High Temperature Rotational Rheology of the Seed Flour to Predict the Texture of Canned Red Kidney Beans (Phaseolus vulgaris)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Compositional Analysis of Beans
2.2.2. Physical Analysis of Beans
2.2.3. Pasting Profiles of Whole Bean Flours
2.2.4. Canning of Whole Beans
2.2.5. Texture Analysis of Canned Beans
2.2.6. Statistical Analysis
3. Results
3.1. Composition, Water Holding Capacity and Physical Properties of Dry Beans
3.2. Pasting Properties of the Whole Bean Flour
3.3. Texture of the Canned Beans
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Oomah, B.D.; Caspar, F.; Malcolmson, L.J.; Bellido, A.S. Phenolics and antioxidant activity of lentil and pea hulls. Food Res. Int. 2011, 44, 436–441. [Google Scholar] [CrossRef]
- Farooq, Z.; Boye, J.I. Novel food and industrial applications of pulse flours and fractions. In Pulse Foods: Processing, Quality and Nutraceutical Applications; Tiwari, B.K., Gowen, A., McKenna, B., Eds.; Academic Press: San Diego, CA, USA, 2011; pp. 283–323. ISBN 9780123820181. [Google Scholar]
- Tiwari, B.; Singh, N. Pulse Chemistry and Technology; The Royal Society of Chemistry: Cambridge, UK, 2012. [Google Scholar]
- Abdullah, M.M.H.; Marinangeli, C.P.F.; Jones, P.J.H.; Carlberg, J.G. Canadian potential healthcare and societal cost savings from consumption of pulses: A cost-of-illness analysis. Nutrients 2017, 9, 793. [Google Scholar] [CrossRef] [Green Version]
- Mudryj, A.N.; Yu, N.; Hartman, T.J.; Mitchell, D.C.; Lawrence, F.R.; Aukema, H.M. Pulse consumption in Canadian adults influences nutrient intakes. Br. J. Nutr. 2012, 108, S27–S36. [Google Scholar] [CrossRef] [Green Version]
- Borchgrevink, C.P. Culinary Perspective of Dry Beans and Pulses. In Dry Beans and Pulses Production, Processing and Nutrition; Siddiq, M., Uebersax, M.A., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2012; pp. 311–334. ISBN 9780813823874. [Google Scholar]
- White, B.L.; Howard, L.R. Canned Whole Dry Beans and Bean Products. In Dry Beans and Pulses Production, Processing and Nutrition; Siddiq, M., Uebersax, M.A., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2012; pp. 155–183. ISBN 9780813823874. [Google Scholar]
- Walters, K.; Hosfield, G.; Uebersax, M.A.; Kelly, J.D. Navy bean canning quality: Correlations, heritability estimates, and randomly amplified polymorphic DNA markers associated with component traits. J. Am. Soc. Hortic. Sci. 1997, 122, 338–343. [Google Scholar] [CrossRef] [Green Version]
- Dhurandhar, N.V.; Chang, K.C. Effect of Cooking on Firmness, Trypsin Inhibitors, Lectins and Cystine/Cysteine content of Navy and Red Kidney Beans (Phaseolus vulgaris). J. Food Sci. 1990, 55, 470–474. [Google Scholar] [CrossRef]
- Khanal, R.; Burt, A.J.; Woodrow, L.; Balasubramanian, P.; Navabi, A. Genotypic association of parameters commonly used to predict canning quality of dry bean. Crop Sci. 2014, 54, 2564–2573. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, F.A.; Cichy, K.A.; Sprague, C.; Goffnett, A.; Lu, R.; Kelly, J.D. Prediction of canned black bean texture (Phaseolus vulgaris L.) from intact dry seeds using visible/near infrared spectroscopy and hyperspectral imaging data. J. Sci. Food Agric. 2018, 98, 283–290. [Google Scholar] [CrossRef]
- Berg, T.; Singh, J.; Hardacre, A.; Boland, M.J. The role of cotyledon cell structure during in vitro digestion of starch in navy beans. Carbohydr. Polym. 2012, 87, 1678–1688. [Google Scholar] [CrossRef]
- Sefa-Dedeh, S.; Stanley, D. The relationship of microstructure of cowpeas to water absorption and dehulling properties. Cereal Chem. 1979, 56, 379–386. [Google Scholar]
- Bemiller, J.N. Pasting, paste, and gel properties of starch–hydrocolloid combinations. Carbohydr. Polym. 2011, 86, 386–423. [Google Scholar] [CrossRef]
- Liu, S.; Yuan, T.Z.; Wang, X.; Reimer, M.; Isaak, C.; Ai, Y. Behaviors of starches evaluated at high heating temperatures using a new model of Rapid Visco Analyzer—RVA 4800. Food Hydrocoll. 2019, 94, 217–228. [Google Scholar] [CrossRef]
- Cereals & Grains Association. Approved Methods of the American Association of Cereal Chemists, 11th ed.; AACC International: St. Paul, MN, USA, 2009. [Google Scholar]
- Perten Instruments. RVA Method 45.01 High Temperature General Pasting Method. Available online: https://www.perten.com/Global/Applicationnotes/RVA/HighTemperatureGeneralPastingMethod-RVA45.01.pdf (accessed on 1 May 2020).
- Siddiq, M.; Butt, M.S.; Sultan, M.T. Dry Beans: Production, Processing, and Nutrition. In Handbook of Vegetables and Vegetable Processing; Sinha, N.K., Ed.; Blackwell Publishing Ltd.: Ames, IA, USA, 2011; pp. 545–564. ISBN 9780813815411. [Google Scholar]
- AACC Aproved Methods of Analyses. AACC Method 56-36.01 Firmness of Cooked Pulses, AACC International: St. Paul, MN, USA, 2012, 1–4. Available online: http://methods.aaccnet.org/summaries/56-36-01.aspx (accessed on 24 July 2020).
- Mohan, R.J.; Sangeetha, A.; Narasimha, H.V.; Tiwari, B.K. Post-harvest technology of pulses. In Pulse Foods: Processing, Quality and Nutraceutical Applications; Tiwari, B.K., Gowen, A., McKenna, B., Eds.; Academic Press: San Diego, CA, USA, 2011; pp. 171–192. ISBN 9780123820181. [Google Scholar]
- Pedrosa, M.M.; Cuadrado, C.; Burbano, C.; Muzquiz, M.; Cabellos, B.; Olmedilla-Alonso, B.; Asensio-Vegas, C. Effects of industrial canning on the proximate composition, bioactive compounds contents and nutritional profile of two Spanish common dry beans (Phaseolus vulgaris L.). Food Chem. 2015, 166, 68–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bewley, J.D. Seeds: Physiology of Development, Germination and Dormancy, 3rd ed.; Springer: New York, NY, USA, 2013; ISBN 9781461446934. [Google Scholar]
- Chung, H.J.; Liu, Q.; Peter Pauls, K.; Fan, M.Z.; Yada, R. In vitro starch digestibility, expected glycemic index and some physicochemical properties of starch and flour from common bean (Phaseolus vulgaris L.) varieties grown in Canada. Food Res. Int. 2008, 41, 869–875. [Google Scholar] [CrossRef]
- Lopes, L.C.M.; De Aleluia Batista, K.; Fernandes, K.F.; De Andrade Cardoso Santiago, R. Functional, biochemical and pasting properties of extruded bean (phaseolus vulgaris) cotyledons. Int. J. Food Sci. Technol. 2012, 47, 1859–1865. [Google Scholar] [CrossRef]
- de la Rosa-Millán, J.; Pérez-Carrillo, E.; Guajardo-Flores, S. Effect of germinated black bean cotyledons (Phaseolus vulgaris L.) as an extruded flour ingredient on physicochemical characteristics, in vitro digestibility starch, and protein of nixtamalized blue maize cookies. Starch/Staerke 2017, 69, 1–10. [Google Scholar] [CrossRef]
- Azarpazhooh, E.; Boye, J.I. Composition of processed dry beans and pulses. In Dry Beans and Pulses Production, Processing and Nutrition; Siddiq, M., Uebersax, M.A., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2012; ISBN 9780813823874. [Google Scholar]
- Singh, Y.; Chandra, S. Evaluation of physical properties of kidney beans (Phaseolus vulgaris). Food Sci. Res. J. 2014, 5, 125–129. [Google Scholar] [CrossRef]
- Miano, A.C.; Saldaña, E.; Campestrini, L.H.; Chiorato, A.F.; Augusto, P.E.D. Correlating the properties of different carioca bean cultivars (Phaseolus vulgaris) with their hydration kinetics. Food Res. Int. 2018, 107, 182–194. [Google Scholar] [CrossRef]
- Swanson, B.G.; Hughes, J.S.; Rasmussen, H.P. Seed Microstructure: Review of water imbibition in legumes. Food Struct. 1985, 4, 115–124. [Google Scholar]
- Miano, A.C.; Augusto, P.E.D. The hydration of grains: a critical review from description of phenomena to process improvements. Compr. Rev. Food Sci. Food Saf. 2018, 17, 352–370. [Google Scholar] [CrossRef] [Green Version]
- Meng, G.T.; Ma, C.Y. Thermal properties of Phaseolus angularis (red bean) globulin. Food Chem. 2001, 73, 453–460. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Tang, C.H.; Wen, Q.B.; Yang, X.Q.; Li, L.; Deng, W.L. Thermal aggregation and gelation of kidney bean (Phaseolus vulgaris L.) protein isolate at pH 2.0: Influence of ionic strength. Food Hydrocoll. 2010, 24, 266–274. [Google Scholar] [CrossRef]
- Boye, J.; Zare, F.; Pletch, A. Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Res. Int. 2010, 43, 414–430. [Google Scholar] [CrossRef]
- Schwenke, K.D. Reflections about the functional potential of legume proteins: A review. Nahr.- Food 2001, 45, 377–381. [Google Scholar] [CrossRef]
- Yu, S.; Jiang, L.Z.; Kopparapu, N.K. Impact of Soybean 7S Globulin Content on Thermal and Retrogradation Properties of Nonwaxy Corn Starch. J. Food Nutr. Res. 2015, 54, 41–49. [Google Scholar]
- Wang, H.; Ratnayake, W.S. Physicochemical and Thermal Properties of Phaseolus vulgaris L. var. Great Northern Bean Starch. J. Food Sci. 2014, 79, C295–C300. [Google Scholar] [CrossRef]
- Li, J.Y.; Yeh, A.I. Functions of starch in formation of starch/meat composite during heating. J. Text. Stud. 2002, 33, 341–366. [Google Scholar] [CrossRef]
- López-Barón, N.; Gu, Y.; Vasanthan, T.; Hoover, R. Plant proteins mitigate in vitro wheat starch digestibility. Food Hydrocoll. 2017, 69, 19–27. [Google Scholar] [CrossRef]
- Joshi, M.; Aldred, P.; Panozzo, J.F.; Kasapis, S.; Adhikari, B. Rheological and microstructural characteristics of lentil starch-lentil protein composite pastes and gels. Food Hydrocoll. 2014, 35, 226–237. [Google Scholar] [CrossRef]
- Jyothi, A.N.; Sasikiran, K.; Sajeev, M.S.; Revamma, R.; Moorthy, S.N. Gelatinisation properties of cassava starch in the presence of salts, acids and oxidising agents. Starch/Staerke 2005, 57, 547–555. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Wang, J.; Li, J.; Fang, X.; Sun, Y. Pasting properties of Angelica dahurica starches in the presence of NaCl, Na2CO3, NaOH, glucose, fructose and sucrose. Starch/Staerke 2011, 63, 323–332. [Google Scholar] [CrossRef]
- Oomah, B.D.; Patras, A.; Rawson, A.; Singh, N.; Compos-Vega, R. Chemistry of Pulses. In Pulse Foods: Processing, Quality and Nutraceutical Applications; Tiwari, B.K., Gowen, A., McKenna, B., Eds.; Academic Press: San Diego, CA, USA, 2011; pp. 9–55. ISBN 9780123820181. [Google Scholar]
- Chakraborty, P.; Sosulski, F.; Bose, A. Ultracentrifugation of salt-soluble proteins in ten legume species. J. Sci. Food Agric. 1979, 30, 766–771. [Google Scholar] [CrossRef]
- Debet, M.R.; Gidley, M.J. Three classes of starch granule swelling: Influence of surface proteins and lipids. Carbohydr. Polym. 2006, 64, 452–465. [Google Scholar] [CrossRef]
- Voragen, A.C.J.; Rolin, C.; Marr, B.U.; Challen, I.; Riad, A.; Lebbar, R.; Knutsen, S.H. Polysaccharides. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co.: Weinheim, Germany, 2003; Volume 29, pp. 417–473. ISBN 9783527306732. [Google Scholar]
- Palabiyik, İ.; Toker, O.S.; Karaman, S.; Yildiz, Ö. A modeling approach in the interpretation of starch pasting properties. J. Cereal Sci. 2017, 74, 272–278. [Google Scholar] [CrossRef]
- Champagne, E.T.; Bett, K.L.; Vinyard, B.T.; McClung, A.M.; Barton, F.E.; Moldenhauer, K.; Linscombe, S.; McKenzie, K. Correlation between cooked rice texture and rapid visco analyser measurements. Cereal Chem. 1999, 76, 764–771. [Google Scholar] [CrossRef]
- Wu, G.; Morris, C.F.; Murphy, K.M. Evaluation of texture differences among varieties of cooked Quinoa. J. Food Sci. 2014, 79, S2337–S2345. [Google Scholar] [CrossRef]
- Otegbayo, B.; Aina, J.; Asiedu, R.; Bokanga, M. Pasting characteristics of fresh yams (Dioscorea spp.) as indicators of textural quality in a major food product—“pounded yam”. Food Chem. 2006, 99, 663–669. [Google Scholar] [CrossRef]
Time (Minutes) | Parameter | 130 °C Hold Temperature Cycle |
---|---|---|
00:00 | Temperature | 50 °C |
00:00 | Speed | 960 rpm |
00:10 | Speed | 160 rpm |
01:00 | Temperature | 50 °C |
07:40 | Temperature | 130 °C |
10:10 | Temperature | 130 °C |
16:50 | Temperature | 50 °C |
18:50 | End |
Sample | Whole Bean Moisture (% w.b.) | Total Starch Cotyledon (%, d.b.) | Protein Cotyledon (%, d.b.) | Protein Seed Coat (%, d.b.) | Ash Whole Seed (%, d.b.) | Weight Per Bean (g) | Seed Coat Ratio (%) | WHC (%) |
---|---|---|---|---|---|---|---|---|
1 | 15.59cd ± 0.54 | 45.98cd ± 0.32 | 26.77j ± 0.01 | 4.91b ± 0.01 | 3.85ef ± 0.04 | 0.64de ± 0.02 | 7.42abc ± 0.15 | 130.78fg ± 0.11 |
2 | 14.58c ± 0.52 | 48.47e ± 0.38 | 22.36b ± 0.01 | 5.33g ± 0.01 | 3.40a ± 0.01 | 0.72fg ± 0.01 | 7.56abcd ± 0.15 | 123.89bc ± 0.57 |
3 | 12.64a ± 0.24 | 46.35cd ± 0.02 | 24.32f ± 0.01 | 4.90b ± 0.01 | 3.61bc ± 0.06 | 0.68ef ± 0.01 | 7.34ab ± 0.08 | 120.40a ± 0.62 |
4 | 14.45bc ± 0.01 | 41.59a ± 0.39 | 31.98m ± 0.00 | 6.24i ± 0.01 | 3.89f ± 0.01 | 0.50a ± 0.02 | 8.81f ± 0.04 | 133.06g ± 0.31 |
5 | 11.78a ± 0.77 | 46.58cd ± 0.34 | 22.79c ± 0.01 | 5.06d ± 0.01 | 3.78def ± 0.03 | 0.62cd ± 0.02 | 7.23a ± 0.02 | 127.42de ± 0.42 |
6 | 12.98ab ± 0.21 | 44.08b ± 0.11 | 30.12l ± 0.01 | 6.23hi ± 0.01 | 3.68bcd ± 0.03 | 0.58bc ± 0.02 | 7.89de ± 0.14 | 129.41ef ± 0.60 |
7 | 11.55a ± 0.26 | 45.63bc ± 0.12 | 25.04i ± 0.01 | 5.14e ± 0.01 | 3.84ef ± 0.01 | 0.69ef ± 0.01 | 7.33ab ± 0.07 | 121.16ab ± 1.29 |
8 | 14.31bc ± 0.71 | 47.68de ± 0.73 | 24.21e ± 0.01 | 5.30g ± 0.01 | 3.32a ± 0.03 | 0.71fg ± 0.01 | 7.66bcd ± 0.14 | 124.01bc ± 0.72 |
9 | 16.54d ± 0.26 | 46.91cde ± 1.14 | 24.95h ± 0.01 | 5.22f ± 0.00 | 3.73cde ± 0.04 | 0.74g ± 0.01 | 7.70cde ± 0.02 | 131.52fg ± 0.43 |
10 | 15.72cd ± 0.55 | 46.37cd ± 0.31 | 24.49g ± 0.01 | 4.61a ± 0.01 | 3.84ef ± 0.02 | 0.67ef ± 0.02 | 7.58bcd ± 0.15 | 128.94ef ± 0.30 |
11 | 16.86d ± 0.25 | 46.59cd ± 0.16 | 23.32d ± 0.00 | 5.03d ± 0.01 | 3.64bc ± 0.04 | 0.66de ± 0.01 | 7.74cde ± 0.07 | 123.77cd ± 2.09 |
12 | 16.41d ± 0.15 | 45.77cd ± 0.45 | 22.31a ± 0.01 | 4.97c ± 0.01 | 3.58b ± 0.01 | 0.64de ± 0.02 | 7.73cde ± 0.04 | 125.76cd ± 0.87 |
13 | 14.72c ± 0.23 | 41.95a ± 0.23 | 29.97k ± 0.01 | 6.20h ± 0.01 | 3.91f ± 0.04 | 0.55b ± 0.02 | 8.05e ± 0.12 | 138.92h ± 0.18 |
Sample | Time for pv/2 (s) | Peak Viscosity (cp) | Trough Viscosity (cp) | Breakdown (cp) | Final Viscosity (cp) | Setback (cp) | Peak Time (s) | Pasting Temp. (°C) |
---|---|---|---|---|---|---|---|---|
1 | 285.40c ± 2.90 | 1628ef ± 72 | 998e ± 28 | 631g ± 61 | 1804ef ± 27 | 806def ± 7 | 7.38bc ± 0.22 | 83.27abc ± 0.45 |
2 | 264.53ab ± 0.37 | 1445bcde ± 1 | 945cde ± 6 | 500def ± 6 | 1685de ± 16 | 741bcd ± 22 | 6.97a ± 0.05 | 81.55a ± 1.70 |
3 | 272.22b ± 3.83 | 1178a ± 48 | 807ab ± 26 | 372abc ± 22 | 1489bc ± 38 | 683b ± 14 | 7.75d ± 0.04 | 82.68ab ± 0.03 |
4 | 300.59d ± 1.71 | 1001a ± 66 | 733a ± 28 | 268a ± 37 | 1249a ± 54 | 517a ± 26 | 7.20abc ± 0.13 | 85.38bcd ± 0.49 |
5 | 271.51ab ± 2.43 | 1420bcd ± 6 | 867bc ± 20 | 553efg ± 25 | 1609cd ± 19 | 742bcde ± 1 | 7.53cd ± 0.00 | 82.73ab ± 0.04 |
6 | 306.45d ± 0.52 | 1100a ± 43 | 799ab ± 9 | 301ab ± 52 | 1319a ± 6 | 520a ± 3 | 7.17ab ± 0.05 | 86.68d ± 1.10 |
7 | 263.19a ± 3.32 | 1380b ± 71 | 904cd ± 21 | 476cde ± 51 | 1712def ± 71 | 809f ± 50 | 7.40bc ± 0.10 | 81.95a ± 1.13 |
8 | 268.63ab ± 2.72 | 1391bc ± 10 | 973de ± 6 | 419bcd ± 16 | 1690de ± 19 | 717bc ± 13 | 7.07ab ± 0.09 | 82.70ab ± 0.07 |
9 | 270.02ab ± 1.19 | 1640f ± 43 | 1027e ± 12 | 612fg ± 36 | 1835f ± 33 | 808ef ± 24 | 7.15ab ± 0.04 | 81.63a ± 0.88 |
10 | 271.60ab ± 1.13 | 1538bcdef ± 83 | 949cde ± 43 | 589efg ± 54 | 1730def ± 54 | 781cdef ± 12 | 7.32bc ± 0.10 | 82.31a ± 0.84 |
11 | 265.82ab ± 5.72 | 1572cdef ± 33 | 988de ± 40 | 584efg ± 30 | 1833f ± 30 | 846f ± 11 | 7.17ab ± 0.05 | 81.53a ± 1.66 |
12 | 271.31ab ±0.11 | 1609def ± 23 | 994de ± 10 | 615fg ± 23 | 1832f ± 23 | 838f ± 13 | 7.10ab ± 0.04 | 82.65ab ± 0.00 |
13 | 307.40d ± 2.55 | 1087a ± 27 | 801ab ± 14 | 286a ± 27 | 1370ab ± 27 | 569a ± 13 | 6.87a ± 0.00 | 85.88cd ± 0.04 |
Sample | Time for pv/2 (s) | Peak Viscosity (cp) | Trough Viscosity (cp) | Breakdown (cp) | Final Viscosity (cp) | Setback (cp) | Peak Time (s) | Pasting Temp. (°C) |
---|---|---|---|---|---|---|---|---|
1 | 291.70b ± 1.28 | 1928c ± 47 | 1006d ± 13 | 922cde ± 61 | 1849cde ± 12 | 843cde ± 25 | 6.57a ± 0.05 | 85.20bcd ± 0.07 |
2 | 282.56ab ± 2.07 | 1979c ± 28 | 989d ± 31 | 990de ± 3 | 1944e ± 35 | 955f ± 4 | 6.50a ± 0.14 | 82.68ab ± 0.04 |
3 | 285.54ab ± 2.49 | 1880c ± 16 | 980cd ± 5 | 901bcde ±11 | 1810cde ± 16 | 831bcde ± 11 | 6.57a ± 0.05 | 82.70ab ± 0.00 |
4 | 308.22c ± 2.16 | 1597ab ± 8 | 794a ± 8 | 803abc ± 16 | 1530a ± 7 | 736abc ± 16 | 6.64a ± 0.05 | 84.35abc ± 1.13 |
5 | 281.93ab ± 2.75 | 1949c ± 33 | 988d ± 23 | 961cde ± 11 | 1817cde ±57 | 829bcde ± 34 | 6.37a ± 0.05 | 82.75ab ± 0.07 |
6 | 308.16c ± 0.91 | 1605ab ± 19 | 881abc ± 15 | 724ab ± 4 | 1603ab ± 30 | 722ab ± 16 | 6.44a ± 0.05 | 85.90cd ± 0.07 |
7 | 286.46ab ± 1.17 | 1826bc ± 42 | 948cd ± 20 | 878bcde ± 22 | 1748bcd ± 23 | 800bcd ± 3 | 6.54a ± 0.09 | 84.35abc ± 1.13 |
8 | 279.51a ± 1.96 | 1895c ± 197 | 988d ± 55 | 907bcde ± 142 | 1896cde ± 128 | 908def ± 73 | 6.43a ± 0.14 | 83.15abc ± 0.64 |
9 | 283.23ab ± 3.59 | 1949c ± 40 | 923bcd ± 37 | 1026de ± 3 | 1802cde ± 45 | 879def ± 8 | 6.40a ± 0.10 | 82.78ab ± 0.04 |
10 | 279.24a ± 0.51 | 1795bc ± 28 | 944cd ± 7 | 851bcd ± 21 | 1749bcd ± 6 | 805bcd ± 1 | 6.47a ± 0.09 | 83.13abc ± 0.06 |
11 | 281.41a ± 5.32 | 1878c ± 40 | 835ab ± 43 | 1044e ± 4 | 1718bc ± 25 | 884def ± 18 | 6.44a ± 0.05 | 82.38a ± 1.73 |
12 | 279.13a ± 1.65 | 1913c ± 28 | 987d ± 13 | 926cde ± 41 | 1917de ± 33 | 931ef ± 46 | 6.37a ± 0.14 | 82.73ab ± 0.04 |
13 | 316.08c ± 2.31 | 1543a ± 25 | 919bcd ± 4 | 624a ± 21 | 1606ab ± 1 | 687a ± 4 | 6.60a ± 0.18 | 87.53d ± 0.04 |
Medium Type | Time for pv/2 (s) | Peak Viscosity (cp) | Trough Viscosity (cp) | Breakdown (cp) | Final Viscosity (cp) | Setback (cp) | Peak Time (s) | Pasting Temp. (°C) |
---|---|---|---|---|---|---|---|---|
Water | 278.62a ± 16.30 | 1383a ± 214 | 907a ± 93 | 476a ± 129 | 1629a ± 200 | 722a ± 114 | 7.24a ± 0.25 | 83.15a ± 1.69 |
Brine | 289.00a ± 13.83 | 1826b ± 149 | 937a ± 66 | 889b ± 118 | 1768b ± 127 | 831b ± 82 | 6.48b ± 0.09 | 83.81a ± 1.57 |
RVA Parameter | RVA Medium | Whole Bean Moisture (%) | Total Starch in Cotyledon (%) | Protein in Cotyledon (%) | Protein in Seed Coat (%) | Ash (%) | Weight Per Bean (g) | Seed Coat Ratio (%) | WHC (%) |
---|---|---|---|---|---|---|---|---|---|
Time for PV/2 (s) | Water | 0.209 | −0.878 ** | 0.935 ** | 0.836 ** | 0.482 | −0.869 ** | 0.702 ** | 0.841 ** |
Brine | 0.070 | −0.888 ** | 0.928 ** | 0.884 ** | 0.461 | −0.811 ** | 0.653 * | 0.804 ** | |
Peak viscosity (cP) | Water | 0.226 | 0.716 ** | −0.744 ** | −0.786 ** | −0.205 | 0.701 ** | −0.525 | −0.569 * |
Brine | −0.093 | 0.908 ** | −0.888 ** | −0.813 ** | −0.495 | 0.816 ** | −0.710 ** | −0.703 ** | |
Trough viscosity (cP) | Water | 0.281 | 0.726 ** | −0.686 ** | −0.681 * | −0.354 | 0.755 ** | −0.457 | −0.586 * |
Brine | −0.332 | 0.616 * | −0.613 * | −0.585 * | −0.355 | 0.578 * | −0.780 ** | −0.251 | |
Breakdown (cP) | Water | 0.175 | 0.671 * | −0.746 ** | −0.820 ** | −0.087 | 0.624 * | −0.547 | −0.528 |
Brine | 0.067 | 0.799 ** | −0.775 ** | −0.697 ** | −0.424 | 0.705 ** | −0.46 | −0.744 ** | |
Final viscosity (cP) | Water | 0.122 | 0.746 ** | −0.787 ** | −0.813 ** | −0.270 | 0.768 ** | −0.572 * | −0.665 * |
Brine | −0.062 | 0.867 ** | −0.860 ** | −0.717 ** | −0.649 * | 0.785 ** | −0.688 ** | −0.642 * | |
Setback (cP) | Water | −0.014 | 0.720 ** | −0.824 ** | −0.874 ** | −0.187 | 0.734 ** | −0.634 * | −0.691 ** |
Brine | 0.169 | 0.859 ** | −0.851 ** | −0.650 * | −0.728 ** | 0.762 ** | −0.449 | −0.801 ** | |
Peak time (s) | Water | −0.517 | 0.225 | −0.227 | −0.547 | 0.217 | 0.166 | −0.564 * | −0.225 |
Brine | 0.036 | −0.574 * | 0.629 * | 0.391 | 0.420 | −0.46 | 0.419 | 0.374 | |
Pasting temp. (°C) | Water | 0.084 | −0.819 ** | 0.871 ** | 0.823 ** | 0.371 | −0.828 ** | 0.574 * | 0.772 ** |
Brine | −0.020 | −0.744 ** | 0.796 ** | 0.691 ** | 0.519 | −0.627 * | 0.362 | 0.788 ** |
Parameter | Firmness of Beans (N) | |
---|---|---|
Time for PV/2 (s) | Water | 0.704 ** |
Brine | 0.691 ** | |
Peak viscosity (cP) | Water | −0.583 * |
Brine | −0.820 ** | |
Trough viscosity (cP) | Water | −0.572 * |
Brine | −0.926 ** | |
Breakdown (cP) | Water | −0.560 * |
Brine | −0.516 | |
Final viscosity (cP) | Water | −0.631 * |
Brine | −0.951 ** | |
Setback (cP) | Water | −0.644 * |
Brine | −0.741 ** | |
Peak time (s) | Water | −0.337 |
Brine | 0.321 | |
Pasting temp (°C) | Water | 0.634 * |
Brine | 0.499 | |
Total Starch in cotyledon (%) | −0.768 ** | |
Protein in cotyledon (%) | 0.785 ** | |
Protein in seed coat (%) | 0.748 ** | |
Ash (%) | 0.500 | |
Whole bean moisture (%) | 0.205 | |
Weight per bean (g) | −0.730 ** | |
Seed coat ratio (%) | 0.756 ** | |
WHC (%) | 0.557 * |
Model a | R | R2 | Adjusted R2 | Standard. Error of the Model (%) |
---|---|---|---|---|
1 | 0.926 | 0.857 | 0.844 | 4.34 |
2 | 0.981 | 0.963 | 0.956 | 2.30 |
3 | 0.951 | 0.904 | 0.895 | 3.55 |
4 | 0.981 | 0.963 | 0.956 | 2.30 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, R.; Roman, L.; Falardeau, L.; Albino, L.; Joye, I.; Martinez, M.M. High Temperature Rotational Rheology of the Seed Flour to Predict the Texture of Canned Red Kidney Beans (Phaseolus vulgaris). Foods 2020, 9, 1002. https://doi.org/10.3390/foods9081002
Park R, Roman L, Falardeau L, Albino L, Joye I, Martinez MM. High Temperature Rotational Rheology of the Seed Flour to Predict the Texture of Canned Red Kidney Beans (Phaseolus vulgaris). Foods. 2020; 9(8):1002. https://doi.org/10.3390/foods9081002
Chicago/Turabian StylePark, Richard, Laura Roman, Louis Falardeau, Lionel Albino, Iris Joye, and Mario M. Martinez. 2020. "High Temperature Rotational Rheology of the Seed Flour to Predict the Texture of Canned Red Kidney Beans (Phaseolus vulgaris)" Foods 9, no. 8: 1002. https://doi.org/10.3390/foods9081002
APA StylePark, R., Roman, L., Falardeau, L., Albino, L., Joye, I., & Martinez, M. M. (2020). High Temperature Rotational Rheology of the Seed Flour to Predict the Texture of Canned Red Kidney Beans (Phaseolus vulgaris). Foods, 9(8), 1002. https://doi.org/10.3390/foods9081002