Biologically Active Compounds in Selected Organic and Conventionally Produced Dried Fruits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Equipment
2.3. Samples
2.4. Dry Matter Analysis
2.5. Carotenoids Extraction and Identification
2.6. Phenolics Extraction and Identification
2.7. Statistical Analysis
3. Results and Discussion
3.1. Dried Apricots
3.2. Dried Apple Rings
3.3. Dried Cranberries
3.4. Prunes
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Adamczak, A.; Buchwald, W.; Kozłowski, J.; Mielcarek, S. The effect of thermal and freeze drying on the content of organic acids and flavonoids in fruit of European cranberry (Oxycoccus palustris Pers.). Herba Pol. 2009, 55, 94–102. [Google Scholar]
- Sun-Waterhouse, D. The development of fruit-based functional foods targeting the health and wellness market: A review. Int. J. Food Sci. Technol. 2011, 46, 899–920. [Google Scholar] [CrossRef]
- Farvid, M.S.; Chen, W.Y.; Rosner, B.A.; Tamimi, R.M.; Willett, W.C.; Eliassen, A.H. Fruit and vegetable consumption and breast cancer incidence: Repeated measures over 30 years of follow-up. Int. J. Cancer 2019, 144, 1496–1510. [Google Scholar] [CrossRef] [PubMed]
- Makiuchi, T.; Sobue, T.; Kitamura, T.; Ishihara, J.; Sawada, N.; Iwasaki, M.; Sasazuki, S.; Yamaji, T.; Shimazu, T.; Tsugane, S. The relationship between vegetable/fruit consumption and gallbladder/bile duct cancer: A population-based cohort study in Japan. Int. J. Cancer 2017, 140, 1009–1019. [Google Scholar] [CrossRef] [PubMed]
- Zhan, J.; Liu, Y.-J.; Cai, L.-B.; Xu, F.-R.; Xie, T.; He, Q.-Q. Fruit and vegetable consumption and risk of cardiovascular disease: A meta-analysis of prospective cohort studies. Crit. Rev. Food Sci. Nutr. 2017, 57, 1650–1663. [Google Scholar] [CrossRef]
- Vendrame, S.; Del Bo’, C.; Ciappellano, S.; Riso, P.; Klimis-Zacas, D. Berry Fruit Consumption and Metabolic Syndrome. Antioxidants 2016, 5, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alasalvar, C.; Shahidi, F. Phytochemicals and Health Effects. In Dried Fruits; CRC Press: Boca Raton, FL, USA, 2013; pp. 1–18. [Google Scholar]
- Louie, J.C.Y.; Moshtaghian, H.; Boylan, S.; Flood, V.M.; Rangan, A.M.; Barclay, A.W.; Brand-Miller, J.C.; Gill, T.P. A systematic methodology to estimate added sugar content of foods. Eur. J. Clin. Nutr. 2015, 69, 154–161. [Google Scholar] [CrossRef]
- Michalska, A.; Wojdyło, A.; Lech, K.; Łysiak, G.P.; Figiel, A. Physicochemical properties of whole fruit plum powders obtained using different drying technologies. Food Chem. 2016, 207, 223–232. [Google Scholar] [CrossRef]
- Chang, S.K.; Alasalvar, C.; Shahidi, F. Review of dried fruits: Phytochemicals, antioxidant efficacies, and health benefits. J. Funct. Foods 2016, 21, 113–132. [Google Scholar] [CrossRef]
- Madrau, M.A.; Piscopo, A.; Sanguinetti, A.M.; Del Caro, A.; Poiana, M.; Romeo, F.V.; Piga, A. Effect of drying temperature on polyphenolic content and antioxidant activity of apricots. Eur. Food Res. Technol. Z. Leb. Forsch. A 2009, 228, 441–448. [Google Scholar] [CrossRef] [Green Version]
- The International Nut and Dried Fruit Council Foundation. In Nuts and Dried Fruits Global Statistical Review 2015/2016; INC: Reus, Spain, 2016.
- European Commission Council. Regulation No 834/2007 of 28 June 2007 on Organic Production and Labelling of Organic Products and Repealing Regulation (EEC); No 2092/91, OJ L 189; EC: Brussels, Belgium, 2007; pp. 1–23. [Google Scholar]
- European Parliament; European Council. Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018 on Organic Production and Labelling of Organic Products and Repealing Council Regulation; No 834/2007; EC: Brussels, Belgium, 2018. [Google Scholar]
- Rozpara, E.; Badowska-Czubik, T.; Kowalska, J. Problems of the plum and cherry plants protection in ecological orchard. J. Res. Appl. Agric. Eng. 2010, 55, 73–75. [Google Scholar]
- Baranski, M.; Średnicka-Tober, D.; Volakakis, N.; Seal, C.; Sanderson, R.; Stewart, G.B.; Benbrook, C.; Biavati, B.; Markellou, E.; Giotis, C.; et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: A systematic literature review and meta-analyses. Br. J. Nutr. 2014, 112, 794–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohene, I.; Maalekuu, B.K. Effect of some postharvest treatments on the quality and shelf life of three cultivars of carrot (Daucus carota L.) during storage at room temperature. Am. J. Food Nutr. 2013, 3, 64–72. [Google Scholar]
- Nishiyama, I.; Fukuda, T.; Oota, T. Genotypic differences in chlorophyll, lutein, and beta-carotene contents in the fruits of actinidia species. J. Agric. Food Chem. 2005, 53, 6403–6407. [Google Scholar] [CrossRef] [PubMed]
- Kopczyńska, K.; Kazimierczak, R.; Średnicka-Tober, D.; Barański, M.; Wyszyński, Z.; Kucińska, K.; Perzanowska, A.; Szacki, P.; Rembiałkowska, E.; Hallmann, E. The profile of selected antioxidants in two courgette varieties from organic and conventional production. Antioxidants 2020, 9, 404. [Google Scholar] [CrossRef] [PubMed]
- Hallmann, E.; Kazimierczak, R.; Marszałek, K.; Drela, N.; Kiernozek, E.; Toomik, P.; Matt, D.; Luik, A.; Rembiałkowska, E. The nutritive value of organic and conventional white cabbage (Brassica oleracea L. var. Capitata) and anti-apoptotic activity in gastric adenocarcinoma cells of sauerkraut juice produced therof. J. Agric. Food Chem. 2017, 65, 8171–8183. [Google Scholar] [CrossRef] [PubMed]
- Salur-Can, A.; Türkyılmaz, M.; Özkan, M. Effects of sulfur dioxide concentration on organic acids and β-carotene in dried apricots during storage. Food Chem. 2017, 221, 412–421. [Google Scholar] [CrossRef]
- Kan, T.; Bostan, S. Changes of contents of polyphenols and vitamin a of organic and conventional fresh and dried apricot cultivars (Prunus armeniaca L.). World J. Agric. Sci. 2010, 6, 120–126. [Google Scholar]
- Igual, M.; García-Martínez, E.; Martín-Esparza, M.E.; Martínez-Navarrete, N. Effect of processing on the drying kinetics and functional value of dried apricot. Food Res. Int. 2012, 47, 284–290. [Google Scholar] [CrossRef]
- Francini, A.; Romeo, S.; Cifelli, M.; Gori, D.; Domenici, V.; Sebastiani, L. 1H NMR and PCA-based analysis revealed variety dependent changes in phenolic contents of apple fruit after drying. Food Chem. 2017, 221, 1206–1213. [Google Scholar] [CrossRef]
- Altisent, R.; Plaza, L.; Alegre, I.; Viñas, I.; Abadias, M. Comparative study of improved vs. traditional apple cultivars and their aptitude to be minimally processed as ‘ready to eat’ apple wedges. LWT Food Sci. Technol. 2014, 58, 541–549. [Google Scholar] [CrossRef]
- Palikova, I.; Vostalova, J.; Zdarilova, A.; Svobodova, A.; Kosina, P.; Vecera, R.; Stejskal, D.; Proskova, J.; Hrbac, J.; Bednar, P.; et al. Long-term effects of three commercial cranberry products on the antioxidative status in rats: A pilot study. J. Agric. Food Chem. 2010, 58, 1672–1678. [Google Scholar] [CrossRef] [PubMed]
- Cagri-Mehmetoglu, A.; Ustunol, Z.; Ryser, E. Antimicrobial edible films and coatings. J. Food Prot. 2004, 67, 833–848. [Google Scholar] [CrossRef] [PubMed]
- Jeszka-Skowron, M.; Zgoła-Grześkowiak, A.; Stanisz, E.; Waśkiewicz, A. Potential health benefits and quality of dried fruits: Goji fruits, cranberries and raisins. Food Chem. 2017, 221, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Dorofejeva, K.; Rakcejeva, T.; Skudra, L.; Dimins, F.; Kviesis, J. Changes in physically-chemical and microbiological parameters of Latvian wild cranberries during convective drying. Food Sci. 2010, 1, 132–137. [Google Scholar]
- Kamiloglu, S.; Toydemir, G.; Boyacioglu, D.; Beekwilder, J.; Hall, R.D.; Capanoglu, E. A review on the effect of drying on antioxidant potential of fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2016, 56 (Suppl. S1), S110–S129. [Google Scholar] [CrossRef]
- Vangdal, E.; Picchi, V.; Fibiani, M.; Lo Scalzo, R. Effects of the drying technique on the retention of phytochemicals in conventional and organic plums (Prunus domestica L.). LWT Food Sci. Technol. 2017, 85, 506–509. [Google Scholar] [CrossRef] [Green Version]
Organic Brands | Conventional Brands | Organic | Conventional | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
Compounds | 1 | 2 | 3 | 4 | 5 | 6 | all brands | all brands | Prod. system |
Dry matter (g 100 g−1 fw) | 80.27 ± 1.20 e 1 | 77.20 ± 0.85 c | 75.61 ± 1.20 b,c | 75.82 ± 0.13 b | 79.25 ± 0.87 d | 65.15 ± 1.26 a | 77.69 ± 2.26 A | 73.40 ± 6.41 A | N.S.2 |
Carotenoids (total) (µg g−1 fw) | 17.49 ± 0.17 e | 12.11 ± 0.04 d | 9.34 ± 0.35 c | 6.07 ± 0.33 b | 2.72 ± 0.31 a | 4.33 ± 0.24 b | 12.98 ± 3.59 B | 4.37 ± 1.47 A | <0.0001 |
Lutein | 0.39 ± 0.01 c | 0.27 ± 0.02 b | 0.27 ± 0.03 b | 0.25 ± 0.05 b | 0.01 ± 0.01 a | 0.36 ± 0.01 b | 0.31 ± 0.06 A | 0.21 ± 0.16 A | N.S. |
Zeaxanthin | 0.13 ± 0.03 c,d | 0.14 ± 0.02 d | 0.12 ± 0.01 b | 0.09 ± 0.02 b | 0.02 ± 0.01 a | 0.36 ± 0.03 b,c | 0.13 ± 0.02 A | 0.16 ± 0.15 A | N.S. |
α-carotene | 0.55 ± 0.01 d | 0.38 ± 0.02 c | 0.34 ± 0.02 c | 0.11 ± 0.01 b | 0.07 ± 0.00 a | 0.15 ± 0.01 b | 0.42 ± 0.10 B | 0.11 ± 0.04 A | <0.0001 |
β-carotene | 16.41 ± 0.15 f | 11.33 ± 0.07 e | 8.62 ± 0.36 d | 5.62 ± 0.26 c | 2.61 ± 0.30 a | 3.45 ± 0.27 b | 12.12 ± 3.43 B | 3.90 ± 1.36 A | <0.0001 |
Polyphenols (total) (mg 100 g−1 fw) | 276.75 ± 1.74 c | 278.27 ± 1.10 c | 296.96 ± 2.86 d | 239.57 ± 3.92 b | 219.03 ± 3.90 a | 234.52 ± 3.20 b | 283.99 ± 9.91 B | 231.04 ± 9.80 A | 0.0001 |
Phenolic acids | 132.12 ± 0.59 b | 125.15 ± 1.21 a | 154.43 ± 1.54 c | 124.78 ± 1.15 a | 128.21 ± 1.51 a,b | 131.48 ± 2.96 b | 137.23 ± 13.28 A | 128.15 ± 3.39 A | N.S. |
Gallic acid | 62.55 ± 1.28 c | 61.51 ± 0.76 b,c | 86.89 ± 2.54 d | 60.89 ± 0.34 b,c | 57.74 ± 1.14 a,b | 55.94 ± 1.75 a | 70.32 ± 12.53 B | 58.19 ± 2.41 A | 0.0116 |
Chlorogenic acid | 27.43 ± 0.17 f | 26.09 ± 0.26 e | 24.57 ± 0.14 d | 20.83 ± 0.54 a | 23.61 ± 0.24 c | 22.53 ± 0.10 b | 26.03 ± 1.25 B | 22.32 ± 1.25 A | <0.0001 |
Caffeic acid | 24.12 ± 0.44 a | 23.03 ± 0.15 a | 27.12 ± 0.59 b | 28.43 ± 0.58 b | 32.62 ± 0.23 c | 34.71 ± 0.86 d | 24.75 ± 1.87 A | 31.92 ± 2.82 B | <0.0001 |
p-Coumaric acid | 18.02 ± 0.31 c | 14.53 ± 0.38 a | 15.85 ± 0.39 b | 14.63 ± 0.26 a | 14.24 ± 0.08 a | 18.30 ± 0.45 c | 16.13 ± 1.56 A | 15.72 ± 1.96 A | N.S. |
Flavonoids | 144.63 ± 2.31 d | 153.11 ± 1.69 e | 142.53 ± 1.76 d | 114.79 ± 2.83 c | 90.83 ± 2.39 a | 103.04 ± 2.17 b | 146.76 ± 5.13 B | 102.89 ± 10.60 A | <0.0001 |
Quercetin-3-O-rutinoside | 117.42 ± 1.72 e | 123.76 ± 1.57 f | 110.11 ± 1.91 d | 85.69 ± 2.80 c | 56.79 ± 1.54 a | 66.19 ± 1.97 b | 117.10 ± 6.10 B | 69.56 ± 12.90 A | <0.0001 |
Myricetin | 1.63 ± 0.03 a | 1.75 ± 0.03 a,b | 1.75 ± 0.42 a,b | 2.10 ± 0.14 a,b,c | 2.26 ± 0.06 b,c | 2.38 ± 0.13 c | 1.71 ± 0.22 A | 2.25 ± 0.16B | <0.0001 |
Quercetin | 23.05 ± 0.53 a | 24.77 ± 0.96 a | 27.52 ± 0.99 b | 23.70 ± 0.08 a | 27.41 ± 0.87 b | 29.81 ± 0.02 c | 25.11 ± 2.09 A | 26.97 ± 2.70 A | N.S. |
Kaempferol | 2.53 ± 0.10 a | 2.84 ± 0.07 b | 3.15 ± 0.10 c | 3.30 ± 0.06 c | 4.36 ± 0.07 d | 4.65 ± 0.10 e | 2.84 ± 0.28 A | 4.11 ± 0.62 B | <0.0001 |
Organic Brands | Conventional Brands | Organic | Conventional | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Compounds | 1 | 2 | 3 | 4 | 5 | 6 | all brands | all brands | Prod. system | |
Dry matter (g 100 g−1 fw) | 93.90 ± 0.71 c 1 | 85.78 ± 0.31 b | 91.72 ± 0. 52 c | 81.52 ± 0.30 a | 92.75 ± 0.32 c | 92.18 ± 2.03 c | 88.23 ± 4.91 A | 92.46 ± 1.48 A | N.S.2 | |
Polyphenols (total) (mg 100 g−1 fw) | 118.88 ± 5.98 a | 280.52 ± 1.49 b | 393.65 ± 22.30 c | 239.51 ± 4.83 b | 95.24 ± 15.12 a | 627.71 ± 48.64 d | 258.14 ± 58.95 A | 361.48 ± 68.66 A | N.S. | |
Phenolic acids | 109.89 ± 6.44 b | 264.51 ± 1.96 c | 377.60 ± 22.39 d | 213.90 ± 5.73 c | 13.27 ± 2.03 a | 590.37 ± 46.02 e | 241.47 ± 57.10 A | 301.82 ± 90.39 A | N.S. | |
Gallic acid | 27.39 ± 0.96 c | 2.98 ± 0.02 b | 0.55 ± 0.05 a | 0.10 ± 0.03 a | 0.47 ± 0.12 a | 0.48 ± 0.13 a | 7.75 ± 11.40 A | 0.47 ± 0.12 A | N.S. | |
Chlorogenic acid | 67.19 ± 6.89 a | 254.88 ± 1.31 b | 352.17 ± 21.79 c | 201.74 ± 6.05 b | 3.62 ± 0.47 a | 583.29 ± 45.04 d | 218.99 ± 53.60 A | 293.46 ± 91.58 A | N.S. | |
Caffeic acid | 7.71 ± 0.24 c | 3.94 ± 0.63 b | 18.81 ± 0.79 d | 3.77 ± 0.29 b | 4.30 ± 0.46 b | 2.01 ± 0.21 a | 8.56 ± 6.15 A | 3.16 ± 1.20 A | N.S. | |
Ferulic acid | 7.60 ± 0.46 c | 2.71 ± 0.10 a | 6.06 ± 0.29 b,c | 8.29 ± 0.12 c | 4.87 ± 1.13 a,b | 4.59 ± 1.15 a,b | 6.17 ± 2.17 A | 4.73 ± 1.15 A | N.S. | |
Flavonoids | 8.99 ± 0.47 a | 16.01 ± 0.56 a,b | 16.05 ± 0.68 a,b | 25.62 ± 1.46 a,b | 81.98 ± 15.41c | 37.33 ± 2.78 b | 16.67 ± 5.98 A | 59.65 ± 24.92 B | 0.0001 | |
Quercetin-3-O-rutinoside | 5.97 ± 0.62 a | 4.25 ± 0.29 a | 2.27 ± 0.18 a | 18.57 ± 1.15 a,b | 63.78 ± 14.45 c | 28.32 ± 2.28 b | 7.77 ± 6.41 A | 46.05 ± 20.53 B | <0.0001 | |
Kaempferol-3-O-glucoside | 0.82 ± 0.02 a | 10.75 ± 0.41 c | 9.31 ± 0.66 c | 6.13 ± 0.83 b | 17.37 ± 0.97 d | 4.43 ± 1.22 b | 6.75 ± 1.85 A | 10.90 ± 3.56 A | N.S. | |
Quercetin | 2.19 ± 0.13 a | 1.01 ± 0.09 a | 4.48 ± 0.06 b | 0.93 ± 0.04 a | 0.83 ± 0.03 a | 4.59 ± 1.40 b | 2.15 ± 1.44 A | 2.71 ± 2.13 A | N.S. |
Organic Brands | Conventional Brands | Organic | Conventional | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
Compounds | 1 | 2 | 3 | 4 | 5 | 6 | all brands | all brands | Prod. system |
Dry matter (g 100 g−1 fw) | 84.64 ± 0.13 b 1 | 80.69 ± 0.41 a | 84.21 ± 0.49 b | 84.66 ± 0.31 b | 85.45 ± 0.40 b | 84.79 ± 0.19 b | 83.18 ± 0.63 A | 84.97 ± 0.21 B | 0.0218 |
Polyphenols (total) (mg 100 g−1 fw) | 14.64 ± 0.43 a | 201.88 ± 8.77 c | 36.38 ± 1.81 a | 81.31 ± 1.85 b | 188.38 ± 10.97 c | 203.09 ± 7.96 c | 84.30 ± 28.03 A | 157.59 ± 18.66 A | N.S.2 |
Phenolic acids | 12.61 ± 0.41 a | 200.47 ± 8.68 c | 34.99 ± 1.81 a | 80.28 ± 1.87 b | 185.47 ± 11.06 c | 201.15 ± 7.86 c | 82.69 ± 28.08 A | 155.64 ± 18.46 A | N.S. |
Chlorogenic acid | 0.39 ± 0.00 a | 186.09 ± 7.96 c | 29.77 ± 1.75 b | 46.00 ± 1.03 b | 173.60 ± 11.12 c | 184.56 ± 7.09 c | 72.08 ± 27.30 A | 134.72 ± 21.42 A | N.S. |
p-Hydroxybenzoic acid | 1.95 ± 0.01 c | 1.81 ± 0.08 c | 0.16 ± 0.01 a | 1.41 ± 0.10 b | 0.28 ± 0.01 a | 1.44 ± 0.12 b | 1.31 ± 0.27 A | 1.04 ± 0.19 A | N.S. |
p-Coumaric acid | 6.93 ± 0.46 c | 11.41 ± 0.85 d | 3.84 ± 0.08 b | 14.88 ± 0.26 e | 1.42 ± 0.03 a | 3.07 ± 0.23 b | 7.39 ± 1.08 A | 6.46 ± 2.00 A | N.S. |
Benzoic acid | 3.34 ± 0.06 a | 1.16 ± 0.14 a | 1.21 ± 0.02 a | 18.00 ± 1.41 c | 10.17 ± 0.42 b | 12.08 ± 1.07 b | 1.91 ± 0.34 A | 13.42 ± 1.26 B | 0.0001 |
Flavonoids | 2.03 ± 0.14 b | 1.40 ± 0.09 a | 1.39 ± 0.01 a | 1.03 ± 0.03 a | 2.91 ± 0.21 c | 1.94 ± 0.13 b | 1.61 ± 0.11 A | 1.96 ± 0.27 A | N.S. |
Kaempferol-3-O-glucoside | 1.37 ± 0.10 c,d | 0.93 ± 0.10 b,c | 0.62 ± 0.02 a,b | 0.39 ± 0.02 a | 2.45 ± 0.21 e | 1.41 ± 0.14 d | 0.97 ± 0.11 A | 1.42 ± 0.29 A | N.S. |
Quercetin | 0.66 ± 0.05 b | 0.47 ± 0.01 a | 0.77 ± 0.01 c | 0.63 ± 0.02 b | 0.45 ± 0.01 c | 0.53 ± 0.01 a | 0.63 ± 0.04 A | 0.54 ± 0.03 A | N.S. |
Organic Brands | Conventional Brands | Organic | Conventional | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
Compounds | 1 | 2 | 3 | 4 | 5 | 6 | all brands | all brands | Prod. system |
Dry matter (g 100 g−1 fw) | 75.50 ± 0.38 c 1 | 75.94 ± 0.24 c,d | 74.34 ± 0.24 c | 67.25 ± 0.14 b | 67.46 ± 0.11 b | 61.39 ± 1.96 a | 75.26 ± 0.76 B | 65.37 ± 3.14 A | <0.0001 |
Polyphenols (total) (mg 100 g−1 fw) | 134.65 ± 12.27 a | 165.01 ± 16.26 a,b | 215.22 ± 11.14 b,c | 290.06 ± 24.13 d | 254.54 ± 46.16 c,d | 422.44 ± 9.00 e | 171.63 ± 37.10 A | 322.35 ± 81.06 B | 0.0001 |
Phenolic acids | 131.59 ± 12.02 a | 163.19 ± 16.27 a,b | 213.33 ± 11.15 b,c | 284.76 ± 23.94 d | 247.81 ± 46.31 c,d | 415.22 ± 8.54 e | 169.37 ± 37.52 A | 315.93 ± 80.62 B | 0.0001 |
Gallic acid | 54.22 ± 1.93 a | 77.37 ± 10.98 a,b | 100.95 ± 9.33 b | 74.35 ± 16.23 a,b | 103.42 ± 20.67 b | 106.19 ± 8.09 b | 77.51 ± 21.50 A | 94.66 ± 20.55 A | N.S.2 |
Chlorogenic acid | 71.14 ± 12.27 a | 81.98 ± 5.79 a,b | 106.88 ± 3.34 b,c,d | 93.81 ± 2.83 a,b,c | 135.55 ± 27.27 d | 122.08 ± 6.86 c,d | 86.66 ± 17.34 A | 117.15 ± 23.23 B | 0.0061 |
p-Coumaric acid | 5.09 ± 1.12 a | 2.74 ± 2.84 a | 4.35 ± 2.09 a | 0.92 ± 0.66 a | 7.14 ± 3.38 a | 3.12 ± 1.48 a | 4.06 ± 2.12 A | 3.72 ± 3.31 A | N.S. |
Ferulic acid | 1.14 ± 0.01 a | 0.051.10 ± 0.01 a | 1.16 ± 0.01 a | 1.03 ± 0.02 a | 1.48 ± 0.14b | 1.03 ± 0.02 a | 1.13 ± 0.04 A | 1.18 ± 0.23 A | N.S. |
Benzoic acid | n.d.3 | n.d. | n.d. | 114.65 ± 14.67b | 0.23 ± 0.23a | 182.80 ± 7.01c | n.d. | 99.23 ± 8.31 | 0.0019 |
Flavonoids | 3.06 ± 0.26 b | 1.82 ± 0.09 a | 1.89 ± 0.02 a | 5.30 ± 0.32 c | 6.73 ± 0.16 d | 7.21 ± 0.55 d | 2.26 ± 0.62 A | 6.42 ± 0.92 B | <0.0001 |
Kaempferol-3-O-glucoside | 1.78 ± 0.28 b | 0.62 ± 0.09 a | 0.50 ± 0.03 a | 0.68 ± 0.15 a | 5.19 ± 0.16 c | 2.01 ± 0. 24 b | 0.97 ± 0.16 A | 2.62 ± 0.1 B | 0.032 |
Myricetin | 0.90 ± 0.02 a | 0.87 ± 0.01 a | 0.92 ± 0.02 a | 4.24 ± 0.22 b | 1.20 ± 0.00 b | 4.86 ± 0.38 c | 0.90 ± 0.03 A | 3.43 ± 1.71 B | 0.0004 |
Quercetin | 0.38 ± 0.009 b | 0.34 ± 0.003 a | 0.46 ± 0.010 c | 0.38 ± 0.012 b | 0.35 ± 0.001 a | 0.35 ± 0.005 a | 0.40 ± 0.055 A | 0.36 ± 0.019 A | N.S. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Średnicka-Tober, D.; Kazimierczak, R.; Ponder, A.; Hallmann, E. Biologically Active Compounds in Selected Organic and Conventionally Produced Dried Fruits. Foods 2020, 9, 1005. https://doi.org/10.3390/foods9081005
Średnicka-Tober D, Kazimierczak R, Ponder A, Hallmann E. Biologically Active Compounds in Selected Organic and Conventionally Produced Dried Fruits. Foods. 2020; 9(8):1005. https://doi.org/10.3390/foods9081005
Chicago/Turabian StyleŚrednicka-Tober, Dominika, Renata Kazimierczak, Alicja Ponder, and Ewelina Hallmann. 2020. "Biologically Active Compounds in Selected Organic and Conventionally Produced Dried Fruits" Foods 9, no. 8: 1005. https://doi.org/10.3390/foods9081005
APA StyleŚrednicka-Tober, D., Kazimierczak, R., Ponder, A., & Hallmann, E. (2020). Biologically Active Compounds in Selected Organic and Conventionally Produced Dried Fruits. Foods, 9(8), 1005. https://doi.org/10.3390/foods9081005