Demographic Scenarios of Future Environmental Footprints of Healthy Diets in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Forecasting China’s Population Structure toward 2100
2.2. Food Systems Environmental Footprint
2.3. Deriving Food Consumption Data from Dietary Guidelines
2.4. Environmental Footprints of Age-Gender Specified Food Consumption
3. Results
3.1. Future Population Size and Structure in China until 2100
3.2. Age-Gender Specified Food Pattern of the Chinese Population
3.3. Environmental Footprints of Age-Gender Specified Dietaries
3.4. Environmental Footprints for Food Consumption of Chinese Population toward 2100
4. Discussion
4.1. Linking the Food System and Its Environmental Footprints
4.2. Adopting Age-Gender Specified Food Requirements and Population Scenarios
4.3. Main Contributions and Policy Recommendations
4.4. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- United Nations. 2015. Available online: https://www.un.org (accessed on 17 January 2020).
- World Economic Forum. 2016. Available online: https://www.weforum.org (accessed on 15 January 2020).
- China State Council. 1996. Available online: http://www.gov.cn (accessed on 12 November 2019).
- Vermeulen, S.J.; Campbell, B.M.; Ingram, J.S.I. Climate change and food systems. Annu. Rev. Environ. Resour. 2012, 37, 195–222. [Google Scholar] [CrossRef] [Green Version]
- Whitmee, S.; Haines, A.; Beyrer, C.; Boltz, F.; Capon, A.G.; Dias, B.F.D.S.; Ezeh, A.; Frumkin, H.; Gong, P.; Head, P.; et al. Safeguarding human health in the Anthropocene epoch: Report of The Rockefeller Foundation–Lancet Commission on planetary health. Lancet 2015, 386, 1973–2028. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. In Climate Change 2014: Mitigation of Climate Change: Working Group III Contribution to the IPCC Fifth Assessment Report; Cambridge University Press: Cambridge Town, UK, 2015.
- Song, G.; Li, M.; Fullana-I-Palmer, P.; Williamson, D.; Wang, Y. Dietary changes to mitigate climate change and benefit public health in China. Sci. Total. Environ. 2017, 577, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Gao, X.; Fullana-I-Palmer, P.; Lv, D.; Zhu, Z.; Wang, Y.; Bayer, L.B. Shift from feeding to sustainably nourishing urban China: A crossing-disciplinary methodology for global environment-food-health nexus. Sci. Total. Environ. 2019, 647, 716–724. [Google Scholar] [CrossRef]
- Behrens, P.; Jong, J.C.K.-D.; Bosker, T.; Rodrigues, J.F.D.; De Koning, A.; Tukker, A. Evaluating the environmental impacts of dietary recommendations. Proc. Natl. Acad. Sci. USA 2017, 114, 13412–13417. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y. Research on the Impact of Universal Two-Child Policy on China’s Population Structure. J. Ezhou Univ. 2019, 26, 19–24. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, X.; Fu, F. Ecological Footprint and Water Footprint of Food Consumption in Beijing. Res. Sci. 2011, 33, 1145–1152. [Google Scholar]
- Behrens, J.H.; Barcellos, M.N.; Frewer, L.J.; Nunes, T.; Franco, B.D.G.M.; Destro, M.T.; Landgraf, M. Consumer purchase habits and views on food safety: A Brazilian study. Food Control. 2010, 21, 963–969. [Google Scholar] [CrossRef]
- Kumar, M.D.; Sivamohan, M.V.K.; Narayanamoorthy, A. The food security challenge of the food-land-water nexus in India. Food Secur. 2012, 4, 539e–556e. [Google Scholar] [CrossRef]
- FAO. Food Balances of China from 1961 to 2017. Available online: http://www.fao.org/faostat/en/#data/FBSH (accessed on 5 March 2020).
- Yang, G.; Wang, Y.; Zeng, Y.; Gao, G.F.; Liang, X.; Zhou, M.; Wan, X.; Yu, S.; Jiang, Y.; Naghavi, M.; et al. Rapid health transition in China, 1990–2010: Findings from the Global Burden of Disease Study 2010. Lancet 2013, 381, 1987–2015. [Google Scholar] [CrossRef]
- Zhuo, L.; Mekonnen, M.M.; Hoekstra, A. Consumptive water footprint and virtual water trade scenarios for China — With a focus on crop production, consumption and trade. Environ. Int. 2016, 94, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Savenije, H.H.G. Food consumption patterns and their effect on water requirement in China. Hydrol. Earth Syst. Sci. Discuss. 2008, 5, 27e–50e. [Google Scholar] [CrossRef] [Green Version]
- Springmann, M.; Godfray, H.C.J.; Rayner, M.; Scarborough, P. Analysis and valuation of the health and climate change cobenefits of dietary change. Proc. Natl. Acad. Sci. USA 2016, 113, 4146–4151. [Google Scholar] [CrossRef] [Green Version]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; de Haan, C. Livestock’s Long Shadow. Environmental Issues and Options; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2006. [Google Scholar]
- Tubiello, F.N.; Salvatore, M.; Cóndor Golec, R.D.; Ferrara, A.; Rossi, S.; Biancalani, R.; Federici, S.; Jacobs, H.; Flammini, A. Agriculture, Forestry and Other Land Use Emissions by Sources and Removals by Sinks: 1990–2011 Analysis; FAO Statistics Division: Rome, Italy, 2014. [Google Scholar]
- Raney, T.; Steinfeld, H.; Skoet, J. The state of food and agriculture 2009: Livestock in the balance. FAO Agric. 2009, 79, 572e–574e. [Google Scholar]
- Li, G.; Zhao, Y.; Cui, S. Effects of urbanization on arable land requirements in China, based on food consumption patterns. Food Secur. 2013, 5, 439–449. [Google Scholar] [CrossRef]
- Cao, Y.; Chai, L.; Yan, X.; Liang, Y. Drivers of the Growing Water, Carbon and Ecological Footprints of the Chinese Diet from 1961 to 2017. Int. J. Environ. Res. Public Health 2020, 17, 1803. [Google Scholar] [CrossRef] [Green Version]
- Chinese Nutrition Society. 2016. Available online: https://www.cnsoc.org (accessed on 11 January 2020).
- He, P.; Baiocchi, G.; Hubacek, K.; Feng, K.; Yu, Y. The environmental impacts of rapidly changing diets and their nutritional quality in China. Nat. Sustain. 2018, 1, 122–127. [Google Scholar] [CrossRef]
- González-García, S.; Esteve-Llorens, X.; Moreira, M.T.; Feijoo, G. Carbon footprint and nutritional quality of different human dietary choices. Sci. Total. Environ. 2018, 644, 77–94. [Google Scholar] [CrossRef]
- Aleksandrowicz, L.; Green, R.; Joy, E.J.M.; Smith, P.; Haines, A. The Impacts of Dietary Change on Greenhouse Gas Emissions, Land Use, Water Use, and Health: A Systematic Review. PLoS ONE 2016, 11, e0165797. [Google Scholar] [CrossRef] [Green Version]
- United Nations. World Population Prospects 2015. Available online: https://esa.un.org/unpd/wpp/Download/Standard/Population/ (accessed on 5 January 2020).
- National Health and Family Planning Commission of PRC. 2016. Available online: http://www.nhfpc.gov.c (accessed on 7 January 2020).
- National Development and Reform Commission of China. 2015. Available online: https://www.ndrc.gov.cn (accessed on 7 January 2020).
- United Nations Development Programme. 2020. Available online: https://www.undp.org (accessed on 6 January 2020).
- Zhai, Z.; Li, L.; Chen, J.; Chen, W. Application of population prediction in PADIS-INT software—Comparative analysis of MORTPAK, Spectrum and PADIS-INT. Pop. Res. 2017, 41, 84–97. [Google Scholar]
- Zhou, W. Forecasting China’s Population Trend in the Next 30 Years under the Comprehensive Two-Child Policy. Stat. Decis. 2018, 34, 109–112. [Google Scholar]
- Li, X.; Xu, Y.; Wu, X. Prediction of the Impact of the ‘Selective Two-child Policy’ on the Natural Changes in China’s Population. Econom. Manag. Rev. 2014, 5, 47–53. [Google Scholar]
- Zhai, Z.; Zhang, X.; Jin, Y. Demographic Consequences Analysis of the Immediate Release of Two-child Policy. Demograph. Res. 2014, 38, 3–17. [Google Scholar]
- National Bureau of Statistics of China. Available online: http://www.stats.gov.cn/tjsj/ndsj/ (accessed on 10 January 2020).
- Liu, Y.; Wu, S.; Wu, X. Analysis of the impact of universal two-child policy on population structure based on Leslie model. Software 2017, 38, 145–150. [Google Scholar] [CrossRef]
- Keyfitz, N. A Life Table That Agrees with the Data. J. Am. Stat. Assoc. 1966, 61, 305–312. [Google Scholar] [CrossRef]
- Andreev, E.M.; Kingkade, W.W. Average Age at Death in Infancy and Infant Mortality Level: Reconsidering the Coale-Demeny Formulas at Current Levels of Low Mortality. Demograph. Res. 2015, 33, 363–390. [Google Scholar] [CrossRef] [Green Version]
- The Sixth National Census, National Bureau of Statistics of China. Available online: http://www.stats.gov.cn/tjsj/pcsj/rkpc/6rp/indexch.htm (accessed on 21 January 2020).
- Wang, Q. A Study on the Cyclical Fluctuation of Sex Ratio at Birth. J. Demograph. 2012, 3, 3–5. [Google Scholar]
- DFEP. The Literature Database of Reviewed LCA Studies on Foods. 2013. Available online: http://www.barillacfn.com/wpcontent/uploads/2013/05/BCFN_DATABASE_FOR_DOUBLE_PYRAMID_2012.zip (accessed on 21 January 2020).
- Chapagain, A.K.; Hoekstra, A.Y. The blue, green and grey water footprint of rice from production and consumption perspectives. Ecolog. Econom. 2011, 70, 749–758. [Google Scholar] [CrossRef]
- Hess, T.; Andersson, U.; Mena, C.; Williams, A. The impact of healthier dietary scenarios on the global blue water scarcity footprint of food consumption in the UK. Food Policy 2015, 50, 1–10. [Google Scholar] [CrossRef]
- Liao, X.; Chai, L.; Xu, X.; Lu, Q.; Ji, J. “Grey water footprint and interprovincial virtual grey water transfers for China’s final electricity demands”. J. Clean. Product. 2019, 227, 111–118. [Google Scholar] [CrossRef]
- Galli, A.; Wiedmann, T.; Ercin, U.; Knoblauch, U.; Edwin, B.; Giljum, S. “Integrating Ecological, Carbon and Water footprint into a ‘Footprint Family’ of indicators: Definition and role in tracking human pressure on the planet”. Ecolog. Indicat. 2012, 16, 100–112. [Google Scholar] [CrossRef]
- Kyoto Protocol. 1997. Available online: https://unfccc.int/kyoto_protocol (accessed on 2 February 2020).
- Wackernagel, M.; Schulz, N.B.; Deumling, D.; Linares, A.C.; Jenkins, M.; Kapos, V.; Mo nfreda, C.; Loh, J.; Myers, N.; Norgaard, R.; et al. Tracking the ecological overshoot of the human economy. Proceed. Nat. Acad. Sci. USA 2012, 14, 9266–9271. [Google Scholar] [CrossRef] [Green Version]
- The Chinese Dietary Guidelines. 2016. Available online: https://www.cnsoc.org. (accessed on 2 February 2020).
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; Willett, W. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Beletshachew, S.; Verrill, L.; Booth, H.; Shelley, M.; Zansky, D.M.; Norton, S.C.; Heneo, O.L. Sex-Based Differences in Food Consumption: Foodborne Diseases Active Surveillance Network (FoodNet) Population Survey 2006–2007. Clin. Infect. Dis. 2012, 54 (Suppl. 5), S453–S457. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Li, M. “Navigating the Chinese Agricultural Economy through the Lens of Iowa”. Ag. Decis. Mak. 2018, 22, 1–6. [Google Scholar]
- Larrea-Gallegos, G.; Vázquez-Rowe, I. Optimization of the environmental performance of food diets in Peru combining linear programming and life cycle methods. Sci. Total Environ. 2020, 699, 134231. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, H.; Reay, D.S.; Higgins, P. The impact of global dietary guidelines on climate change. Glob. Environ. Chang. 2018, 49, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-Rowe, I.; Kahhat, R.; Larrea-Gallegos, G.; Ziegler-Rodriguez, K. Peru’s road to climate action: Are we on the right path? The role of life cyclemethods to improve Peruvian national contributions. Sci. Total Environ. 2019, 659, 249–266. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, K.; Lal, R. Environmental Impact of Organic Agriculture. Adv. Agron. 2016, 139, 99–152. [Google Scholar] [CrossRef]
- Zeng, Y.; Hesketh, T. The effects of China’s universal two-child policy. Lancet 2016, 388, 1930–1938. [Google Scholar] [CrossRef] [Green Version]
- Garnett, T. Livestock-related greenhouse gas emissions: Impacts and options for policy makers. Environ. Sci. Policy 2009, 12, 491–503. [Google Scholar] [CrossRef]
- Sarti, M.; John, S.K.S. Raising Long-Term Awareness: EU Environmental Policy and Education. In Education and Public Policy in the European Union; Springer: Cham, Switzerland, 2019; pp. 165–181. [Google Scholar]
- Chai, L.; Han, Z.; Liang, Y.; Su, Y.; Huang, G. Understanding the blue water footprint of households in China from a perspective of consumption expenditure. J. Clean. Prod. 2020, 262, 121321. [Google Scholar] [CrossRef]
- Aldaco, R.; Hoehn, D.; Margallo, M.; Aldaco, R.; Bala, A.; Batlle-Bayer, L.; Fullana-I-Palmer, P.; Vazquez-Rowe, I.; Gonzalez, M.; Durá, M.; et al. On the estimation of potential food waste reduction to support sustainable production and consumption policies. Food Policy 2018, 80, 24–38. [Google Scholar] [CrossRef]
- Chai, B.C.; Van Der Voort, J.R.; Grofelnik, K.; Eliasdottir, H.G.; Klöss, I.; Perez-Cueto, F. Which Diet has the Least Environmental Impact on our Planet? A Systematic Review of Vegan, Vegetarian and Omnivorous Diets. Sustainability 2019, 11, 4110. [Google Scholar] [CrossRef] [Green Version]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; Declerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
Parameters | 2018 | 2030 | 2100 | |
---|---|---|---|---|
Total fertility rate | Scenario 1 | 1.637 | 1.500 | 1.500 |
Scenario 2 | 1.637 | 1.800 | 1.600 | |
Scenario 3 | 1.637 | 2.000 | 2.000 | |
Life expectancy | Male | 74.6 | 82.46 | 82.46 |
Female | 77.6 | 85.38 | 85.38 | |
Death patterns | Coale-Demeny mortality table | |||
Sex ratio | 118. 06 | 107.00 | 107.00 |
Food Item | WFC (m3kg−1) | CFC (kg CO2ekg−1) | EFC (gm2kg−1) |
---|---|---|---|
wheat | 1.62 | 0.94 | 10.63 |
rice | 1.50 | 2.51 | 7.80 |
maize | 1.05 | 0.66 | 7.50 |
other cereals | 1.50 | 1.33 | 8.76 |
tubers | 0.56 | 0.18 | 3.00 |
other legumes | 2.44 | 1.00 | 21.50 |
soybean products | 2.44 | 1.00 | 21.50 |
nuts | 2.44 | 1.00 | 21.50 |
vegetables | 0.27 | 0.93 | 2.10 |
fruits | 1.05 | 0.67 | 4.05 |
dairy | 2.32 | 1.43 | 30.00 |
eggs | 3.28 | 3.23 | 14.41 |
beef | 15.41 | 21.36 | 112.63 |
lamb | 5.26 | 10.44 | 76.00 |
pork | 5.99 | 4.19 | 24.58 |
poultry | 4.33 | 3.41 | 24.50 |
aquatic products | 1.63 | 3.85 | 78.25 |
cooking oils | 6.25 | 2.97 | 43.97 |
sugars | 0.52 | 1.35 | 4.57 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, A.; Chai, L.; Liao, X. Demographic Scenarios of Future Environmental Footprints of Healthy Diets in China. Foods 2020, 9, 1021. https://doi.org/10.3390/foods9081021
Han A, Chai L, Liao X. Demographic Scenarios of Future Environmental Footprints of Healthy Diets in China. Foods. 2020; 9(8):1021. https://doi.org/10.3390/foods9081021
Chicago/Turabian StyleHan, Aixi, Li Chai, and Xiawei Liao. 2020. "Demographic Scenarios of Future Environmental Footprints of Healthy Diets in China" Foods 9, no. 8: 1021. https://doi.org/10.3390/foods9081021
APA StyleHan, A., Chai, L., & Liao, X. (2020). Demographic Scenarios of Future Environmental Footprints of Healthy Diets in China. Foods, 9(8), 1021. https://doi.org/10.3390/foods9081021