Evaluation of NaCl and KCl Salting Effects on Technological Properties of Pre- and Post-Rigor Chicken Breasts at Various Ionic Strengths
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Sample Preparation
2.3. Analysis of Intact Chicken Breasts
2.3.1. Temperature and pH Value
2.3.2. Color Measurement
2.4. Analysis of Salted Chicken Breasts
2.4.1. pH Value
2.4.2. Cooking Loss
2.4.3. Protein Solubility
2.4.4. Sodium Dodecyl Sulfate Poly-Acrylamide Gel Electrophoresis (SDS-PAGE)
2.4.5. Emulsion Activity Index (EAI)
2.4.6. Texture Profile Analysis
2.5. Statistical Analysis
3. Results
3.1. Temperature, pH Value, and Color of Intact Pre- and Post-Rigor Chicken Breasts
3.2. Technological Properties of Salted Chicken Breasts
3.2.1. pH Value
3.2.2. Cooking Loss
3.2.3. Protein Solubilities
3.2.4. SDS-PAGE
3.2.5. Emulsion Activity Index (EAI)
3.2.6. Textural Profile Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Inguglia, E.S.; Zhang, Z.; Tiwari, B.K.; Kerry, J.P.; Burgess, C.M. Salt reduction strategies in processed meat—A review. Trends Food Sci. Technol. 2017, 59, 70–78. [Google Scholar] [CrossRef]
- Desmond, E. Reducing salt: A challenge for the meat industry. Meat Sci. 2006, 74, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Horita, C.N.; Morgano, M.A.; Celeghini, R.M.S.; Pollonio, M.A.R. Physico-chemical and sensory properties of reduced-fat mortadella prepared with blends of calcium, magnesium and potassium chloride as partial substitutes for sodium chloride. Meat Sci. 2011, 89, 426–433. [Google Scholar] [CrossRef]
- Gelabert, J.; Gou, P.; Guerrero, L.; Arnau, J. Effect of sodium chloride replacement on some characteristics of fermented sausages. Meat Sci. 2003, 65, 833–839. [Google Scholar] [CrossRef]
- Kim, H.W.; Hwang, K.E.; Song, D.H.; Kim, Y.J.; Ham, Y.K.; Yeo, E.J.; Jeong, T.J.; Choi, Y.S.; Kim, C.J. Effect of pre-rigor salting levels on physicochemical and textural properties of chicken breast muscles. Food Sci. Anim. Resour. 2015, 35, 577–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pisula, A.; Tyburcy, A. Hot processing of meat. Meat Sci. 1996, 43, 125–134. [Google Scholar] [CrossRef]
- Sukumaran, A.T.; Coatney, K.; Ellington, J.; Holtcamp, A.J.; Schilling, M.W.; Dinh, T.T.N. Consumer acceptability and demand for cooked beef sausage formulated with pre- and post-rigor deboned beef. Meat Muscle Biol. 2019, 3, 210–218. [Google Scholar] [CrossRef]
- Sukumaran, A.T.; Holtcamp, A.J.; Campbell, Y.L.; Burnett, D.; Schilling, M.W.; Dinh, T.T.N. Technological characteristics of pre- and post-rigor deboned beef mixtures from Holstein steers and quality attributes of cooked beef sausage. Meat Sci. 2018, 145, 71–78. [Google Scholar] [CrossRef]
- Song, D.H.; Ham, Y.K.; Ha, J.H.; Kim, Y.R.; Chin, K.B.; Kim, H.W. Impacts of pre-rigor salting with KCl on technological properties of ground chicken breast. Poult. Sci. 2020, 99, 597–603. [Google Scholar] [CrossRef]
- Warner, R.D.; Kauffman, R.G.; Greaser, M.L. Muscle protein changes post mortem in relation to pork quality traits. Meat Sci. 1997, 45, 339–352. [Google Scholar] [CrossRef]
- Gornall, A.G.; Bardawill, C.J.; David, M.M. Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 1949, 177, 751–766. [Google Scholar] [PubMed]
- Laemmli, U.K. Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Pearce, K.N.; Kinsella, J.E. Emulsifying properties of proteins: Evaluation of a turbidimetric technique. J. Agric. Food Chem. 1978, 26, 716–723. [Google Scholar] [CrossRef]
- Chan, J.T.Y.; Omana, D.A.; Betti, M. Functional and rheological properties of proteins in frozen turkey breast meat with different ultimate pH. Poult. Sci. 2011, 90, 1112–1123. [Google Scholar] [CrossRef] [PubMed]
- Bourne, M.C. Texture profile analysis. Food Technol. 1978, 32, 62–66. [Google Scholar]
- Qiao, M.; Fletcher, D.L.; Smith, D.P.; Northcutt, J.K. The effect of broiler breast meat color on pH, moisture, water-holding capacity, and emulsification capacity. Poult. Sci. 2001, 80, 676–680. [Google Scholar] [CrossRef]
- Perlo, F.; Bonato, P.; Fabre, R.; Teira, G.; Tisocco, O. Meat quality evaluation of broiler breast fillets affected by aging time and marination. Int. J. Poult. Sci. 2010, 9, 1063–1068. [Google Scholar] [CrossRef]
- Swatland, H.J. How pH causes paleness or darkness in chicken breast meat. Meat Sci. 2008, 80, 396–400. [Google Scholar] [CrossRef]
- Keeton, J.T. Effects of potassium chloride on properties of country-style hams. J. Food Sci. 1984, 49, 146–148. [Google Scholar] [CrossRef]
- Hand, L.W.; Terrell, R.N.; Smith, G.C. Effects of complete or partial replacement of sodium chloride on processing and sensory properties of hams. J. Food Sci. 1982, 47, 1776–1778. [Google Scholar] [CrossRef]
- Aliño, M.; Grau, R.; Toldrá, F.; Blesa, E.; Pagán, M.J.; Barat, J.M. Influence of sodium replacement on physicochemical properties of dry-cured loin. Meat Sci. 2009, 83, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Coon, F.P.; Calkins, C.R.; Mandigo, R.W. Pre- and post-rigor sectioned and formed beef steaks manufactured with different salt levels, mixing times and tempering times. J. Food Sci. 1983, 48, 1731–1734. [Google Scholar] [CrossRef]
- Offer, G.; Knight, P. The structural basis of water-holding in meat. Part 1: General principles and water uptake in meat processing. In Developments in Meat Science-4; Lawrie, R., Ed.; Elsevier Applied Science: London, UK, 1988; pp. 63–71. [Google Scholar]
- Karakaya, M.; Saricoban, C.; Yilmaz, M.T. The effect of various types of poultry pre-and post-rigor meats on emulsification capacity, water-holding capacity and cooking loss. Eur. Food Res. Technol. 2005, 220, 283–286. [Google Scholar] [CrossRef]
- Bernthal, P.H.; Booren, A.M.; Gray, J.I. Effect of sodium chloride concentration on pH, water-holding capacity and extractable protein of prerigor and postrigor ground beef. Meat Sci. 1989, 25, 143–154. [Google Scholar] [CrossRef]
- Wu, L.; Wu, T.; Wu, J.; Chang, R.; Lan, X.; Wei, K.; Jia, X. Effects of cations on the “salt in” of myofibrillar proteins. Food Hydrocoll. 2016, 58, 179–183. [Google Scholar] [CrossRef]
- Sali, A.; Ninham, B.W. Models and mechanisms of Hofmeister effects in electrolyte solutions, and colloid and protein systems revisited. Chem. Soc. Rev. 2014, 43, 7358–7377. [Google Scholar] [CrossRef] [Green Version]
- Offer, G. Modeling of the formation of pale, soft and exudative meat: Effects of chilling regime and rate and extent of glycolysis. Meat Sci. 1991, 30, 157–184. [Google Scholar] [CrossRef]
- Mudalal, S.; Babini, E.; Cavani, C.; Petracci, M. Quantity and functionality of protein fractions in chicken breast fillets affected by white striping. Poult. Sci. 2014, 93, 2108–2116. [Google Scholar] [CrossRef]
- Munasinghe, D.M.S.; Sakai, T. Sodium chloride as a preferred protein extractant for pork lean meat. Meat Sci. 2004, 67, 697–703. [Google Scholar] [CrossRef]
- Xiong, Y.L.; Brekke, C.J. Protein extractability and thermally induced gelation properties of myofibrils isolated from pre-and postrigor chicken muscles. J. Food Sci. 1991, 56, 210–215. [Google Scholar] [CrossRef]
Traits | Pre-Rigor Chicken Breasts | Post-Rigor Chicken Breasts | SEM (1) | Significance of t-Test (2) | |
---|---|---|---|---|---|
Temperature (°C) | 33.33 | 5.67 | 6.51 | *** | |
pH value | 6.46 | 5.87 | 0.13 | *** | |
Color | CIE L * (lightness) | 46.87 | 53.22 | 1.44 | *** |
CIE a * (redness) | 2.67 | 2.68 | 0.06 | NS | |
CIE b * (yellowness) | 4.94 | 3.79 | 0.29 | *** |
Measured Variables | Independent Variables (Main Effects) | Two- and Three-Way Interactions | |||||
---|---|---|---|---|---|---|---|
Salt Type | Rigor Status | Ionic Strength | S (1) × R (2) | R × I (3) | S × I | S × R × I | |
pH value | <0.001 | <0.001 | NS (5) | NS | <0.001 | NS | NS |
Cooking loss (%) | NS | 0.015 | <0.001 | NS | 0.017 | NS | NS |
Protein solubility (%) | |||||||
Total protein | 0.003 | <0.001 | <0.001 | 0.006 | NS | NS | NS |
Sarcoplasmic protein | NS | <0.001 | NS | NS | 0.013 | NS | NS |
Myofibrillar protein | 0.003 | <0.001 | <0.001 | 0.027 | NS | NS | NS |
EAI (4) | NS | NS | NS | NS | NS | NS | NS |
Textural properties | |||||||
Hardness (kg) | NS | <0.001 | <0.001 | NS | NS | NS | NS |
Springiness (unitless) | NS | NS | <0.001 | NS | NS | NS | NS |
Cohesiveness (ratio) | NS | <0.001 | <0.001 | 0.021 | 0.032 | NS | NS |
Gumminess (kg) | NS | <0.001 | <0.001 | NS | NS | NS | NS |
Chewiness (kg) | NS | <0.001 | <0.001 | 0.036 | 0.005 | NS | NS |
Effects | pH Value | Cooking Loss (%) | Protein Solubility (%) | EAI (1) | Textural Properties | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Total Protein | Sarcoplasmic Protein | Myofibrillar Protein | Hardness (kg) | Springiness (Ratio) | Cohesiveness (Unitless) | Gumminess (kg) | Chewiness (kg) | ||||
Salt type effect | |||||||||||
NaCl | 5.84b | 13.16 | 84.84a | 39.16 | 45.80a | 1.54 | 18.96 | 0.68 | 0.28 | 5.24 | 3.59 |
KCl | 5.93a | 13.42 | 82.29b | 39.35 | 42.94b | 1.49 | 18.73 | 0.67 | 0.27 | 5.04 | 3.41 |
SEM (2) | 0.03 | 1.30 | 0.82 | 0.31 | 0.80 | 0.07 | 0.57 | 0.02 | 0.01 | 0.23 | 0.24 |
Rigor status effect | |||||||||||
Pre-rigor | 5.98a | 12.90b | 93.53a | 40.81a | 52.72a | 1.54 | 20.30a | 0.68 | 0.28a | 5.67a | 3.87a |
Post-rigor | 5.80b | 13.68a | 73.60b | 37.70b | 36.02b | 1.46 | 17.39b | 0.68 | 0.27b | 4.61b | 3.13b |
SEM | 0.04 | 0.31 | 4.49 | 0.77 | 3.79 | 0.10 | 0.71 | 0.01 | 0.01 | 0.26 | 0.19 |
Ionic strength effect | |||||||||||
0.087 | 5.89 | 18.70a | 79.48b | 39.72 | 39.98b | 1.36 | 17.24b | 0.62c | 0.26b | 4.55b | 2.80c |
0.171 | 5.88 | 13.64b | 82.07b | 39.10 | 42.97b | 1.44 | 17.69b | 0.66b | 0.27b | 4.67b | 3.03c |
0.257 | 5.89 | 11.06c | 85.83a | 39.34 | 46.51a | 1.53 | 19.43ab | 0.71a | 0.27ab | 5.31ab | 3.74b |
0.342 | 5.89 | 9.76d | 86.88a | 38.87 | 48.03a | 1.70 | 21.02a | 0.73a | 0.29a | 6.04a | 4.44a |
SEM | 0.01 | 1.04 | 0.98 | 0.24 | 1.04 | 0.06 | 0.52 | 0.01 | 0.01 | 0.20 | 0.20 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, D.-H.; Ham, Y.-K.; Noh, S.-W.; Chin, K.B.; Kim, H.-W. Evaluation of NaCl and KCl Salting Effects on Technological Properties of Pre- and Post-Rigor Chicken Breasts at Various Ionic Strengths. Foods 2020, 9, 721. https://doi.org/10.3390/foods9060721
Song D-H, Ham Y-K, Noh S-W, Chin KB, Kim H-W. Evaluation of NaCl and KCl Salting Effects on Technological Properties of Pre- and Post-Rigor Chicken Breasts at Various Ionic Strengths. Foods. 2020; 9(6):721. https://doi.org/10.3390/foods9060721
Chicago/Turabian StyleSong, Dong-Heon, Youn-Kyung Ham, Sin-Woo Noh, Koo Bok Chin, and Hyun-Wook Kim. 2020. "Evaluation of NaCl and KCl Salting Effects on Technological Properties of Pre- and Post-Rigor Chicken Breasts at Various Ionic Strengths" Foods 9, no. 6: 721. https://doi.org/10.3390/foods9060721
APA StyleSong, D. -H., Ham, Y. -K., Noh, S. -W., Chin, K. B., & Kim, H. -W. (2020). Evaluation of NaCl and KCl Salting Effects on Technological Properties of Pre- and Post-Rigor Chicken Breasts at Various Ionic Strengths. Foods, 9(6), 721. https://doi.org/10.3390/foods9060721