Influence of Selected Product and Process Parameters on Microstructure, Rheological, and Textural Properties of 3D Printed Cookies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Dough Preparation
2.3. 3D Food Printing
2.4. Rheological Analysis
2.5. Micro CT Analysis
2.6. Texture Analysis
2.7. Data Analysis
3. Results and Discussion
3.1. Effect of Fill Density, Temperature, and Water Butter Ratio on the Printed Cookie Dough Rheology
3.2. Effect of Fill Density on the Microscopic Structure of Cookies
3.3. Effect of Fill Density, Temperature, and Water Butter Ratio on Hardness
3.4. Effect of Fill Density on the Time of Baking
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Adolescent Nutrition: A Review of the Situation in Selected South-East Asian Countries; WHO South-East Asia: New Delhi, India, 2006.
- Cohen, D.L.; Lipton, J.I.; Cutler, M.; Coulter, D.; Vesco, A.; Lipson, H. Hydrocolloid printing: A novel platform for customized food production. In Proceedings of the 20th Annual International Solid Freeform Fabrication Symposium, SFF 2009, Austin, TX, USA, 3–5 August 2009; Volume 17, pp. 10212–10290. [Google Scholar]
- Noort, M.; Van Bommel, K.; Renzetti, S. 3D-printed cereal foods. Cereal Foods World 2017, 62, 222–227. [Google Scholar] [CrossRef]
- Fernandez-Vicente, M.; Calle, W.; Ferrandiz, S.; Conejero, A. Effect of Infill Parameters on Tensile Mechanical Behavior in Desktop 3D Printing. 3D Print. Addit. Manuf. 2016, 3, 183–192. [Google Scholar] [CrossRef]
- Pérez, B.; Nykvist, H.; Brøgger, A.F.; Larsen, M.B.; Falkeborg, M.F. Impact of macronutrients printability and 3D-printer parameters on 3D-food printing: A review. Food Chem. 2019, 287, 257–259. [Google Scholar] [CrossRef] [PubMed]
- Pulatsu, E.T.; Su, J.-W.; Lin, J.; Lin, M. Factors affecting 3D printing and post-processing capacity of cookie dough. Innov. Food Sci. Emerg. Technol. 2020, 61, 102316. [Google Scholar] [CrossRef]
- Derossi, A.; Caporizzi, R.; Ricci, I.; Severini, C. Critical Variables in 3D Food Printing; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128145647. [Google Scholar]
- Azam, R.S.M.M.; Zhang, M.; Bhandari, B.; Yang, C. Effect of Different Gums on Features of 3D Printed Object Based on Vitamin-D Enriched Orange Concentrate. Food Biophys. 2018, 13, 1–13. [Google Scholar] [CrossRef]
- Gholamipour-Shirazi, A.; Kamlow, M.A.; Norton, I.T.; Mills, T. How to formulate for structure and texture via medium of additive manufacturing-a review. Foods 2020, 9, 497. [Google Scholar] [CrossRef] [Green Version]
- Chandra, D.; Chandra, S.; Pallavi, A.; Sharma, A.K. Review of Finger millet (Eleusine coracana (L.) Gaertn): A power house of health benefiting nutrients. Food Sci. Hum. Wellness 2016, 5, 149–155. [Google Scholar] [CrossRef] [Green Version]
- Roy Chowdhury, A.; Bhattacharyya, A.K.; Chattopadhyay, P. Study on functional properties of raw and blended jackfruit seed flour (a non-conventional source) for food application. Indian J. Nat. Prod. Resour. 2012, 3, 347–353. [Google Scholar]
- Devisetti, R.; Ravi, R.; Bhattacharya, S. Effect of Hydrocolloids on Quality of Proso Millet Cookie. Food Bioprocess. Technol. 2015, 8. [Google Scholar] [CrossRef]
- Eke-Ejiofor, J.; Beleya, E.A.; Onyenorah, N.I. The Effect of Processing Methods on the Functional and Compositional Properties of Jackfruit Seed Flour. Int. J. Nutr. Food Sci. 2014, 3, 167–173. [Google Scholar]
- Malleshi, N.G.; Desikachar, H.S.R. Nutritive value of malted millet flours. Qual. Plant. Plant Foods Hum. Nutr. 1986, 36, 191–196. [Google Scholar] [CrossRef]
- Zhang, L.; Lou, Y.; Schutyser, M.A.I. 3D printing of cereal-based food structures containing probiotics. Food Struct. 2018, 18, 14–22. [Google Scholar] [CrossRef]
- Wierzbicki, T.; El-Bialy, T.; Aldaghree, S.; Li, G.; Doschak, M. Analysis of orthodontically induced root resorption using micro-computed tomography (Micro-CT). Angle Orthod. 2009, 79, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Adeeb, S.; Doschak, M.R. Using micro-CT derived bone microarchitecture to analyze bone stiffness-A case study on osteoporosis rat bone. Front. Endocrinol. (Lausanne) 2015, 6, 80. [Google Scholar] [CrossRef] [Green Version]
- Mudgil, D.; Barak, S.; Khatkar, B.S. Cookie texture, spread ratio and sensory acceptability of cookies as a function of soluble dietary fiber, baking time and different water levels. LWT-Food Sci. Technol. 2017, 80, 537–542. [Google Scholar] [CrossRef]
- Kim, H.W.; Lee, I.J.; Park, S.M.; Lee, J.H.; Nguyen, M.H.; Park, H.J. Effect of hydrocolloid addition on dimensional stability in post-processing of 3D printable cookie dough. LWT 2019, 101, 69–75. [Google Scholar] [CrossRef]
- Martínez-Monzó, J.; Cárdenas, J.; García-Segovia, P. Effect of Temperature on 3D Printing of Commercial Potato Puree. Food Biophys. 2019, 14, 225–234. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, M.; Prakash, S.; Liu, Y. Physical properties of 3D printed baking dough as affected by different compositions. Innov. Food Sci. Emerg. Technol. 2018, 49, 202–210. [Google Scholar] [CrossRef]
- De Almeida, M.M.C.; Francisco, C.R.L.; de Oliveira, A.; de Campos, S.S.; Bilck, A.P.; Fuchs, R.H.B.; Gonçalves, O.H.; Velderrama, P.; Genena, A.K.; Leimann, F.V. Textural, Color, Hygroscopic, Lipid Oxidation, and Sensory Properties of Cookies Containing Free and Microencapsulated Chia Oil. Food Bioprocess Technol. 2018, 11, 926–939. [Google Scholar] [CrossRef]
- Demirkesen, I. Formulation of Chestnut Cookies and their Rheological and Quality Characteristics. J. Food Qual. 2016, 39, 264–273. [Google Scholar] [CrossRef]
- Dick, A.; Bhandari, B.; Prakash, S. Post-Processing feasibility of composite-layer 3D printed beef. Meat Sci. 2019, 153, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Singh, N. Relationship of polymeric proteins and empirical dough rheology with dynamic rheology of dough and gluten from different wheat varieties. Food Hydrocoll. 2013, 33, 342–348. [Google Scholar] [CrossRef]
- Mastromatteo, M.; Guida, M.; Danza, A.; Laverse, J.; Frisullo, P.; Lampignano, V.; Alessandro Del Nobile, M. Rheological, microstructural and sensorial properties of durum wheat bread as affected by dough water content. Food Res. Int. 2013, 51, 458–466. [Google Scholar] [CrossRef]
- Yang, W.H.; Rao, M.A. Complex viscosity-Temperature master curve of cornstarch dispersion during gelatinization. J. Food Process Eng. 1998, 21, 191–207. [Google Scholar] [CrossRef]
- Ukwuoma, O.; Ademodi, B. The effects of temperature and shear rate on the apparent viscosity of Nigerian oil sand bitumen. Fuel Process. Technol. 1999, 2, 95–101. [Google Scholar] [CrossRef]
- Weipert, D. The benefits of basic rheometry in studying dough rheology. Cereal Chem. 1990, 67, 311–317. [Google Scholar]
- Bloksma, A.H. The effect of temperature on dough viscosity, and its consequence for the control of dough temperature. J. Food Eng. 1985, 4, 205–227. [Google Scholar] [CrossRef]
- Wang, Z.; Herremans, E.; Janssen, S.; Cantre, D.; Verboven, P.; Nicolaï, B. Visualizing 3D Food Microstructure Using Tomographic Methods: Advantages and Disadvantages. Annu. Rev. Food Sci. Technol. 2018, 9, 329–343. [Google Scholar] [CrossRef]
- Syamaladevi, R.M.; Manahiloh, K.N.; Muhunthan, B.; Sablani, S.S. Understanding the Influence of State/Phase Transitions on Ice Recrystallization in Atlantic Salmon (Salmo salar) During Frozen Storage. Food Biophysics 2012, 7, 57–71. [Google Scholar] [CrossRef]
- Bongaers, E.; Van Den Bosch, R. Micro-Computed tomography, a 3D tool for non-destructive visualisation and analysis. In Proceedings of the 1st International Conference on 3D Materials Science, Cham, Switzerland, 8–12 July 2012; pp. 227–232. [Google Scholar]
- Czernhorsky, J.H.; Hooker, R. The chemistry of baking. Vi-Food-D-Bak. N. Z. Inst. Chem. 2008, 2, 1–8. [Google Scholar]
Ingredients | A1 | B2 |
---|---|---|
Jackfruit seed flour (%) | 23.19 | 23.99 |
Finger millet flour (%) | 21.55 | 22.28 |
Vitamin and mineral premix (%) | 1.41 | 1.46 |
Soy protein isolate (%) | 14.08 | 14.56 |
Butter (%) | 16.57 | 8.56 |
Water (%) | 4.97 | 10.29 |
Xanthan gum (%) | 0.83 | 0.86 |
Baking powder (%) | 0.83 | 0.86 |
Sugar (%) | 16.57 | 17.14 |
Parameters | Fill Density | |||
---|---|---|---|---|
50% | 70% | 90% | 100% | |
Volume of Closed Pores (mm)3 | 2.55 ± 0.20 a | 3.87 ± 0.75 a | 5.79 ± 0.78 b | 7.69 ± 1.01 c |
Closed Porosity (%) | 0.62 ± 0.06 a | 0.73 ± 0.10 ab | 0.91 ± 0.15 b | 1.20 ± 0.20 c |
Volume of Open Pore Space (mm)3 | 837.6 ± 2.1 d | 465.7 ± 34.6 c | 398.3 ± 11.5 b | 267.3 ± 17.8 a |
Open Porosity (%) | 67.0 ± 4.0 a | 46.6 ± 10 b | 28.4 ± 1.0 c | 21.1 ± 1.2 c |
Total Volume of Pore Space (mm)3 | 868.0 ± 4.1 d | 469.6 ± 35.0 c | 404.1 ± 11.4 b | 275.0 ± 5.3 a |
Total Porosity (%) | 67.6 ± 4.1 c | 50.6 ± 5.8 b | 29.3 ± 9.5 a | 22.3 ± 2.9 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varghese, C.; Wolodko, J.; Chen, L.; Doschak, M.; Srivastav, P.P.; Roopesh, M.S. Influence of Selected Product and Process Parameters on Microstructure, Rheological, and Textural Properties of 3D Printed Cookies. Foods 2020, 9, 907. https://doi.org/10.3390/foods9070907
Varghese C, Wolodko J, Chen L, Doschak M, Srivastav PP, Roopesh MS. Influence of Selected Product and Process Parameters on Microstructure, Rheological, and Textural Properties of 3D Printed Cookies. Foods. 2020; 9(7):907. https://doi.org/10.3390/foods9070907
Chicago/Turabian StyleVarghese, Cinu, John Wolodko, Lingyun Chen, Michael Doschak, Prem Prakash Srivastav, and M. S. Roopesh. 2020. "Influence of Selected Product and Process Parameters on Microstructure, Rheological, and Textural Properties of 3D Printed Cookies" Foods 9, no. 7: 907. https://doi.org/10.3390/foods9070907
APA StyleVarghese, C., Wolodko, J., Chen, L., Doschak, M., Srivastav, P. P., & Roopesh, M. S. (2020). Influence of Selected Product and Process Parameters on Microstructure, Rheological, and Textural Properties of 3D Printed Cookies. Foods, 9(7), 907. https://doi.org/10.3390/foods9070907