Development and Validation of a Real-Time PCR Based Assay to Detect Adulteration with Corn in Commercial Turmeric Powder Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant and Food Sample Preparation
2.1.1. Reference Binary Mixtures
2.1.2. Blind Samples
2.2. DNA Extraction
2.3. Sequence Analysis and Primer Design
2.4. Quantitative Real-Time PCR
2.5. Cloning of PCR Amplicons and Sequencing
2.6. Standard Curve Construction and Data Analysis
3. Results and Discussion
3.1. Design of Species-Specific Primers
3.2. Amplification Efficiency of the Designed Primer Sets
3.3. Sensitivity and Specificity of the Assay
3.4. Application of the Developed Real-Time PCR Assay to Blind Samples
3.5. Application of the Developed Assay in Commercial Products
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Priyadarsini, K.I. The chemistry of curcumin: From extraction to therapeutic agent. Molecules 2014, 19, 20091–20112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curcumin Market Size, Share & Trends Analysis Report by Application (Pharmaceutical, Food, Cosmetics), by Region (North America, Europe, Asia Pacific, Central & South America, Middle East & Africa), and Segment Forecasts, 2020–2027. Available online: https://www.grandviewresearch.com/industry-analysis/turmeric-extract-curcumin-market (accessed on 26 April 2020).
- Aggarwal, B.B.; Kumar, A.; Bharti, A.C. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res. 2003, 23, 363–398. [Google Scholar]
- Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic Roles of Curcumin: Lessons Learned from Clinical Trials. AAPS J. 2013, 15, 195–218. [Google Scholar] [CrossRef] [Green Version]
- Panahi, Y.; Hosseini, M.S.; Khalili, N.; Naimi, E.; Simental-Mendia, L.E.; Majeed, M.; Sahebkar, A. Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: A post-hoc analysis of a randomized controlled trial. Biomed Pharmacother. 2016, 82, 578–582. [Google Scholar] [CrossRef] [PubMed]
- Kuptniratsaikul, V.; Dajpratham, P.; Taechaarpornkul, W.; Buntragulpoontawee, M.; Lukkanapichonchut, P.; Chootip, C.; Saengsuwan, J.; Tantayakom, K.; Laongpech, S. Efficacy and safety of Curcuma domestica extracts compared with ibuprofen in patients with knee osteoarthritis: A multicenter study. Clin. Interv. Aging 2014, 9, 451–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzolani, F.; Togni, S. Oral administration of a curcumin-phospholipid delivery system for the treatment of central serous chorioretinopathy: A 12-month follow-up study. Clin. Ophthalmol. 2013, 7, 939–945. [Google Scholar]
- Smith, T.; Kawa, K.; Eckl, V.; Morton, C.; Stredney, R. Herbal supplement sales in US increase 7.7% in 2016. HerbalGram 2017, 115, 56–65. [Google Scholar]
- Pina, P. The Rise of Functional Foods. Think with Google Website. April 2016. Available online: www.thinkwithgoogle.com/consumer-insights/2016-food-trends-google/ (accessed on 19 July 2017).
- Food Trends 2016. Available online: https://think.storage.googleapis.com/docs/FoodTrends-2016.pdf (accessed on 19 July 2017).
- Turmeric Jumps from the Spice Rack to the Coffee Cup at Peet’s. Forbes. Available online: www.forbes.com/sites/michelinemaynard/ (accessed on 3 July 2018).
- Balakrishnan, K.V. Postharvest technology and processing of turmeric. In Turmeric: The Genus Curcuma; Ravindran, P.V., Nirmal Babu, K., Sivaraman, K., Eds.; CRC Press: Boca Raton, FL, USA, 2007; Volume 45, pp. 193–256. [Google Scholar]
- Johnson, R. Food Fraud and “Economically Motivated Adulteration” of Food and Food Ingredients, Report, January 10, 2014; Washington DC. Available online: https://digital.library.unt.edu/ark:/67531/metadc276904/ (accessed on 27 May 2020).
- Hong, E.Y.; Lee, S.Y.; Jeong, J.Y.; Park, J.M.; Kim, B.H.; Kwon, K.S.; Chun, H.S. Modern analytical methods for the detection of food fraud and adulteration by food category. J. Sci. Food Agric. 2017, 97, 3877–3896. [Google Scholar] [CrossRef]
- Kane, D.E.; Hellberg, R.S. Identification of species in ground meat products sold on the US commercial market using DNA-based methods. Food Control 2016, 59, 158–163. [Google Scholar] [CrossRef]
- An, J.; Moon, J.C.; Jang, C.S. Markers for distinguishing Orostachys species by SYBR Green-based real-time PCR and verification of their application in commercial O. japonica food products. Appl. Biol. Chem. 2018, 61, 499–508. [Google Scholar] [CrossRef] [Green Version]
- Arya, M.; Shergill, I.S.; Williamson, M.; Gommersall, L.; Arya, N.; Patel, H.R. Basic principles of real-time quantitative PCR. Expert Rev. Mol. Diagn. 2005, 5, 209–219. [Google Scholar] [CrossRef] [PubMed]
- López-Calleja, I.; González, I.; Fajardo, V.; Martín, I.; Hernández, P.; García, T.; Martin, R. Real-time TaqMan PCR for quantitative detection of cows’ milk in ewes’ milk mixtures. Int. Dairy J. 2007, 17, 729–736. [Google Scholar] [CrossRef]
- Ergün, Ş.; Ahmet, K. Practical Molecular Detection Method of Beef and Pork in Meat and Meat Products by Intercalating Dye Based Duplex Real-Time Polimerase Chain Reaction. Int. J. Food Prop. 2016, 19, 31–40. [Google Scholar] [CrossRef]
- Muhammad, S.; Yasmeen, J. Development and validation of fast duplex real-time PCR assays based on SYBER Green florescence for detection of bovine and poultry origins in feedstuffs. Food Chem. 2015, 173, 660–664. [Google Scholar] [CrossRef]
- Chase, M.W.; Cowan, R.S.; Hollingsworth, P.M.; van den Berg, C.; Madriñán, S.; Petersen, G.; Seberg, O.; Jorgsensen, T.; Cameron, K.M.; Carine, M.A.; et al. A proposal for a standardized protocol to barcode all land plants. Taxon 2007, 56, 295–299. [Google Scholar] [CrossRef]
- Vijayan, K.; Tsou, C.H. DNA Barcoding in Plants: Taxonomy in a New Perspective. Curr. Sci. 2010, 99, 1530–1541. [Google Scholar]
- Daniell, H.; Lin, C.S.; Yu, M.; Chang, M.J. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biol. 2016, 17, 134. [Google Scholar] [CrossRef] [Green Version]
- Garino, C.; De Paolis, A.; Coisson, J.D.; Bianchi, D.M.; Decastelli, L.; Arlorio, M. Sensitive and specific detection of pine nut (Pinus spp.) by real-time PCR in complex food products. Food Chem. 2016, 194, 980–985. [Google Scholar] [CrossRef]
- Hollingsworth, P.M.; Forrest, L.L.; Spouge, J.L.; Hajibabaei, M.; Ratnasingham, S.; van der Bank, M.; Chase, M.W.; Cowan, R.S.; Erickson, D.L.; CBOL Plant Working Group; et al. A DNA barcode for land plants. Proc. Natl. Acad. Sci. USA 2009, 106, 12794–12797. [Google Scholar] [CrossRef] [Green Version]
- Caroline, P.L.; Anne, C.E. Development and Evaluation of a Real-Time PCR Multiplex Assay for the Detection of Allergenic Peanut Using Chloroplast DNA Markers. J. Agric. Food Chem. 2018, 66, 8623–8629. [Google Scholar] [CrossRef]
- Sasikumar, B.; Remya, R.; John Zachariah, T. PCR Based Detection of Adulteration in the Market Samples of Turmeric Powder. Food Biotechnol. 2004, 18, 299–306. [Google Scholar] [CrossRef]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; Vandesompele, J.; et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [Green Version]
- ENGL (European Network of GMO Laboratories). Definition of Minimum Performance Requirements for Analytical Methods of GMO Testing. Available online: http://gmo-crl.irc.ec.ecrl.jrc.ec.europa.eu/doc/MPR%20Report%20Application%2020_10_2015.pdf (accessed on 20 October 2015).
- Yuan, J.S.; Reed, A.; Chen, F.; Stewart, C.N. Statistical analysis of real-time PCR data. BMC Bioinform. 2006, 7, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, Y.; Shaw, P. DNA-based techniques for authentication of processed food and food supplements. Food Chem. 2018, 240, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Allmann, M.; Candrian, U.; Höfelein, C.; Lüthy, J. Polymerase chain reaction (PCR): A possible alternative to immunochemical methods assuring safety and quality of food Detection of wheat contamination in non-wheat food products. Z. Lebensm. Unters. Forch. 1993, 196, 248–251. [Google Scholar] [CrossRef] [PubMed]
Target Species | Target Gene | Primer | Length (bp) | Sequence (5′→3′) | Size (bp) | Tm (°C) |
---|---|---|---|---|---|---|
All plants | 18s rRNA region | 18s rRNA_F | 25 | TCTGCCCTATCAACTTTCGATGGTA | 137 | 58 |
18s rRNA_R | 25 | AATTTGCGCGCCTGCTGCCTTCCTT | ||||
Curcuma longa | matK | CL_matK_F | 19 | CAATCCTATATGGTTGAGA | 171 | 55 |
CL_matK_R | 18 | GTCAGAAGACTCTATGGA | ||||
atpF | CL_atpF_F | 20 | GCATTATTGGTTGATAGAGA | 194 | 58 | |
CL_atpF_R | 22 | GTTTATTTCAAGAATAGGATGG | ||||
ycf2 | CL_ycf2_F | 20 | GAAGAAGAGGAAGAGGACAT | 80 | 60 | |
CL_ycf2_R | 20 | CATATTCTAGGAGCCCAAAC | ||||
Zea mays | matK | ZM_matK_F | 19 | TTGATATCGAACATAATGC | 135 | 55 |
ZM_matK_R | 16 | ACATCTTCTGGAACCT | ||||
atpF | ZM_atpF_F | 19 | TGGAAGCAGATGAGTATCG | 160 | 60 | |
ZM_atpF_R | 18 | TGTTGTCGGACCTGATTC | ||||
ycf2 | ZM_ycf2_F | 20 | AAGAGGATGAGTTGTCAGAG | 99 | 59 | |
ZM_ycf2_R | 18 | GCAAGAAGTCCGAATCAG |
NO | Species | Plant Systems | Curcuma longa | Zea mays | |||||
---|---|---|---|---|---|---|---|---|---|
18s rRNA | CL_matK | Cl_atpF | CL_ycf2 | ZM_matK | ZM_atpF | ZM_ycf2 | |||
28 a (Cycles) | 28 (Cycles) | 29 (Cycles) | 28 (Cycles) | 29 (Cycles) | 28 (Cycles) | ||||
1 | Curcuma longa (Turmeric) | + | + b | + | + | - | - | - | |
2 | Hodeum vulgare (Barley) | + | - c | - | - | - | - | - | |
3 | Avena sativa (Oats) | + | - | - | - | - | - | - | |
4 | Triticum aestivum (Wheat) | + | - | - | - | - | - | - | |
5 | Zea mays (Corn) | + | - | - | - | + | + | + | |
6 | Oryza sativa (Rice) | + | - | - | - | - | - | - | |
7 | Brassica oleracea var. capitate (Cabbage) | + | - | - | - | - | - | - | |
8 | Ipomoea batatas (Sweat potato) | + | - | - | - | - | - | - | |
9 | Arachis hypogaea (Peanuts) | + | - | - | - | - | - | - | |
10 | Manihot esculenta (Cassava) | + | - | - | - | - | - | - |
No. | Ingredient | PACa | Eb (%) | Z. mays Specific Primer Ct ± SD | A/D | |||
---|---|---|---|---|---|---|---|---|
C. longa (%) | Z. mays (%) | ZM_matK | ZM_atpF | ZM_ycf2 | ||||
1 | 99 | 1 | 13.57 ± 0.04 | 0.5–1.5 | 25.02 ± 0.06 | 25.61 ± 0.20 | 26.44 ± 0.21 | Ad |
2 | 98 | 2 | 14.73 ± 0.09 | 1–5 | 25.09 ± 0.02 | 24.78 ± 0.12 | 22.8 ± 0.18 | A |
3 | 100 | 0 | 14.03 ± 0.01 | NDc | 31.51 ± 0.15 | 31.32 ± 0.26 | 35.15 ± 0.05 | A |
4 | 98 | 2 | 14.31 ± 0.01 | 1–5 | 24.40 ± 0.01 | 24.75 ± 0.15 | 23.92 ± 0.09 | A |
5 | 95 | 5 | 14.05 ± 0.01 | 1–5 | 23.72 ± 0.09 | 24.34 ± 0.09 | 21.94 ± 0.22 | A |
6 | 97 | 3 | 14.11 ± 0.06 | 1–5 | 23.45 ± 0.05 | 24.90 ± 0.07 | 22.97 ± 0.25 | A |
7 | 99.5 | 0.5 | 14.21 ± 0.02 | 0.5–1.5 | 25.09 ± 0.05 | 26.95 ± 0.07 | 26.34 ± 0.15 | A |
8 | 98.5 | 1.5 | 14.12 ± 0.05 | 0.5–1.5 | 25.59 ± 0.03 | 26.32 ± 0.10 | 24.69 ± 0.19 | A |
9 | 100 | 0 | 14.33 ± 0.08 | ND | 31.67 ± 0.20 | 31.01 ± 0.80 | 34.89 ± 0.10 | A |
10 | 98.5 | 1.5 | 14.23 ± 0.03 | 0.3–2 | 25.13 ± 0.09 | 25.69 ± 0.10 | 24.21 ± 0.02 | A |
11 | 99.5 | 0.5 | 14.27 ± 0.01 | 0.1–1 | 26.06 ± 0.09 | 27.08 ± 0.10 | 26.19 ± 0.09 | A |
12 | 100 | 0 | 13.61 ± 0.12 | ND | 31.33 ± 0.28 | 30.98 ± 0.11 | 34.46 ± 0.26 | A |
13 | 97 | 3 | 14.31 ± 0.10 | 1–5 | 24.97 ± 0.09 | 24.37 ± 0.07 | 23.86 ± 0.13 | A |
14 | 98 | 2 | 13.22 ± 0.07 | 1–5 | 24.19 ± 0.09 | 26.14 ± 0.12 | 23.22 ± 0.09 | A |
15 | 96 | 4 | 13.33 ± 0.06 | 1–5 | 23.92 ± 0.15 | 24.26 ± 0.03 | 22.72 ± 0.27 | A |
16 | 99 | 1 | 14.26 ± 0.05 | 0.1–1 | 25.75 ± 0.10 | 26.75 ± 0.14 | 25.11 ± 0.10 | A |
17 | 93 | 7 | 13.95 ± 0.07 | 5–10 | 22.11 ± 0.11 | 23.99 ± 0.13 | 21.72 ± 0.11 | A |
18 | 90 | 10 | 13.74 ± 0.02 | 10–15 | 22.11 ± 0.10 | 21.99 ± 0.18 | 21.23 ± 0.13 | A |
19 | 100 | 0 | 16.21 ± 0.07 | ND | 30.82 ± 0.20 | 31.09 ± 0.01 | 34.06 ± 0.56 | A |
20 | 97 | 3 | 13.27 ± 0.1 | 1–5 | 23.96 ± 0.05 | 24.28 ± 0.10 | 23.22 ± 0.12 | A |
Real Commercial Products Tested that Labeled as 100% Curcuma longa | |||||||
---|---|---|---|---|---|---|---|
Sample Number | Plant System (18s rRNA) | CL_matK | CL_atpF | CL_ycf2 | ZM_matK | ZM_atpF | ZM_ycf2 |
1 | 14.49 | 14.83 | 14.10 | 14.24 | NDa | 34.00 | ND |
±0.15 | ±0.13 | ±0.17 | ±0.14 | ±0.07 | |||
2 | 15.23 | 15.27 | 15.70 | 14.50 | 38.26 | 33.59 | ND |
±0.06 | ±0.18 | ±0.09 | ±0.08 | ±1.1 | ±2.01 | ||
3 | 19.82 | 22.62 | 22.65 | 20.16 | 36.28 | 32.32 | 34.79 |
±0.08 | ±0.27 | ±0.04 | ±0.06 | ±0.61 | ±0.54 | ±0.47 | |
4 | 15.25 | 15.95 | 16.33 | 15.25 | 33.60 | 30.05 | 34.35 |
±0.06 | ±0.07 | ±0.03 | ±0.14 | ±0.20 | ±0.07 | ±0.21 | |
5 | 14.01 | 15.29 | 15.46 | 15.29 | 31.53 | 31.41 | ND |
±0.05 | ±0.07 | ±0.01 | ±0.07 | ±0.54 | ±0.56 | ||
6 | 19.19 | 17.68 | 21.97 | 15.28 | 32.34 | 31.14 | ND |
±0.03 | ±0.12 | ±0.04 | ±0.04 | ±0.76 | ±0.14 | ||
7 | 16.44 | 16.10 | 16.39 | 14.90 | 34.89 | 34.57 | ND |
±0.18 | ±0.03 | ±0.03 | ±0.09 | ±0.35 | ±0.65 | ||
8 | 18.87 | 15.35 | 20.24 | 14.10 | 32.82 | 34.55 | ND |
±0.08 | ±0.02 | ±0.12 | ±0.02 | ±0.33 | ±0.95 | ||
9 | 15.31 | 14.63 | 15.15 | 13.26 | 31.05 | 34.00 | ND |
±0.09 | ±0.08 | ±0.06 | ±0.02 | ±4.55 | ±0.08 | ||
10 | 16.10 | 15.84 | 16.57 | 14.95 | 32.02 | 30.23 | 33.77 |
±0.01 | ±0.03 | ±0.02 | ±0.06 | ±0.24 | ±0.06 | ±0.92 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, S.H.; Jang, C.S. Development and Validation of a Real-Time PCR Based Assay to Detect Adulteration with Corn in Commercial Turmeric Powder Products. Foods 2020, 9, 882. https://doi.org/10.3390/foods9070882
Oh SH, Jang CS. Development and Validation of a Real-Time PCR Based Assay to Detect Adulteration with Corn in Commercial Turmeric Powder Products. Foods. 2020; 9(7):882. https://doi.org/10.3390/foods9070882
Chicago/Turabian StyleOh, Su Hong, and Cheol Seong Jang. 2020. "Development and Validation of a Real-Time PCR Based Assay to Detect Adulteration with Corn in Commercial Turmeric Powder Products" Foods 9, no. 7: 882. https://doi.org/10.3390/foods9070882
APA StyleOh, S. H., & Jang, C. S. (2020). Development and Validation of a Real-Time PCR Based Assay to Detect Adulteration with Corn in Commercial Turmeric Powder Products. Foods, 9(7), 882. https://doi.org/10.3390/foods9070882