70 | 51.15 | <0.001 | (−52.13, −10.77) |
CD(N) vs. ABD20(E) | 22.76 | 47.75 | 0.007 | (−45.66, −4.36) | 19.70 | 41.00 | 0.038 | (−41.98, −0.62) |
CD(E) vs. CBD(E) | 18.21 | 19.02 | 0.945 | (−21.49, 19.87) | 22.99 | 19.45 | 0.864 | (−17.14, 24.21) |
CD(E) vs. ABD10(E) | 18.21 | 47.80 | 0.001 | (−50.21, −8.91) | 22.99 | 51.15 | 0.001 | (−48.84, −7.49) |
CD(E) vs. ABD20(E) | 18.21 | 47.75 | 0.001 | (−50.21, −8.86) | 22.99 | 41.00 | 0.146 | (−10.53, 30.83) |
CBD(E) vs. ABD10(E) | 19.02 | 47.80 | 0.001 | (−49.45, −8.06) | 19.45 | 51.15 | <0.001 | (−52.38, −11.02) |
CBD(E) vs. ABD20(E) | 19.02 | 47.75 | 0.001 | (−49.40, −8.05) | 19.45 | 41.00 | 0.034 | (−42.23, −0.87) |
ABD10(E) vs. ABD20(E) | 47.80 | 47.75 | 0.999 | (−20.63, 20.73) | 51.15 | 41.00 | 0.887 | (−10.53, 30.83) |
SEM = 4.1113 | ||||||||
LDL-C (mg·dL−1) | ||||||||
CD(N) vs. CD(E) | 82.58 | 66.74 | 0.998 | (−38.84, 70.54) | 98.60 | 52.94 | 0.190 | (−9.03, 100.34) |
CD(N) vs. CBD(E) | 82.58 | 62.96 | 0.989 | (−35.06, 74.31) | 98.60 | 50.26 | 0.132 | (−6.35, 103.34) |
CD(N) vs. ABD10(E) | 82.58 | 40.47 | 0.294 | (−12.57, 96.81) | 98.60 | 33.33 | 0.008 | (10.57, 119.95) |
CD(N) vs. ABD20(E) | 82.58 | 45.21 | 0.477 | (−17.31, 92.07) | 98.60 | 39.14 | 0.024 | (−2.81, 82.31) |
CD(E) vs. CBD(E) | 66.74 | 62.96 | 0.963 | (−50.91, 58.46) | 52.94 | 50.26 | 0.972 | (−52.01, 57.37) |
CD(E) vs. ABD10(E) | 66.74 | 40.47 | 0.901 | (−28.42, 80.96) | 52.94 | 33.33 | 0.989 | (−35.08, 74.30) |
CD(E) vs. ABD20(E) | 66.74 | 45.21 | 0.977 | (−33.16, 76.22) | 52.94 | 39.14 | 0.999 | (−41.26, 68.11) |
CBD(E) vs. ABD10(E) | 62.96 | 40.47 | 0.967 | (−32.19, 77.19) | 50.26 | 33.33 | 0.997 | (−37.76, 71.62) |
CBD(E) vs. ABD20(E) | 62.96 | 45.21 | 0.996 | (−36.93, 72.45) | 50.26 | 39.14 | 0.999 | (−43.94, 65.43) |
ABD10(E) vs. ABD20(E) | 40.47 | 45.21 | 0.999 | (−59.43, 49.95) | 33.33 | 39.14 | 0.999 | (−60.87, 48.50) |
SEM = 10.8743 | ||||||||
VLDL-C (mg·dL−1) | ||||||||
CD(N) vs. CD(E) | 27.43 | 43.18 | 0.186 | (−34.54, 3.04) | 30.41 | 61.75 | <0.001 | (−50.13, −12.55) |
CD(N) vs. CBD(E) | 27.43 | 35.62 | 0.949 | (−26.98, 10.60) | 30.41 | 46.47 | 0.178 | (−34.85, 2.73) |
CD(N) vs. ABD10(E) | 27.43 | 20.00 | 0.976 | (−11.37, 26.22) | 30.41 | 33.11 | 0.999 | (−21.49, 16.09) |
CD(N) vs. ABD20(E) | 27.43 | 21.95 | 0.999 | (−13.31, 24.27) | 30.41 | 28.61 | 0.997 | (−17.00, 20.59) |
CD(E) vs. CBD(E) | 43.18 | 35.62 | 0.972 | (−11.23, 26.35) | 61.75 | 46.47 | 0.222 | (−3.51, 34.07) |
CD(E) vs. ABD10(E) | 43.18 | 20.00 | 0.005 | (4.38, 41.97) | 61.75 | 33.11 | <0.001 | (9.85, 47.43) |
CD(E) vs. ABD20(E) | 43.18 | 21.95 | 0.015 | (2.44, 40.02) | 61.75 | 28.61 | <0.001 | (14.34, 51.93) |
CBD(E) vs. ABD10(E) | 35.62 | 20.00 | 0.196 | (−3.18, 34.41) | 46.47 | 33.11 | 0.414 | (−5.43, 32.15) |
CBD(E) vs. ABD20(E) | 35.62 | 21.95 | 0.379 | (−5.12, 32.46) | 46.47 | 28.61 | 0.042 | (−0.94, 36.65) |
ABD10(E) vs. ABD20(E) | 20.00 | 21.95 | 0.999 | (−20.74, 16.85) | 33.11 | 28.61 | 0.999 | (−14.30, 23.29) |
SEM = 3.7367 |
Sex | Female | Male | ||||||
---|---|---|---|---|---|---|---|---|
Diets | Means | p-Value | 95% CI | Means | p-Value | 95% CI | ||
TC/HDL-C (mg·dL−1) | ||||||||
CD(N) vs. CD(E) | 5.98 | 7.06 | 0.974 | (−3.79, 1.63) | 7.64 | 6.16 | 0.794 | (−1.23, 4.18) |
CD(N) vs. CBD(E) | 5.98 | 6.60 | 0.999 | (−3.32, 2.09) | 7.64 | 5.99 | 0.650 | (−1.05, 4.36) |
CD(N) vs. ABD10(E) | 5.98 | 2.50 | 0.003 | (0.77, 6.19) | 7.64 | 1.97 | <0.001 | (2.96, 8.37) |
CD(N) vs. ABD20(E) | 5.98 | 2.47 | 0.003 | (0.81, 6.22) | 7.64 | 2.89 | <0.001 | (2.05, 8.37) |
CD(E) vs. CBD(E) | 7.06 | 6.60 | 0.999 | (−2.23, 3.17) | 6.16 | 5.99 | 0.995 | (−2.53, 2.88) |
CD(E) vs. ABD10(E) | 7.06 | 2.50 | <0.001 | (1.86, 7.27) | 6.16 | 1.97 | <0.001 | (1.49, 6.90) |
CD(E) vs. ABD20(E) | 7.06 | 2.47 | <0.001 | (1.89, 7.30) | 6.16 | 2.89 | 0.006 | (0.57, 5.98) |
CBD(E) vs. ABD10(E) | 6.60 | 2.50 | <0.001 | (1.39, 6.80) | 5.99 | 1.97 | 0.003 | (1.31, 6.72) |
CBD(E) vs. ABD20(E) | 6.60 | 2.47 | <0.001 | (1.42, 6.83) | 5.99 | 2.89 | 0.013 | (0.39, 5.81) |
ABD10(E) vs. ABD20(E) | 2.50 | 2.47 | 0.999 | (−2.67, 2.74) | 1.97 | 2.89 | 0.994 | (−3.62, 1.79) |
SEM = 0.5380 | ||||||||
Atherogenic Index (mg·dL−1) | ||||||||
CD(N) vs. CD(E) | 4.99 | 6.07 | 0.976 | (−3.80, 1.64) | 6.64 | 5.16 | 0.801 | (−1.24, 4.19) |
CD(N) vs. CBD(E) | 4.99 | 5.61 | 0.999 | (−3.35, 2.10) | 6.64 | 4.99 | 0.660 | (−1.07, 4.37) |
CD(N) vs. ABD10(E) | 4.99 | 1.50 | 0.003 | (−0.77, 6.21) | 6.64 | 0.97 | <0.001 | (2.94, 8.39) |
CD(N) vs. ABD20(E) | 4.99 | 1.52 | 0.003 | (0.75, 6.19) | 6.64 | 1.89 | <0.001 | (2.03, 7.47) |
CD(E) vs. CBD(E) | 6.07 | 5.61 | 0.999 | (−2.27, 3.17) | 5.16 | 4.99 | 0.998 | (−2.54, 2.90) |
CD(E) vs. ABD10(E) | 6.07 | 1.50 | <0.001 | (1.84, 7.29) | 5.16 | 0.97 | <0.001 | (−1.47, 6.91) |
CD(E) vs. ABD20(E) | 6.07 | 1.52 | <0.001 | (1.83, 7.27) | 5.16 | 1.89 | 0.007 | (0.56, 6.00) |
CBD(E) vs. ABD10(E) | 5.61 | 1.50 | <0.001 | (1.39, 6.83) | 4.99 | 0.97 | <0.001 | (1.30, 6.74) |
CBD(E) vs. ABD20(E) | 5.61 | 1.52 | <0.001 | (1.37, 6.82) | 4.99 | 1.89 | 0.013 | (0.38, 5.82) |
ABD10(E) vs. ABD20(E) | 1.50 | 1.52 | 0.999 | (−2.74, 2.70) | 0.97 | 1.89 | 0.994 | (−3.64, 1.80) |
SEM = 0.5409 | ||||||||
TP (mg·dL−1) | ||||||||
CD(N) vs. CD(E) | 7.65 | 7.27 | 0.998 | (−0.51, 1.27) | 6.90 | 6.91 | 0.190 | (−0. 91, 0.88) |
CD(N) vs. CBD(E) | 7.65 | 6.86 | 0.989 | (−0.10, 1.68) | 6.90 | 6.51 | 0.132 | (−0.50, 1.28) |
CD(N) vs. ABD10(E) | 7.65 | 7.10 | 0.294 | (−0.35, 1.44) | 6.90 | 6.49 | 0.008 | (−0.48, 1.30) |
CD(N) vs. ABD20(E) | 7.65 | 6.31 | 0.477 | (0.44, 2.23) | 6.90 | 6.47 | 0.024 | (−0.47, 1.32) |
CD(E) vs. CBD(E) | 7.27 | 6.86 | 0.998 | (−0.48, 1.30) | 6.91 | 6.51 | 0.994 | (−0.49, 1.30) |
CD(E) vs. ABD10(E) | 7.27 | 7.10 | 0.901 | (−0.73, 1.06) | 6.91 | 6.49 | 0.989 | (−0.47, 1.32) |
CD(E) vs. ABD20(E) | 7.27 | 6.31 | 0.977 | (0.06, 1.85) | 6.91 | 6.47 | 0.999 | (−0.45, 1.33) |
CBD(E) vs. ABD10(E) | 6.86 | 7.10 | 0.999 | (−1.14, 0.65) | 6.51 | 6.49 | 0.999 | (−0.87, 0.91) |
CBD(E) vs. ABD20(E) | 6.86 | 6.31 | 0.652 | (−0.35, 1.44) | 6.51 | 6.47 | 0.999 | (−0.86, 0.93) |
ABD10(E) vs. ABD20(E) | 7.10 | 6.31 | 0.132 | (−0.10, 1.68) | 6.49 | 6.47 | 0.999 | (−0.88, 0.91) |
SEM = 0.1778 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Urdaneta, A.B.; Montero-Quintero, K.C.; González-Redondo, P.; Molina, E.; Bracho-Bravo, B.; Moreno-Rojas, R. Hypolipidemic and Hypoglycaemic Effect of Wholemeal Bread with Amaranth (Amaranthus dubius Mart. ex Thell.) on Sprague Dawley Rats. Foods 2020, 9, 707. https://doi.org/10.3390/foods9060707
Sánchez-Urdaneta AB, Montero-Quintero KC, González-Redondo P, Molina E, Bracho-Bravo B, Moreno-Rojas R. Hypolipidemic and Hypoglycaemic Effect of Wholemeal Bread with Amaranth (Amaranthus dubius Mart. ex Thell.) on Sprague Dawley Rats. Foods. 2020; 9(6):707. https://doi.org/10.3390/foods9060707
Chicago/Turabian StyleSánchez-Urdaneta, Adriana Beatriz, Keyla Carolina Montero-Quintero, Pedro González-Redondo, Edgar Molina, Belkys Bracho-Bravo, and Rafael Moreno-Rojas. 2020. "Hypolipidemic and Hypoglycaemic Effect of Wholemeal Bread with Amaranth (Amaranthus dubius Mart. ex Thell.) on Sprague Dawley Rats" Foods 9, no. 6: 707. https://doi.org/10.3390/foods9060707
APA StyleSánchez-Urdaneta, A. B., Montero-Quintero, K. C., González-Redondo, P., Molina, E., Bracho-Bravo, B., & Moreno-Rojas, R. (2020). Hypolipidemic and Hypoglycaemic Effect of Wholemeal Bread with Amaranth (Amaranthus dubius Mart. ex Thell.) on Sprague Dawley Rats. Foods, 9(6), 707. https://doi.org/10.3390/foods9060707