Evaluation of the Extraction Temperature Influence on Polyphenolic Profiles of Vine-Canes (Vitis vinifera) Subcritical Water Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Collection and Preparation
2.2. Subcritical Water Extraction
2.3. Determination of Total Phenolic and Flavonoid Contents
2.4. Determination of Antioxidant Activity and DPPH Free Radical Scavenging Assay
2.5. Qualitative and Quantitative Polyphenol Characterization
2.6. Reactive Oxygen Species Scavenging Capacity
2.6.1. Superoxide Radical Scavenging Assay
2.6.2. Hypochlorous Acid Scavenging Activity
2.6.3. Peroxyl Radical Scavenging Activity
2.7. Cell Viability Assay
2.8. Statistical Analysis
3. Results and Discussion
3.1. Total Phenolic and Flavonoid Contents, Antioxidant and Antiradical Activities
3.2. Identification of Phenolic Compounds by HPLC-PDA
3.3. Capacity of Scavenging Reactive Oxygen Species
3.3.1. Superoxide Radical Scavenging Assay
3.3.2. Hypochlorous Acid Scavenging Assay
3.3.3. Peroxyl Radical Scavenging Assay
3.4. Cell Viability Studies
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kuzmina, K.; Prendeville, S.; Walker, D.; Charnley, F. Future scenarios for fast-moving consumer goods in a circular economy. Futures 2019, 107, 74–88. [Google Scholar] [CrossRef]
- Roser, M.; Ritchie, H.; Ortiz-Ospina, E. World Population Growth. Available online: https://ourworldindata.org/world-population-growth (accessed on 28 May 2019).
- Siracusa, L.; Ruberto, G. Not only what is food is good-polyphenols from edible and nonedible vegetables waste. In Polyphenols in Plants, 2nd ed.; Watson, R., Ed.; Elsevier: Amsterdan, The Netherlands, 2018; pp. 3–21. [Google Scholar]
- Clark, G. The industrial revolution. In Handbook of Economic Growth, 1st ed.; Aghion, P., Steven, D., Eds.; Elsevier: Amsterdan, The Netherlands, 2005; pp. 217–262. [Google Scholar]
- Russ, W.; Schnappinger, M. Waste related to the food industry: A challenge in material loops. In Utilization of By-Products and Treatment of Waste in the Food Industry, 1st ed.; Oreopoulou, V., Russ, W., Eds.; Springer: Berlin, Germany, 2007; pp. 1–13. [Google Scholar]
- Oliveira, L.S.; Franca, A.S. Low-cost adsorbents from agri-food wastes. In Food Sciences Technology: New Research, 1st ed.; Greco, L., Bruno, M., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2008; pp. 171–209. [Google Scholar]
- Rodríguez, R.; Jiménez, A.; Fernández-Bolaños, J.; Guillén, R.; Heredia, A. Dietary fibre from vegetable products as source of functional ingredients. Trends Food Sci. Technol. 2006, 17, 3–15. [Google Scholar] [CrossRef]
- Devesa-Rey, R.; Vecino, X.; Varela-Alende, J.L.; Barral, M.T.; Cruz, J.M.; Moldes, A.B. Valorization of winery waste vs. The costs of not recycling. Waste Managem. 2011, 31, 2327–2335. [Google Scholar] [CrossRef] [PubMed]
- OIV—International Organisation of Vine and Wine (OIV). OIV Statistical Report on World Vitiviniculture; OIV—International Organisation of Vine and Wine (OIV): Paris, France, 2016. [Google Scholar]
- Rajha, H.; Darra, N.; Hobaika, Z.; Boussetta, N.; Vorobiev, E.; Maroun, R.; Louka, N. Extraction of total phenolic compounds, flavonoids, anthocyanins and tannins from grape byproducts by response surface methodology. Influence of solid-liquid ratio, particle size, time, temperature and solvent mixtures on the optimization process. Food Nutr. Sci. 2014, 5, 397–409. [Google Scholar] [CrossRef] [Green Version]
- Gullón, B.; Eibes, G.; Moreira, M.T.; Dávila, I.; Labidi, J.; Gullón, P. Antioxidant and antimicrobial activities of extracts obtained from the refining of autohydrolysis liquors of vine shoots. Ind. Crops Prod. 2017, 107, 105–113. [Google Scholar] [CrossRef]
- Moreira, M.M.; Barroso, M.F.; Porto, J.V.; Ramalhosa, M.J.; Švarc-Gajić, J.; Estevinho, L.; Morais, S.; Delerue-Matos, C. Potential of portuguese vine shoot wastes as natural resources of bioactive compounds. Sci. Total Environ. 2018, 634, 831–842. [Google Scholar] [CrossRef] [Green Version]
- Rajha, H.N.; Boussetta, N.; Louka, N.; Maroun, R.G.; Vorobiev, E. A comparative study of physical pretreatments for the extraction of polyphenols and proteins from vine shoots. Food Res. Int. 2014, 65, 462–468. [Google Scholar] [CrossRef]
- Sanchez-Gomez, R.; Zalacain, A.; Alonso, G.L.; Salinas, M.R. Vine-shoot waste aqueous extracts for re-use in agriculture obtained by different extraction techniques: Phenolic, volatile, and mineral compounds. J. Agr. Food Chem. 2014, 62, 10861–10872. [Google Scholar] [CrossRef]
- Karacabey, E.; Mazza, G.; Bayındırlı, L.; Artık, N. Extraction of bioactive compounds from milled grape canes (Vitis vinifera) using a pressurized low-polarity water extractor. Food Bioprocess Tech. 2012, 5, 359–371. [Google Scholar] [CrossRef]
- Delgado-Torre, M.P.; Ferreiro-Vera, C.; Priego-Capote, F.; Perez-Juan, P.M.; Luque de Castro, M.D. Comparison of accelerated methods for the extraction of phenolic compounds from different vine-shoot cultivars. J. Agr. Food Chem. 2012, 60, 3051–3060. [Google Scholar] [CrossRef]
- Jiménez Gómez, S.; Cartagena Causapé, M.C.; Arce Martínez, A. Distribution of nutrients in anaerobic digestion of vine shoots. Bioresour. Technol. 1993, 45, 93–97. [Google Scholar] [CrossRef]
- Tag, A.T.; Duman, G.; Ucar, S.; Yanik, J. Effects of feedstock type and pyrolysis temperature on potential applications of biochar. J. Anal. Appl. Pyrol. 2016, 120, 200–206. [Google Scholar] [CrossRef]
- Dávila, I.; Gullón, B.; Labidi, J.; Gullón, P. Multiproduct biorefinery from vine shoots: Bio-ethanol and lignin production. Renew. Energy 2019, 142, 612–623. [Google Scholar] [CrossRef]
- Fernandes, M.J.; Moreira, M.M.; Paíga, P.; Dias, D.; Bernardo, M.; Carvalho, M.; Lapa, N.; Fonseca, I.; Morais, S.; Figueiredo, S.; et al. Evaluation of the adsorption potential of biochars prepared from forest and agri-food wastes for the removal of fluoxetine. Bioresour. Technol. 2019, 292, 121973. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, L.; Angulo, V.; Ramos, E.; De la Torre, M.J.; Ferrer, J.L. Comparison of various pulping processes for producing pulp from vine shoots. Ind. Crops Prod. 2006, 23, 122–130. [Google Scholar] [CrossRef]
- Gabaston, J.; Leborgne, C.; Valls, J.; Renouf, E.; Richard, T.; Waffo-Teguo, P.; Mérillon, J.-M. Subcritical water extraction of stilbenes from grapevine by-products: A new green chemistry approach. Ind. Crops. Prod. 2018, 126, 272–279. [Google Scholar] [CrossRef]
- Jokić, S.; Gagić, T.; Knez, Ž.; Banožić, M.; Škerget, M. Separation of active compounds from tobacco waste using subcritical water extraction. J. Supercrit. Fluids 2019, 153, 104593. [Google Scholar] [CrossRef]
- Nile, S.H.; Nile, A.; Gansukh, E.; Baskar, V.; Kai, G. Subcritical water extraction of withanosides and withanolides from ashwagandha (Withania somnifera l) and their biological activities. Food Chem. Toxicol. 2019, 132, 110659. [Google Scholar] [CrossRef]
- Lee, J.-H.; Ko, M.-J.; Chung, M.-S. Subcritical water extraction of bioactive components from red ginseng (Panax ginseng c.A. Meyer). J. Supercrit. Fluids 2018, 133, 177–183. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A.J. Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am. J. Enol. Viticult. 1965, 16, 144–158. [Google Scholar]
- Paz, M.; Gúllon, P.; Barroso, M.F.; Carvalho, A.P.; Domingues, V.F.; Gomes, A.M.; Becker, H.; Longhinotti, E.; Delerue-Matos, C. Brazilian fruit pulps as functional foods and additives: Evaluation of bioactive compounds. Food Chem. 2015, 172, 462–468. [Google Scholar] [CrossRef] [Green Version]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (frap) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pistón, M.; Machado, I.; Branco, C.S.; Cesio, V.; Heinzen, H.; Ribeiro, D.; Fernandes, E.; Chisté, R.C.; Freitas, M. Infusion, decoction and hydroalcoholic extracts of leaves from artichoke (Cynara cardunculus l. Subsp. Cardunculus) are effective scavengers of physiologically relevant ROS and RNS. Food Res. Int. 2014, 64, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agr. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef]
- Rodrigues, F.; Palmeira-de-Oliveira, A.; das Neves, J.; Sarmento, B.; Amaral, M.H.; Oliveira, M.B. Medicago spp. extracts as promising ingredients for skin care products. Ind. Crops. Prod. 2013, 49, 634–644. [Google Scholar] [CrossRef]
- Dorosh, O.; Moreira, M.M.; Rodrigues, F.; Peixoto, A.F.; Freire, C.; Morais, S.; Delerue-Matos, C. Vine-canes valorisation: Ultrasound-assisted extraction from lab to pilot scale. Molecules 2020, 25, 1739. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, F.; Santos, J.; Pimentel, F.B.; Braga, N.; Palmeira-de-Oliveira, A.; Oliveira, M.B.P.P. Promising new applications of Castanea sativa shell: Nutritional composition, antioxidant activity, amino acids and vitamin e profile. Food Funct. 2015, 6, 2854–2860. [Google Scholar] [CrossRef] [PubMed]
- Plaza, M.; Amigo-Benavent, M.; del Castillo, M.D.; Ibáñez, E.; Herrero, M. Neoformation of antioxidants in glycation model systems treated under subcritical water extraction conditions. Food Res. Int. 2010, 43, 1123–1129. [Google Scholar] [CrossRef]
- Anastasiadi, M.; Pratsinis, H.; Kletsas, D.; Skaltsounis, A.-L.; Haroutounian, S.A. Grape stem extracts: Polyphenolic content and assessment of their in vitro antioxidant properties. LWT Food Sci. Technol. 2012, 48, 316–322. [Google Scholar] [CrossRef]
- Nunes, M.A.; Rodrigues, F.; Oliveira, M.B.P.P. Chapter 11—Grape processing by-products as active ingredients for cosmetic proposes. In Handbook of Grape Processing by-Products, 1st ed.; Galanakis, C., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 267–292. [Google Scholar]
- Farhadi, K.; Esmaeilzadeh, F.; Hatami, M.; Forough, M.; Molaie, R. Determination of phenolic compounds content and antioxidant activity in skin, pulp, seed, cane and leaf of five native grape cultivars in west azerbaijan province, iran. Food Chem. 2016, 199, 847–855. [Google Scholar] [CrossRef]
- Barros, A.; Gironés-Vilaplana, A.; Teixeira, A.; Collado-González, J.; Moreno, D.A.; Gil-Izquierdo, A.; Rosa, E.; Domínguez-Perles, R. Evaluation of grape (Vitis vinifera L.) stems from portuguese varieties as a resource of (poly)phenolic compounds: A comparative study. Food Res. Int. 2014, 65, 375–384. [Google Scholar] [CrossRef]
- Wada, M.; Kido, H.; Ohyama, K.; Ichibangase, T.; Kishikawa, N.; Ohba, Y.; Nakashima, M.N.; Kuroda, N.; Nakashima, K. Chemiluminescent screening of quenching effects of natural colorants against reactive oxygen species: Evaluation of grape seed, monascus, gardenia and red radish extracts as multi-functional food additives. Food Chem. 2007, 101, 980–986. [Google Scholar] [CrossRef]
- Almeida, D.; Pinto, D.; Santos, J.; Vinha, A.F.; Palmeira, J.; Ferreira, H.N.; Rodrigues, F.; Oliveira, M.B.P.P. Hardy kiwifruit leaves (Actinidia arguta): An extraordinary source of value-added compounds for food industry. Food Chem. 2018, 259, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Pinto, D.; Diaz Franco, S.; Silva, A.M.; Cupara, S.; Koskovac, M.; Kojicic, K.; Soares, S.; Rodrigues, F.; Sut, S.; Dall’Acqua, S.; et al. Chemical characterization and bioactive properties of a coffee-like beverage prepared from Quercus cerris kernels. Food Funct. 2019, 10, 2050–2060. [Google Scholar] [CrossRef] [PubMed]
- Tournour, H.H.; Segundo, M.A.; Magalhães, L.M.; Barreiros, L.; Queiroz, J.; Cunha, L.M. Valorization of grape pomace: Extraction of bioactive phenolics with antioxidant properties. Ind. Crops Prod. 2015, 74, 397–406. [Google Scholar] [CrossRef]
- Manca, M.L.; Firoznezhad, M.; Caddeo, C.; Marongiu, F.; Escribano-Ferrer, E.; Sarais, G.; Peris, J.E.; Usach, I.; Zaru, M.; Manconi, M.; et al. Phytocomplexes extracted from grape seeds and stalks delivered in phospholipid vesicles tailored for the treatment of skin damages. Ind. Crops. Prod. 2019, 128, 471–478. [Google Scholar] [CrossRef]
Temp. (°C) | TPC (mg GAE/g dw) | TFC (mg EE/g dw) | DPPH-RSA (mg TE/g dw) | FRAP (mg AAE/g dw) | ||||
---|---|---|---|---|---|---|---|---|
TN | TR | TN | TR | TN | TR | TN | TR | |
125 | 47 ± 7 | 55 ± 2 # | 17 ± 2 | 20 ± 1 # | 51 ± 9 | 56 ± 2 # | 46 ± 7 | 53 ± 2 # |
250 | 165 ± 8 * | 181 ± 12 *,# | 46 ± 3 * | 51 ± 6*,# | 202 ± 22* | 203 ± 22* | 186 ± 21 * | 202 ± 14 * |
Compound | TN | TR | ||
---|---|---|---|---|
125 °C | 250 °C | 125 °C | 250 °C | |
Phenolic acids | ||||
Gallic acid | 60.1 ± 3.0 | 891 ± 45 | 74.2 ± 3.7 | 1066 ± 53 |
Protocatechuic acid | 33.8 ± 1.7 | 14.5 ± 0.7 | 33.4 ± 1.7 | 21.2 ± 1.1 |
4-hydroxyphenilacetic acid | 16.8 ± 0.8 | 62.6 ± 3.1 | 49.2 ± 2.5 | 134 ± 7 |
4-hydroxybenzoic acid | 9.2 ± 0.5 | 22.6 ± 1.1 | 8.4 ± 0.4 | 44.9 ± 2.2 |
4-hydroxybenzaldehyde | 4.9 ± 0.2 | 7.5 ± 0.4 | 4.7 ± 0.2 | 9.8 ± 0.5 |
Chlorogenic acid | 6.2 ± 0.3 | 23.2 ± 1.2 | 7.4 ± 0.4 | 44.3 ± 2.2 |
Vanillic acid | 15.0 ± 0.7 | 15.6 ± 0.8 | 13.5 ± 0.7 | 31.6 ± 1.6 |
Caffeic acid | 14.9 ± 0.7 | 13.6 ± 0.7 | 14.4 ± 0.7 | 19.6 ± 1.0 |
Syringic acid | ND a | 37.9 ± 1.9 | <LOD b | 65.6 ± 3.3 |
p-coumaric acid | 17.2 ± 0.9 | 16.0 ± 0.8 | 22.9 ± 1.1 | 21.7 ± 1.1 |
Ferulic acid | 21.9 ± 1.1 | 18.9 ± 0.9 | 24.5 ± 1.2 | 19.6 ± 1.0 |
Sinapic acid | 17.1 ± 0.9 | 14.4 ± 0.7 | 22.0 ± 1.0 | 12.2 ± 0.6 |
Cinnamic acid | 11.1 ± 0.6 | 8.1 ± 0.4 | 12.2 ± 0.6 | 11.1 ± 0.5 |
∑Phenolic acids | 228 ± 11 | 1145 ± 57 | 286 ± 14 | 1502 ± 75 |
Flavanols | ||||
(+)-Catechin | 102 ± 5 | 181 ± 9 | 245 ± 12 | 216 ± 11 |
(-)-Epicatechin | 3.9 ± 0.2 | 3.1 ± 0.2 | 17.2 ± 0.9 | 14.6 ± 0.7 |
∑Flavanols | 106 ± 5 | 184 ± 9 | 262 ± 13 | 231 ± 12 |
Flavanones | ||||
Naringin | <LOD | 8.6 ± 0.4 | <LOD | 14.7 ± 0.7 |
Naringenin | 4.5 ± 0.2 | 2.4 ± 0.1 | 6.1 ± 0.3 | 3.3 ± 0.2 |
∑Flavanones | 4.5 ± 0.2 | 11.0 ± 0.6 | 6.1 ± 0.3 | 18.0 ± 0.9 |
Flavonols | ||||
Rutin | 3.1 ± 0.2 | 9.2 ± 0.5 | 1.4 ± 0.1 | 15.4 ± 0.8 |
Quercetin-3-O-glucopyranoside | 4.4 ± 0.2 | 5.2 ± 0.3 | 4.1 ± 0.2 | 10.7 ± 0.5 |
Myricetin | 84.3 ± 4.2 | 14.6 ± 0.7 | 86.4 ± 4.3 | 16.2 ± 0.8 |
Kaempferol-3-O-glucoside | 9.4 ± 0.5 | ND | 10.1 ± 0.5 | 8.6 ± 0.4 |
Kaempferol-3-O-rutinoside | 4.3 ± 0.2 | 2.3 ± 0.1 | 4.7 ± 0.2 | 7.0 ± 0.4 |
Quercetin | 40.9 ± 2.0 | 24.9 ± 1.2 | 40.7 ± 2.0 | 30.8 ± 1.5 |
Kaempferol | 34.6 ± 1.7 | 23.2 ± 1.2 | 41.6 ± 2.1 | 24.2 ± 1.2 |
∑Flavonols | 181 ± 9 | 79.4 ± 4.0 | 189 ± 9 | 113 ± 6 |
Stilbenes | ||||
Resveratrol | 8.0 ± 0.4 | 15.8 ± 0.8 | 10.5 ± 0.5 | 13.1 ± 0.7 |
∑Stilbenes | 8.0 ± 0.4 | 15.8 ± 0.8 | 10.5 ± 0.5 | 13.1 ± 0.7 |
Others | ||||
Phloridzin | <LOD | 3.7 ± 0.2 | <LOD | 8.0 ± 0.4 |
Phloretin | ND | <LOD | <LOD | <LOD |
∑Others | 0.0 ± 0.0 | 3.7 ± 0.2 | 0.0 ± 0.0 | 8.0 ± 0.4 |
∑All phenolic compounds | 527 | 1440 | 755 | 1884 |
Reactive Species | O2●- | HOCl | ROO● |
---|---|---|---|
IC50 (µg/mL) | Ssample/STrolox a | ||
TR sample | 83.67 ± 5.84 | 33.94 ± 2.95 | 0.024 ± 0.001 |
Gallic acid | 5.18 ± 0.19 | 1.25 ± 0.05 | 1.119 ± 0.005 |
Catechin | 48.99 ± 0.75 | 0.18 ± 0.01 | 7.592 ± 0.074 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorosh, O.; Moreira, M.M.; Pinto, D.; F. Peixoto, A.; Freire, C.; Costa, P.; Rodrigues, F.; Delerue-Matos, C. Evaluation of the Extraction Temperature Influence on Polyphenolic Profiles of Vine-Canes (Vitis vinifera) Subcritical Water Extracts. Foods 2020, 9, 872. https://doi.org/10.3390/foods9070872
Dorosh O, Moreira MM, Pinto D, F. Peixoto A, Freire C, Costa P, Rodrigues F, Delerue-Matos C. Evaluation of the Extraction Temperature Influence on Polyphenolic Profiles of Vine-Canes (Vitis vinifera) Subcritical Water Extracts. Foods. 2020; 9(7):872. https://doi.org/10.3390/foods9070872
Chicago/Turabian StyleDorosh, Olena, Manuela M. Moreira, Diana Pinto, Andreia F. Peixoto, Cristina Freire, Paulo Costa, Francisca Rodrigues, and Cristina Delerue-Matos. 2020. "Evaluation of the Extraction Temperature Influence on Polyphenolic Profiles of Vine-Canes (Vitis vinifera) Subcritical Water Extracts" Foods 9, no. 7: 872. https://doi.org/10.3390/foods9070872
APA StyleDorosh, O., Moreira, M. M., Pinto, D., F. Peixoto, A., Freire, C., Costa, P., Rodrigues, F., & Delerue-Matos, C. (2020). Evaluation of the Extraction Temperature Influence on Polyphenolic Profiles of Vine-Canes (Vitis vinifera) Subcritical Water Extracts. Foods, 9(7), 872. https://doi.org/10.3390/foods9070872