Nutritional and Physicochemical Characterization of Strychnos madagascariensis Poir (Black Monkey Orange) Seeds as a Potential Food Source
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Flour Samples
2.2. Macronutrient Determination
2.3. Mineral Analysis
2.4. Quantification of Strychnine
2.5. Gas Chromatography Mass Spectrometry (GC–MS) Analysis
2.6. Water and Oil Absorption Index
2.7. Swelling Power and Solubility
2.8. Fourier Transform Infrared (FTIR) Spectroscopy
2.9. Pasting Properties
2.10. Gel Texture Properties
2.11. Colour Properties
2.12. Statistical Analysis
3. Results and Discussion
3.1. Nutritional Evaluation
3.1.1. Micro and Macronutrient Composition
3.1.2. GC–MS Analysis
3.2. Flour Characterization
3.2.1. Water and Oil Absorption Index
3.2.2. Solubility and Swelling Power
3.2.3. FTIR
3.2.4. Pasting and Textural Properties
3.2.5. Colour Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abdulmumin, U.; Umar, K.J.; Muhammad, M.U.; Abubakar, L. Nutritional and Anti-Nutritional Composition of Monkey Orange (Strychnos innocua Del) Fruit Seeds Grown in Zuru, Nigeria. Afr. J. Food Sci. Technol. 2017, 8, 56–62. [Google Scholar]
- Shaffer, L.J. A Landscape of Possibilities: Seeking Food Security in Matutúine District, Mozambique. Ecolog. Environ. Anthropol. (Univ. Ga.) 2008, 4, 37–53. [Google Scholar]
- Van Wyk, B.E. The Potential of South African Plants in the Development of New Food and Beverage Products. S. Afr. J. Bot. 2006, 77, 857–868. [Google Scholar] [CrossRef] [Green Version]
- Mabhaudhi, T.; Chimonyo, V.G.P.; Modi, A.T. Status of Underutilised Crops in South Africa: Opportunities for Developing Research Capacity. Sustainability 2017, 9, 1569. [Google Scholar] [CrossRef] [Green Version]
- Govender, M. Strychnos madagascariensis. 2008. Available online: www.pza.sanbi.org/strychnos-madagacariensis (accessed on 30 March 2020).
- Bjarklev, A.; Kjærgård, B.; Jelsøe, E.; Hauggaard-Nielsen, H. Fostering Sustainability in New Value Chains for (Re)Adopting Underutilized Crops. Eur. J. Sustain. Dev. 2019, 8, 1–21. [Google Scholar] [CrossRef]
- Goering, H.K.; Van Soest, P.J. Forage fiber Analysis (Apparatus Reagents, Procedures and Some Applications). In Agriculture Handbook; United States Department of Agriculture: Washington, DC, USA, 1970. [Google Scholar]
- Al-Mhanna, N.M.; Huebner, H.; Buchholz, R. Analysis of the Sugar Content in Food Products by Using Gas Chromatography Mass Spectrometry and Enzymatic Methods. Foods 2018, 7, 185. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis, 13th ed.; Association of Analytical Chemists: Washington, DC, USA, 1980. [Google Scholar]
- SAMRC. South African Foods Data System. 2018. Available online: http://safoods.mrc.ac.za/faq.html (accessed on 5 March 2019).
- European Food Safety Authority. 2017. Available online: https://www.efsa.europa.eu/sites/default/files/assets/DRV_Summary_tables_jan_17.pdf (accessed on 17 June 2020).
- World Health Organization. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/healthy-diet (accessed on 17 June 2020).
- Santos, H.M.; Coutinho, J.P.; Amorim, F.A.C.; Lobo, I.P.; Moreira, L.S.; Nascimento, M.M.; De Jesus, R.M. Microwave-Assisted Digestion Using Diluted HNO3 and H2O2 for Macro and Micro Elements Determination in Guarana Samples by ICP OES. Food Chem. 2019, 273, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Expert Group on Vitamins and Minerals (2003), Safe Upper Levels for Vitamins and Minerals. Available online: https://cot.food.gov.uk/committee/committee-on-toxicity/cotreports/cotjointreps/evmreport (accessed on 11 June 2020).
- NIOSH Manual of Analytical Methods. Strychnine. 1996. Available online: https://www.cdc.gov/niosh/docs/96-135/pdf/96-135 (accessed on 17 April 2020).
- Adebo, O.A.; Kayitesi, E.; Tugizimana, F.; Njobeh, P.B. Differential Metabolic Signatures in Naturally and Lactic Acid Bacteria (LAB) Fermented Ting (a Southern African food) with Different Tannin Content, as Revealed by Gas Chromatography Mass Spectrometry (GC-MS)-Based Metabolomics. Food Res. Int. 2019, 121, 326–335. [Google Scholar] [CrossRef]
- Julianti, E.; Rusmarilin, H.; Yusraini, E. Functional and Rheological Properties of Composite Flour from Sweet Potato, Maize, Soybean and Xanthan Gum. J. Saudi Soc. Agric. Sci. 2017, 16, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Ma, Y.; Menager, L.; Sun, D. Physicochemical Properties of Starch and Flour from Different Rice Cultivars. Food Bioprocess Technol. 2010, 5, 626–637. [Google Scholar] [CrossRef]
- Durazzo, A.; Kiefer, J.; Lucarini, M.; Camilli, E.; Marconi, S.; Gabrielli, P.; Aguzzi, A.; Gambelli, L.; Lisciani, S.; Marletta, L. Qualitative Analysis of Traditional Italian Dishes: FTIR Approach. Sustainability 2018, 10, 4112. [Google Scholar] [CrossRef] [Green Version]
- Sujka, K.; Koczoń, P.; Ceglińska, A.; Reder, M.; Ciemniewska-Żytkiewicz, H. The Application of FT-IR Spectroscopy for Quality Control of Flours Obtained from Polish Producers. J. Anal. Methods Chem. 2017, 2017, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kongolo, J.I.; Da Silva, L.S.; Wokadala, O.C.; Du Plessis, B.; Husselman, J.; Ngeobo, M.E.K.; Emmambux, N.M.; Daneel, M. Pasting, Thermal, Gel Texture, Resistant Starch and Colour Properties of Unripe Banana Flour from 10 Dessert Banana Varieties Cultivated in South Africa. Food Meas. 2017, 11, 1056–1064. [Google Scholar] [CrossRef]
- Wolmarans, P.; Danster, N.; Dalton, A.; Rossouw, K.; Schönfeldt, H. Condensed Food Composition Tables for South Africa; Medical Research Council: Cape Town, Africa, 2010; pp. 1–126. [Google Scholar]
- Schweizer, T.F.; Würsch, P. The Physiological and Nutritional Importance of Dietary Fiber. Experientia 1991, 47, 181–186. [Google Scholar] [CrossRef]
- Maćkowiak, K.; Torlińska-Walkowiak, N.; Torlińska, B. Dietary Fiber as an Important Constituent of the Diet. Adv. Hyg. Exp. Med. 2016, 70, 104–109. [Google Scholar]
- Carlson, J.L.; Erickson, J.M.; Lloyd, B.B.; Slavin, J. Health Effects and Sources of Prebiotic Dietary Fiber. Curr. Dev. Nutr. 2018, 2, nzy005. [Google Scholar] [CrossRef] [Green Version]
- Jordaan, E.; Berg, V.L.V.D.; Van Rooyen, F.C.; Walsh, C.M. Obesity is Associated with Anaemia and Iron Deficiency Indicators among Women in the Rural Free State, South Africa. S. Afr. J. Clin. Nutr. 2018, 1, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Phatlhane, D.V.; Zemlin, A.E.; Matsha, T.E.; Hoffman, M.; Naidoo, N.; Ichihara, K.; Smit, F.; Erasmus, R.T. The Iron Status of a Healthy South African Adult Population. Clin. Chim. Acta 2016, 460, 240–245. [Google Scholar] [CrossRef]
- Chen, J.; Qu, Y.; Wang, D.; Peng, P.; Cai, H.; Gao, Y.; Chen, Z.; Cai, B. Pharmacological Evaluation of Total Alkaloids from Nux Vomica: Effect of Reducing Strychnine Contents. Molcules 2014, 19, 4395–4408. [Google Scholar] [CrossRef] [Green Version]
- Otter, J.; D’Orazio, J.L. Strychnine Toxicity. 2019. Available online: https://www.ncbi.nlm.nih.gov/books/NBK459306/. (accessed on 26 March 2019).
- Chan, T.Y.K. Herbal Medicine Causing Likely Strychnine Poisoning. Hum. Exp. Toxicol. 2002, 21, 467–468. [Google Scholar] [CrossRef]
- Maji, A.K.; Banerji, P. Strychnos nox-vomica: A Poisonous Plant with Various Aspects of Therapeutic Significance. J. Basic Clin. Pharm. 2017, 8, 87–103. [Google Scholar]
- Choi, Y.H.; Sohn, Y.M.; Kim, C.Y.; Oh, K.Y.; Kim, J. Analysis of Strychnine from Detoxified Strychnos nux-vomica Seeds Using Liquid Chromatography-Electrospray Mass Spectrometry. J. Ethnopharmacol. 2004, 93, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Singh, S.; Kumari, D. Evaluation of Functional Properties of Composite Flours and Sensorial Attributes of Composite Flour Biscuits. J. Food Sci. Technol. 2015, 52, 3681–3688. [Google Scholar] [CrossRef] [PubMed]
- Munoz, E.; Garcia-Manrique, J.A. Water Absorption Behaviour and its Effect on the Mechanical Properties of Flax Fiber Reinforced Bioepoxy Composites. Inter. J. Polym. Sci. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, M.C.; De Carvalho, C.W.P.; Andrade, C.T. The Effects of Water and Sucrose Contents on the Physicochemical Properties of Non-Directly Expanded Rice Flour Extrudates. Food Sci. Technol. 2009, 29, 661–666. [Google Scholar] [CrossRef] [Green Version]
- Chemistry LibreTexts. Available online: https://chem.libretexts.org/Bookshelves/Ancillary_Materials/Reference/Reference_Tables/Spectroscopic_Parameters/Infrared_Spectroscopy_Absorption_Table (accessed on 17 February 2020).
- Amir, R.M.; Anjum, F.M.; Khan, M.I.; Khan, M.R.; Pasha, I.; Nadeem, M. Application of Fourier Transform Infrared (FTIR) Spectroscopy for the Identification of Wheat Varieties. J. Food Sci. Technol. 2011, 50, 1018–1023. [Google Scholar] [CrossRef] [Green Version]
- Shafie, B.; Cheng, S.C.; Lee, H.H.; Yiu, P.H. Characterization and Classification of Whole-Grain Rice Based on Rapid Visco Analyser (RVA) Pasting Profile. Int. Food Res. J. 2016, 23, 2138–2143. [Google Scholar]
- Collar, C.; Santos, E.; Rosell, C.M. Significance of Dietary Fiber on the Viscometric Pattern of Pasted and Gelled Flour-Fiber Blends. Cereal Chem. J. 2006, 83, 370–376. [Google Scholar] [CrossRef]
- Yazdanseta, P.; Tarzi, B.G.; Gharachorloo, M. Effect of Some Hydrocolloids on Reducing Oil Uptake and Quality Factors of Fermented Donuts. J. Biodivers. Environ. Sci. 2015, 6, 233–241. [Google Scholar]
- Pongsawatmanit, R.; Thanasukarn, P.; Ikeda, S. Effect of Sucrose on the RVA Viscosity Parameters, Water Activity and Freezable Water Fraction of Cassava Starch Suspensions. Sci. Asia 2002, 28, 129–134. [Google Scholar] [CrossRef]
- Manzocco, L.; Calligaris, S.; Mastrocola, D.; Nicoli, M.C.; Lerici, C.R. Review of Non-Enzymatic Browning and Antioxidant Capacity in Processed Foods. Trends Food Sci. Technol. 2000, 11, 340–346. [Google Scholar] [CrossRef]
Nutritional Category | Composition | NRV | Percentage Contribution to NRVs |
---|---|---|---|
Calories | 189.03 kcal ± 0.00 | 2000 kcal | 9.45% |
Total Fat | 0.95 g ± 0.00 | 44.44–77.78 g | 2.14% |
Total Carbohydrates Total fibre Sugar Starch | 89.85 g 53 g ± 3.65 41 g ± 4.69 0 g ± 0.00 | 225–300 g 25 g <50 g 150–225 g | 34.94% 200% 82% 0% |
Protein | 8.27 g ± 0.13 | 49.8 g | 16.61% |
Strychnine | 0.08% ± 0.04 | N/A | N/A |
Ca | 148.03 mg ± 6.00 | 700 mg/day | 21.15% |
Mg | 79.25 mg ± 1.00 | 285 mg/day | 27.80% |
K | 594.36 mg ± 4.00 | 3500 mg/day | 16.98% |
P | 94.20 mg ± 2.00 | 2400 mg/day | 3.93% |
Na | 16.45 mg ± 1.00 | 1600 mg/day | 1.03% |
Zn | 1.36 mg ± 0.02 | 42 mg/day | 3.24% |
Mn | 9.86 mg ± 0.1 | 12.2 mg/day | 80.82% |
Fe | 15.78 mg ± 0.4 | 6.7 mg/day (males) 11.4 mg/day (females) | 235.52% 138.42% |
Cu | 0.72 mg ± 0.01 | 10 mg/day | 7.2% |
Compound | Retention Time (s) | Mass (BPI) | S. madagascariensis | Wheat | Brown rice | Chickpea | Coconut | Tapioca |
---|---|---|---|---|---|---|---|---|
Pyrazole | 179.858 | 43.0179 | X | X | X | |||
Vinyl acrylate | 204.113 | 55.018 | X | X | ||||
Ethylene acetal | 189.010 | 73.0284 | X | X | ||||
Furfuryl alcohol | 214.603 | 98.0364 | X | |||||
dl-Alanine ethyl ester | 222.354 | 44.0258 | X | |||||
Methoxy-phenyl-oxime | 229.186 | 133.0137 | X | X | X | X | ||
Cyclotene | 309.017 | 112.0519 | X | |||||
Furaneol | 342.05 | 57.0336 | X | |||||
Butanoic acid | 240.122 | 112.0519 | X | |||||
Methylcyclopentenolone | 309.017 | 112.0519 | X | |||||
Hydratropaldehyde | 376.572 | 105.0699 | X | |||||
Silicon tetrafluoride | 456.775 | 85.0284 | X | |||||
2-Acetoxy-5-hydroxyacetophenone | 488.172 | 137.0234 | X | |||||
Styrene glycol | 491.52 | 107.0493 | X | |||||
Trifluoromethylcinnamic acid | 726.178 | 199.0601 | X | |||||
a-Dnp-L-arginine | 913.886 | 69.0955 | X | |||||
Benzenepropanoic acid | 496.505 | 107.0604 | X | |||||
Cyclo(leucyloprolyl) | 1043.49 | 70.0653 | X | |||||
Quinoline | 502.308 | 138.0676 | X |
Flour Type | Peak Viscosity (RVU) | Trough Viscosity (RVU) | Breakdown Viscosity (RVU) | Final Viscosity (RVU) | Setback Viscosity (RVU) | Peak Time (min) | Pasting Temp (°C) | Gel Texture (N) |
---|---|---|---|---|---|---|---|---|
S. madagascariensis | 37788 ± 2016 b | 20580 ± 96 c | 17208 ± 1944 b | 62928 ± 552 e | 42348 ± 492 e | 2 ± 0.1 a | 50 ± 0.1 a | 3 ± 0.4 a |
Coconut | 7548 ± 1008 d | 3552 ± 864 a | 3984 ± 600 a | 12804 ± 3240 a | 9240 ± 2508 b | 5 ± 0.1 c | 93 ± 0.4 f | - |
Brown rice | 18924 ± 888 c | 15000 ± 432 b | 3924 ± 1116 a | 34416 ± 408 c | 19416 ± 624 c | 6 ± 0.3 cd | 86 ± 0.5 e | 14 ± 0.7 d |
Wheat | 33540 ± 744 b | 13980 ± 252 b | 19560 ± 492 b | 31848 ± 1032 c | 17868 ± 828 c | 5 ± 0 cd | 67 ± 0.5 b | 11 ± 1.6 c |
Tapioca | 78228 ± 5796 a | 14124 ± 2016 b | 64092 ± 4944 c | 40872 ± 3804 d | 26736 ± 2496 d | 3 ± 0.1 b | 70 ± 0.5 c | - |
Chickpea | 18132 ± 516 c | 15744 ± 528 b | 2388 ± 84 a | 20184 ± 600 b | 4440 ± 72 a | 6 ± 0.2 d | 78 ± 0.4 d | 5 ± 0.7 b |
Sample | L* | a* | b* | Chroma | FCI |
---|---|---|---|---|---|
S. madagascariensis | 81 ± 0.3 a | 0.9 ± 0.1 e | 12.7 ± 0.6 c | 12.7 ± 0.6 c | 68.5 ± 0.6 b |
Coconut | 86 ± 0.2 c | 0.2 ± 0.1 b | 11.3 ± 0.4 b | 11.3 ± 0.4 b | 74.9 ± 0.5 c |
Brown rice | 84 ± 0.3 b | 0.5 ± 0.1 c | 10.6 ± 0.3 b | 10.6 ± 0.3 b | 74.3 ± 0.1 c |
Wheat | 87 ± 0.3 d | 0.6 ± 0.1 d | 10.7 ± 0.2 b | 10.7 ± 0.2 b | 76.8 ± 0.5 d |
Tapioca | 93 ± 0.2 e | -0.2 ± 0.1 a | 3.8 ± 0.2 a | 3.8 ± 0.2 a | 89.3 ± 0.3 e |
Chickpea | 86 ± 0.3 c | 1.1 ± 0.1 f | 19.5 ± 0.2 d | 19.5 ± 0.2 d | 66.6 ± 0.1 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Rayne, K.K.; Adebo, O.A.; Ngobese, N.Z. Nutritional and Physicochemical Characterization of Strychnos madagascariensis Poir (Black Monkey Orange) Seeds as a Potential Food Source. Foods 2020, 9, 1060. https://doi.org/10.3390/foods9081060
van Rayne KK, Adebo OA, Ngobese NZ. Nutritional and Physicochemical Characterization of Strychnos madagascariensis Poir (Black Monkey Orange) Seeds as a Potential Food Source. Foods. 2020; 9(8):1060. https://doi.org/10.3390/foods9081060
Chicago/Turabian Stylevan Rayne, Kiana Kirsty, Oluwafemi Ayodeji Adebo, and Nomali Ziphorah Ngobese. 2020. "Nutritional and Physicochemical Characterization of Strychnos madagascariensis Poir (Black Monkey Orange) Seeds as a Potential Food Source" Foods 9, no. 8: 1060. https://doi.org/10.3390/foods9081060
APA Stylevan Rayne, K. K., Adebo, O. A., & Ngobese, N. Z. (2020). Nutritional and Physicochemical Characterization of Strychnos madagascariensis Poir (Black Monkey Orange) Seeds as a Potential Food Source. Foods, 9(8), 1060. https://doi.org/10.3390/foods9081060