New β-Carotene-Chitooligosaccharides Complexes for Food Fortification: Stability Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of β-Carotene-Chitooligosaccharides Complexes
2.3. Stability of β-Carotene Complexed with CHIOS
2.4. Colour Measurement
2.5. Statistical Analysis
3. Results and Discussion
3.1. The Effect of Temperature on β-Carotene-Chitooligosaccharides Complexes
3.2. The Effect of pH and Temperature on the Long-Term Stability of Complexed β-Carotene
3.3. The Effect of UV Irradiation on β-Carotene-Chitooligosaccharides Complexes
3.4. The Changes of Colour Parameters of CAR-CHIOS Complexes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Rodriguez-Concepcion, M.; Avalos, J.; Bonet, L.; Boronat, A.; Gomez-Gomez, L.; Hornero-Mendez, D.; Limon, M.C.; Melendez-Martinez, A.J.; Olmedilla-Alonso, B.; Palou, A.; et al. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog. Lipid Res. 2018, 70, 62–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melendez-Martinez, A.J. An overview of carotenoids, apocarotenoids, and vitamin A in agro-food, nutrition, health, and disease. Mol. Nutr. Food Res. 2019, 63, 1801045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandmann, G. Antioxidant protection from UV- and light-stress related to carotenoid structures. Antioxidants 2019, 8, 219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neves, M.F.; Cunha, M.R.; de Paula, T. Effects of nutrients and exercises to attenuate oxidative stress and prevent cardiovascular disease. Curr. Pharm. Des. 2018, 24, 4800–4806. [Google Scholar] [CrossRef]
- Jayedi, A.; Rashidy-Pour, A.; Parohan, M.; Zargar, M.S.; Shab-Bidar, S. Dietary and circulating vitamin C, vitamin E, β-carotene and risk of total cardiovascular mortality: A systematic review and dose-response meta-analysis of prospective observational studies. Public Health Nutr. 2019, 22, 1872–1887. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, R.B.; Hernandez, P.S. Cancer chemoprevention by dietary phytochemicals: Epidemiological evidence. Maturitas 2016, 94, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Mokbel, K.; Mokbel, K. Chemoprevention of breast cancer with vitamins and micronutrients: A concise review. In Vivo 2019, 33, 983–997. [Google Scholar] [CrossRef] [Green Version]
- Sluijs, I.; Cadier, E.; Beulens, J.W.J.; Spijkerman, A.M.W.; van der Schow, Y.T. Dietary intake of carotenoids and risk of type 2 diabetes. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 376–381. [Google Scholar] [CrossRef]
- Quansah, D.Y.; Ha, K.; Jun, S.; Kim, S.A.; Shin, S.; Wie, G.A.; Joung, H. Associations of dietary and risk of type 2 diabetes: Data from the 2007–2012 Korea National health and nutrition examination survey. Molecules 2017, 22, 1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carneiro, A.; Andrade, J.P. Nutritional and lifestyle interventions for age-related macular degeneration: A review. Oxid. Med. Cell. Longev. 2017, 2017, 6469138. [Google Scholar]
- Khoo, H.E.; Ng, H.S.; Yap, W.S.; Goh, H.J.H.; Yim, Y.S. Nutrients for prevention of macular degeneration and eye-related diseases. Antioxidants 2019, 8, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scita, G. The stability of β-carotene under different laboratory conditions. J. Nutr. Biochem. 1992, 3, 124–128. [Google Scholar] [CrossRef]
- Berset, C.; Marty, C. Formation of non-volatile compounds by thermal degradation of β-carotene: Protection by antioxidants. Methods Enzymol. 1992, 213, 129–142. [Google Scholar]
- Mehrad, B.; Ravanfar, R.; Licker, J.; Regenstein, J.M. Enhancing the physicochemical stability of β-carotene solid lipid nanoparticle (SLNP) using whey protein isolate. Food Res. Int. 2018, 105, 962–969. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Bao, C.; Huang, J.; Jiang, P.; Jiao, L.; Ren, F.; Li, Y. Improved stability, epithelial permeability and cellular antioxidant activity of β-carotene via encapsulation by self-assembled α-lactalbumin micelles. Food Chem. 2019, 271, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.; Deng, S.; McClements, D.J.; Zhou, L.; Zou, L.; Yi, J.; Liu, C.; Liu, W. Encapsulation of β-carotene in wheat gluten nanoparticle-xanthan gum-stabilized Pickering emulsions: Enhancement of carotenoid stability and bioaccessibility. Food Hydrocoll. 2019, 89, 80–89. [Google Scholar] [CrossRef]
- Choi, S.J.; McClements, D.J. Nanoemulsions as delivery systems for lipophilic nutraceuticals: Strategies for improving their formulation, stability, functionality and bioavailability. Food Sci. Biotechnol. 2020, 29, 149–168. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Wang, D.; Liu, F.; Gao, Y. Emulsion design for the delivery of β-carotene in complex food systems. Crit. Rev. Food Sci. Nutr. 2017, 58, 770–784. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Bhosale, R.; Ziegler, G.R. Encapsulation and stabilization of b-carotene by amylose inclusion complexes. Food Res. Int. 2018, 105, 446–452. [Google Scholar] [CrossRef]
- Chen, L.; Bai, G.; Yang, R.; Zang, J.; Zhou, T.; Zhao, G. Encapsulation of β-carotene within ferritin nanocages greatly increases its water-solubility and thermal stability. Food Chem. 2014, 149, 307–312. [Google Scholar] [CrossRef]
- Bockuviene, A.; Sereikaite, J. Preparation and characterisation of novel water-soluble β-carotene-chitooligosaccharides complexes. Carbohydr. Polym. 2019, 225, 115226. [Google Scholar] [CrossRef] [PubMed]
- Phil, L.; Naveed, M.; Mohammad, I.S.; Bo, L.; Bin, D. Chitooligosaccharide: An evaluation of physicochemical and biological properties with the proposition for determination of thermal degradation products. Biomed. Pharmacother. 2018, 102, 438–451. [Google Scholar] [CrossRef] [PubMed]
- Marmouzi, I.; Ezzat, S.M.; Salama, M.M.; Merghany, R.M.; Attar, A.M.; EL-Desoky, A.M.; Mohamed, S.O. Recent Updates in pharmacological properties of chitooligosaccharides. Biomed Res. Int. 2019, 2019, 4568039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, T.; Xing, X.; Zhang, L.; Liu, Z.; Zhao, J.; Liu, X. Chitosan oligosaccharides show protective effects in coronary heart disease by improving antioxidant capacity via the increase in intestinal probiotics. Oxid. Med. Cell. Longev. 2019, 2019, 7658052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, F.; Lee, J.W.; Pham, D.T.N.; Kim, Y.M. Chitooligosaccharides as antibacterial, antibiofilm, antihemolytic and anti-virulence agent against Staphylococcus aureus. Curr. Pharm. Biotechnol. 2019, 20, 1223–1233. [Google Scholar] [CrossRef] [PubMed]
- Bellich, B.; D’Agostino, I.; Semeraro, S.; Gamini, A.; Cesaro, A. “The Good, the Bad and the Ugly” of chitosans. Mar. Drugs 2016, 14, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polyakov, N.E.; Leshina, T.V.; Meteleva, E.S.; Dushkin, A.V.; Konovalova, T.A.; Kispert, L.D. Water soluble complexes of carotenoids with arabinogalactan. J. Phys. Chem. B 2009, 113, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhong, Q. Thermal and UV stability of β-carotene dissolved in peppermint oil microemulsified by sunflower lecithin and Tween 20 blend. Food Chem. 2015, 174, 630–636. [Google Scholar] [CrossRef] [PubMed]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.-J. Colour measurement and analysis in fresh and processed foods: A review. Food Bioproc. Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Knockaert, G.; Pulissery, S.K.; Lemmens, L.; Van Buggenhout, S.; Hendrickx, M.; Van Loey, A. Carrot β-carotene degradation and isomerization kinetics during thermal processing in the presence of oil. J. Agric. Food Chem. 2012, 60, 10312–10319. [Google Scholar] [CrossRef]
- Ngo, D.-H.; Wijesekara, I.; Vo, T.-S.; Tan, Q.V.; Kim, S.-K. Marine food-derived functional ingredients as potential antioxidants in the food industry: An overview. Food Res. Int. 2011, 44, 523–529. [Google Scholar] [CrossRef]
- Lim, A.S.L.; Griffin, C.; Roos, Y.H. Stability and loss kinetics of lutein and β-carotene encapsulated in freeze-dried emulsions layered interface and trehalose as glass former. Food Res. Int. 2014, 62, 403–409. [Google Scholar] [CrossRef]
- Da Silva, M.M.; Paese, K.; Guterrese, S.S.; Pohlmann, A.R.; Rutz, J.K.; Cantillano, R.F.F.; Nora, L.; de Oliveira Rios, A. Thermal and ultraviolet-visible light stability kinetics of co-nanocapsulated carotenoids. Food Bioprod. Process. 2017, 105, 86–94. [Google Scholar] [CrossRef] [Green Version]
- Boon, C.S.; McClements, D.J.; Weiss, J.; Decker, E.A. Factors influencing the chemical stability of carotenoids in foods. Crit. Rev. Food Sci. Nutr. 2010, 50, 515–532. [Google Scholar] [CrossRef] [PubMed]
- Lodhi, G.; Kim, Y.-S.; Hwang, J.-W.; Kim, S.-K.; Jeon, Y.-J.; Je, J.-Y.; Ahn, C.-B.; Moon, S.-H.; Jeon, B.-T.; Park, P.-J. Chitooligosaccharide and its derivatives: Preparation and biological applications. BioMed Res. Int. 2014, 654913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Je, J.-Y.; Park, P.-J.; Kim, S.-K. Free radical scavenging properties of heterochitooligosaccharides using ESR spectroscopy. Food Chem. Toxicol. 2004, 42, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Dini, M.; Raseira, M.d.C.B.; Scariotto, S.; Carra, B.; de Abreu, E.S.; Mello-Farias, P.; Cantillano, R.F.F. Color shade heritability of peach flesh. J. Agric. Sci. 2019, 11, 236–247. [Google Scholar] [CrossRef]
- Yamauchi, J. Handbook of Colour Science; Japanese Academy of Colour Science: Tokyo, Japan, 1989. [Google Scholar]
Storage Conditions | Sample | pH | |||||||
---|---|---|---|---|---|---|---|---|---|
3 | 5 | 7 | 8 | 3 | 5 | 7 | 8 | ||
k × 103, day−1 | t1/2, days | ||||||||
Dark at | KD3 | 14.38 ± 0.26 aA | 14.56 ± 0.29 aB | 16.47 ± 0.48 aC | 17.61 ± 0.37 aD | 48.83 ± 0.57 | 47.25 ± 0.69 | 42.76 ± 0.35 | 39.45 ± 0.16 |
4 °C | LF4 | 6.34 ± 0.08 bA | 8.24 ± 0.06 bB | 5.29 ± 0.07 bC | 5.83 ± 0.09 bD | 109.34 ± 0.54 | 85.64 ± 0.39 | 133.88 ± 0.56 | 118.36 ± 0.28 |
LF5 | 6.76 ± 0.04 cA | 8.33 ± 0.05 bB | 5.09 ± 0.07 bC | 5.39 ± 0.03 cD | 102.46 ± 0.24 | 85.34 ± 0.65 | 120.33 ± 0.29 | 128.43 ± 0.73 | |
S6 | 6.15 ± 0.05 dA | 2.46 ± 0.04 cB | 4.88 ± 0.01 cC | 5.18 ± 0.32 dD | 122.45 ± 0.93 | 125.34 ± 0.46 | 140.43 ± 0.73 | 132.65 ± 0.75 | |
S7 | 6.23 ± 0.02 dA | 2.47 ± 0.05 cB | 4.88 ± 0.08 cC | 5.18 ± 0.08 dD | 118.75 ± 0.31 | 129.46 ± 0.65 | 145.56 ± 0.22 | 138.45 ± 0.82 | |
k × 102, day−1 | t1/2, days | ||||||||
Dark at | KD3 | 2.84 ± 0.07 aA | 3.91 ± 0.08 aB | 2.95 ± 0.04 aA | 3.91 ± 0.03 aB | 24.59 ± 0.48 | 17.74 ± 0.19 | 23.94 ± 0.59 | 17.38 ± 0.24 |
24 °C | LF4 | 2.39 ± 0.05 bA | 2.36 ± 0.12 bA | 2.45 ± 0.04 bA | 2.33 ± 0.05 bA | 27.67 ± 0.36 | 27.06 ± 0.43 | 28.24 ± 0.59 | 29.84 ± 0.63 |
LF5 | 2.49 ± 0.05 bA | 2.49 ± 0.06 bA | 2.35 ± 0.04 bA | 2.23 ± 0.06 bA | 27.56 ± 0.79 | 28.16 ± 0.73 | 29.18 ± 0.28 | 30.52 ± 0.22 | |
S6 | 1.89 ± 0.01 cA | 2.59 ± 0.06 bB | 2.55 ± 0.04 bB | 2.73 ± 0.05 cB | 36.04 ± 0.91 | 26.77 ± 0.74 | 26.51 ± 0.59 | 25.48 ± 0.79 | |
S7 | 1.76 ± 0.05 cA | 2.39 ± 0.04 bB | 2.45 ± 0.04 bB | 2.43 ± 0.05 bB | 35.76 ± 0.70 | 28.47 ± 0.43 | 28.75 ± 0.69 | 28.68 ± 0.76 | |
Light at | KD3 | 6.97 ± 0.99 aA | 6.96 ± 0.58 aA | 6.95 ± 0.63 aA | 6.97 ± 0.53 aA | 9.83 ± 0.48 | 9.95 ± 0.55 | 9.98 ± 0.64 | 9.95 ± 0.46 |
24 °C | LF4 | 2.63 ± 0.92 bA | 3.05 ± 0.85 bB | 4.64 ± 0.87 bC | 3.69 ± 0.65 bB | 26.73 ± 0.59 | 22.49 ± 0.68 | 16.04 ± 0.54 | 18.78 ± 0.68 |
LF5 | 2.58 ± 0.97 bA | 3.08 ± 0.65 bB | 4.91 ± 0.24 cC | 3.98 ± 0.51 bD | 26.87 ± 0.56 | 22.48 ± 0.68 | 14.05 ± 0.56 | 17.31 ± 0.79 | |
S6 | 3.06 ± 0.57 cA | 3.09 ± 0.84 bA | 3.09 ± 0.28 dA | 3.05 ± 0.75 cA | 22.49 ± 0.77 | 22.81 ± 0.41 | 22.78 ± 0.41 | 22.54 ± 0.43 | |
S7 | 3.96 ± 0.68 dA | 3.13 ± 0.59 bB | 3.15 ± 0.39 dB | 4.71 ± 0.59 dC | 17.65 ± 0.85 | 16.76 ± 0.75 | 16.71 ± 0.86 | 15.65 ± 0.54 | |
k × 103, min−1 | t1/2, min−1 | ||||||||
UVC, dark | KD3 | 25.95 ± 5.84 aA | 26.39 ± 2.45 aB | 26.76 ± 3.85 aC | 25.89 ± 4.85 aD | 26.71 ± 0.54 | 26.45 ± 0.61 | 25.90 ± 0.46 | 26.86 ± 0.73 |
at 24 °C | LF4 | 6.59 ± 0.49 bA | 6.04 ± 0.54 bB | 6.68 ± 0.58 bA | 6.50 ± 0.64 bA | 105.71 ± 0.34 | 114.45 ± 0.61 | 103.90 ± 0.46 | 105.86 ± 0.63 |
LF5 | 12.92 ± 0.45 cA | 8.53 ± 0.35 cB | 6.64 ± 0.38 bC | 6.08 ± 0.66 cD | 53.63 ± 0.67 | 80.98 ± 0.54 | 105.05 ± 0.59 | 115.95 ± 0.62 | |
S6 | 13.65 ± 0.74 dA | 9.19 ± 0.47 dB | 9.11 ± 0.46 cB | 9.09 ± 0.66 dB | 50.76 ± 0.73 | 75.96 ± 0.65 | 75.28 ± 0.86 | 76.42 ± 0.87 | |
S7 | 15.82 ± 0.53 eA | 9.16 ± 0.79 dB | 9.18 ± 0.77 cB | 9.18 ± 0.75 dB | 43.80 ± 0.51 | 75.61 ± 0.68 | 75.58 ± 0.42 | 75.31 ± 0.54 |
Sample | Time, Days | L* | a* | b* | a*/b* | C*ab | h*ab |
---|---|---|---|---|---|---|---|
§ | § | § | § | § | § | ||
KD3 | 0 | 65.44 ± 0.48 | 4.24 ± 0.3 | 24.59 ± 0.42 | 0.17 ± 0.01 | 24.96± 0.46 | 80.23 ± 0.56 |
15 | 63.75 ± 0.26 | 3.86 ± 0.18 | 25.41 ± 0.33 | 0.15 ± 0.01 | 25.70 ± 0.49 | 81.31 ± 0.33 | |
30 | 64.53 ± 0.39 | 4.81 ± 0.24 | 25.56 ± 0.42 | 0.18 ± 0.01 | 26.02 ± 0.42 | 79.34 ± 0.54 | |
60 | 64.38 ± 0.45 | 5.09 ± 0.71 | 24.26 ± 0.63 | 0.20 ± 0.02 | 24.80 ± 0.77 | 78.12 ± 0.48 | |
90 | 64.44 ± 0.02 | 4.31 ± 0.16 | 24.52 ± 0.03 | 0.17 ± 0.01 | 24.90 ± 0.02 | 80.02 ± 0.30 | |
120 | 63.31 ± 0.01 | 3.16 ± 0.01 | 22.22 ± 0.01 | 0.14 ± 0.02 | 22.44 ± 0.01 | 81.83 ± 0.02 | |
§ | § | § | § | §§ | § | ||
LF5 | 0 | 54.60 ± 0.42 | 13.49 ± 0.49 | 14.72 ± 0.14 | 0.91 ± 0.03 | 19.97± 0.35 | 47.50 ± 1.06 |
15 | 57.35 ± 0.25 | 15.37 ± 0.29 | 13.25 ± 0.63 | 1.16 ± 0.04 | 20.29 ± 0.58 | 40.76 ± 1.07 | |
30 | 58.60 ± 0.33 | 16.63 ± 0.35 | 14.46 ± 0.44 | 1.15 ± 0.02 | 22.04 ± 0.50 | 41.01 ± 0.71 | |
60 | 59.48 ± 0.95 | 16.62 ± 0.26 | 14.79 ± 0.06 | 1.12 ± 0.02 | 22.25 ± 0.16 | 41.68 ± 0.57 | |
90 | 58.64 ± 0.32 | 16.54 ± 0.37 | 14.48 ± 0.43 | 1.14 ± 0.03 | 21.98 ± 0.52 | 41.37 ± 1.05 | |
120 | 57.99 ± 0.77 | 16.38 ± 0.32 | 11.89 ± 0.01 | 1.37 ± 0.02 | 20.24 ± 0.26 | 40.67 ± 0.33 | |
§ | §§ | § | § | § | § | ||
S6 | 0 | 33.46± 0.33 | 23.73 ± 0.22 | 16.30 ± 0.25 | 1.45 ± 0.03 | 28.79± 0.08 | 34.48 ± 0.65 |
15 | 35.81 ± 0.13 | 24.40 ± 0.64 | 17.26 ± 0.3 | 1.41 ± 0.09 | 29.90 ± 0.96 | 35.31 ± 1.85 | |
30 | 34.27 ± 0.50 | 24.92 ± 0.88 | 18.39 ± 0.40 | 1.35 ± 0.07 | 30.98 ± 0.48 | 36.43 ± 1.55 | |
60 | 37.56 ± 0.37 | 24.63 ± 0.50 | 19.58 ± 0.24 | 1.25 ± 0.04 | 31.47 ± 0.24 | 38.48 ± 0.93 | |
90 | 34.65 ± 0.66 | 24.54 ± 0.56 | 18.82 ± 0.19 | 1.30 ± 0.04 | 30.93 ± 0.32 | 37.50 ± 0.92 | |
120 | 38.38 ± 0.92 | 25.42 ± 0.01 | 19.98 ± 1.07 | 1.27 ± 0.07 | 32.34 ± 0.66 | 38.15 ± 1.50 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bockuviene, A.; Sereikaite, J. New β-Carotene-Chitooligosaccharides Complexes for Food Fortification: Stability Study. Foods 2020, 9, 765. https://doi.org/10.3390/foods9060765
Bockuviene A, Sereikaite J. New β-Carotene-Chitooligosaccharides Complexes for Food Fortification: Stability Study. Foods. 2020; 9(6):765. https://doi.org/10.3390/foods9060765
Chicago/Turabian StyleBockuviene, Alma, and Jolanta Sereikaite. 2020. "New β-Carotene-Chitooligosaccharides Complexes for Food Fortification: Stability Study" Foods 9, no. 6: 765. https://doi.org/10.3390/foods9060765
APA StyleBockuviene, A., & Sereikaite, J. (2020). New β-Carotene-Chitooligosaccharides Complexes for Food Fortification: Stability Study. Foods, 9(6), 765. https://doi.org/10.3390/foods9060765