New Formulation towards Healthier Meat Products: Juniperus communis L. Essential Oil as Alternative for Sodium Nitrite in Dry Fermented Sausages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Juniperus communis L. Essential Oil
GC-MS Profile of Terpenoid Compounds
2.2. Samples
2.3. Preparation of Dry Fermented Pork Sausages
2.4. Physico-Chemical Analysis
2.5. Microbiological Analysis
2.6. Sensory Analyses
2.7. Statistical Analysis
3. Results and Discussion
3.1. Chemical Profile of JEO
3.2. pH and Instrumental Parameters of Color of Dry Fermented Sausages
3.3. TBARS Values of Dry Fermented Sausages
3.4. Microbiological Analysis of Dry Fermented Sausages
3.5. Texture Analysis of Dry Fermented Sausages
3.6. Sensory Analysis of Dry Fermented Sausages
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Chen, X.; Mi, R.; Qi, B.; Xiong, S.; Li, J.; Qu, C.; Qiao, X.; Chen, W.; Wang, S. Effect of proteolytic starter culture isolated from Chinese Dong fermented pork (Nan x Wudl) on microbiological, biochemical and organoleptic attributes in dry fermented sausages. Food Sci. Hum. Wellness 2020, 3. in press. [Google Scholar]
- Šojić, B.V.; Petrović, L.S.; Mandić, A.I.; Sedej, I.J.; Džinić, N.R.; Tomović, V.M.; Jokanović, M.; Tasić, T.; Škaljac, S.; Ikonić, P.M. Lipid oxidative changes in traditional dry fermented sausage Petrovská klobása during storage. Hem. Ind. 2014, 68, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Van Ba, H.; Seo, H.W.; Cho, S.H.; Kim, Y.S.; Kim, J.H.; Ham, J.S.; Park, P.Y.; Pil-Nam, S. Effects of extraction methods of shiitake by-products on their antioxidant and antimicrobial activities in fermented sausages during storage. Food Control 2017, 79, 109–118. [Google Scholar] [CrossRef]
- Oswell, N.J.; Harshavardhan, T.; Ronald, B.P. Practical use of natural antioxidants in meat products in the US: A review. Meat Sci. 2018, 145, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Tomović, V.; Jokanović, M.; Šojić, B.; Škaljac, S.; Ivić, M. Plants as natural antioxidants for meat products. In Proceedings of the 59th International Meat Industry Conference MEATCON2017, IOP Conference Series: Earth and Environmental Science, Zlatibor, Serbia, 1–4 October 2017. [Google Scholar]
- Jayasena, D.D.; Cheorun, J. Essential oils as potential antimicrobial agents in meat and meat products: A review. Trends Food Sci. Technol. 2013, 34, 96–108. [Google Scholar] [CrossRef]
- Gómez, B.; Barba, F.J.; Domínguez, R.; Putnik, P.; Bursać Kovačević, D.; Pateiro, M.; Toldrá, F.; Lorenzo, J.M. Microencapsulation of antioxidant compounds through innovative technologies and its specific application in meat processing. Trends Food Sci. Technol. 2018, 82, 135–147. [Google Scholar] [CrossRef]
- Abd Hamid, N.F.H.; Khan, M.M.; Hoon, L.L. Assessment of nitrate, nitrite and chloride in selected cured meat products and their exposure to school children in Brunei Darussalam. J. Food Compos. Anal. 2020, 91, 103520. [Google Scholar] [CrossRef]
- European Commission (EC). Directive 2006/52/EC of the European Parliament and of the Council of 5 July 2006 amending Directive 95/2/EC on food additives other than colours and sweeteners and Directive 94/35/EC on sweeteners for use in foodstuffs. Off. J. Eur. Union 2006, 204, 10–22. [Google Scholar]
- Choi, J.H.; Song, D.H.; Hong, J.S.; Ham, Y.K.; Ha, J.H.; Choi, Y.S.; Kim, H.W. Nitrite scavenging impact of fermented soy sauce in vitro and in a pork sausage model. Meat Sci. 2019, 151, 36–42. [Google Scholar] [CrossRef]
- Honikel, K.O. The use and control of nitrate and nitrite for the processing of meat products. Meat Sci. 2008, 78, 68–76. [Google Scholar] [CrossRef]
- Jin, S.K.; Choi, J.S.; Yang, H.S.; Park, T.S.; Yim, D.G. Natural curing agents as nitrite alternatives and their effects on the physicochemical, microbiological properties and sensory evaluation of sausages during storage. Meat Sci. 2018, 146, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, S.S.; Granby, K.; Duedahl-Olesen, L. Formation and mitigation of N-nitrosamines in nitrite preserved cooked sausages. Food Chem. 2015, 174, 516–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slima, S.B.; Ktari, N.; Trabelsi, I.; Triki, M.; Feki-Tounsi, M.; Moussa, H.; Salah, R.B. Effect of partial replacement of nitrite with a novel probiotic Lactobacillus plantarum TN8 on color, physico-chemical, texture and microbiological properties of beef sausages. LWT Food Sci. Technol. 2017, 86, 219–226. [Google Scholar] [CrossRef]
- Posthuma, J.A.; Rasmussen, F.D.; Sullivan, G.A. Effects of nitrite source, reducing compounds, and holding time on cured color development in a cured meat model system. LWT Food Sci. Technol. 2018, 95, 47–50. [Google Scholar] [CrossRef]
- Šojić, B.; Pavlić, B.; Ikonić, P.; Tomović, V.; Ikonić, B.; Zeković, Z.; Kocić-Tanackov, S.; Jokanović, M.; Škaljac, S.; Ivić, M. Coriander essential oil as natural food additive improves quality and safety of cooked pork sausages with different nitrite levels. Meat Sci. 2019, 157, 107879. [Google Scholar] [CrossRef]
- Šojić, B.; Pavlić, B.; Tomović, V.; Ikonić, P.; Zeković, Z.; Kocić-Tanackov, S.; Đurović, S.; Škaljac, S.; Jokanović, M.; Ivić, M. Essential oil versus supercritical fluid extracts of winter savory (Satureja montana L.)—Assessment of the oxidative, microbiological and sensory quality of fresh pork sausages. Food Chem. 2019, 287, 280–286. [Google Scholar] [CrossRef]
- Ribeiro-Santos, R.; Andrade, M.; de Melo, N.R.; Sanches-Silva, A. Use of essential oils in active food packaging: Recent advances and future trends. Trends Food Sci. Technol. 2017, 61, 132–140. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Meira, N.V.; Holley, R.A.; Bordin, K.; de Macedo, R.E.; Luciano, F.B. Combination of essential oil compounds and phenolic acids against Escherichia coli O157: H7 in vitro and in dry-fermented sausage production. Int. J. Food Microbiol. 2017, 260, 59–64. [Google Scholar] [CrossRef]
- Kocić-Tanackov, S.; Dimić, G.; Đerić, N.; Mojović, L.; Tomović, V.; Šojić, B.; Đukić-Vuković, A.; Pejin, J. Growth control of molds isolated from smoked fermented sausages using basil and caraway essential oils, in vitro and in vivo. LWT Food Sci. Technol. 2020, 123, 109095. [Google Scholar] [CrossRef]
- Soncu, E.D.; Özdemir, N.; Arslan, B.; Küçükkaya, S.; Soyer, A. Contribution of surface application of chitosan–thyme and chitosan–rosemary essential oils to the volatile composition, microbial profile, and physicochemical and sensory quality of dry-fermented sausages during storage. Meat Sci. 2020, 166, 108127. [Google Scholar] [CrossRef] [PubMed]
- Šojić, B.; Pavlić, B.; Tomović, V.; Kocić-Tanackov, S.; Đurović, S.; Zeković, Z.; Belović, M.; Torbica, A.; Jokanović, M.; Uromović, N.; et al. Tomato pomace extract and organic peppermint essential oil as effective sodium nitrite replacement in cooked pork sausages. Food Chem. 2020, 330, 127202. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zeng, X.; Sun, Z.; Wu, A.; He, J.; Dang, Y.; Pan, D. Production of a safe cured meat with low residual nitrite using nitrite substitutes. Meat Sci. 2020, 162, 108027. [Google Scholar] [CrossRef] [PubMed]
- Höferl, M.; Stoilova, I.; Schmidt, E.; Wanner, J.; Jirovetz, L.; Trifonova, D.; Krastev, L.; Krastanov, A. Chemical composition and antioxidant properties of Juniper berry (Juniperus communis L.) essential oil. Action of the essential oil on the antioxidant protection of Saccharomyces cerevisiae model organism. Antioxidants 2014, 3, 81–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, S.; Tiwari, S.; Kumar, A.; Niranjan, A.; Chand, J.; Lehri, A.; Chauhan, P.S. Antioxidant and anti-aging potential of Juniper berry (Juniperus communis L.) essential oil in Caenorhabditis elegans model system. Ind. Crop. Prod. 2018, 120, 113–122. [Google Scholar] [CrossRef]
- Vasilijević, B.; Mitić-Ćulafić, D.; Djekic, I.; Marković, T.; Knežević-Vukčević, J.; Tomasevic, I.; Nikolić, B. Antibacterial effect of Juniperus communis and Satureja montana essential oils against Listeria monocytogenes in vitro and in wine marinated beef. Food Control 2019, 100, 247–256. [Google Scholar] [CrossRef]
- Schelz, Z.; Molnar, J.; Hohmann, J. Antimicrobial and antiplasmid activities of essential oils. Fitoterapia 2006, 77, 279–285. [Google Scholar] [CrossRef]
- Selim, S. Antimicrobial activity of essential oils against Vancomycin-Resistant enterococci (VRE) and Escherichia coli O157: H7 in feta soft cheese and minced beef meat. Braz. J. Microbiol. 2011, 42, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Šojić, B.; Tomović, V.; Jokanović, M.; Ikonić, P.; Džinić, N.; Kocić-Tanackov, S.; Popović, L.; Tasić, T.; Savanović, J.; Živković Šojić, N. Antioxidant activity of Juniperus communis L. essential oil in cooked pork sausages. Czech J. Food Sci. 2017, 35, 189–193. [Google Scholar]
- Pavlić, B.; Bera, O.; Teslić, N.; Vidović, S.; Parpinello, G.; Zeković, Z. Chemical profile and antioxidant activity of sage herbal dust extracts obtained by supercritical fluid extraction. Ind. Crop. Prod. 2018, 120, 305–312. [Google Scholar] [CrossRef]
- ISO. Meat and Meat Products—Determination of Moisture Content (Reference Method); ISO 1442:1997; International Organization for Standardization: Geneva, Switzerland, 1997. [Google Scholar]
- ISO. Meat and Meat Products—Determination of Nitrogen Content; ISO 937:1978; International Organization for Standardization: Geneva, Switzerland, 1978. [Google Scholar]
- ISO. Meat and Meat Products—Determination of Total Fat Content; ISO 1443:1973; International Organization for Standardization: Geneva, Switzerland, 1973. [Google Scholar]
- ISO. Meat and Meat Products—Determination of Total Ash; ISO 936:1998; International Organization for Standardization: Geneva, Switzerland, 1998. [Google Scholar]
- Ikonić, P.; Jokanović, M.; Petrović, L.; Tasić, T.; Škaljac, S.; Šojić, B.; Džinić, N.; Tomović, V.; Tomić, J.; Danilović, B.; et al. Effect of starter culture addition and processing method on proteolysis and texture profile of traditional dry-fermented sausage Petrovská klobása. Int. J. Food Proper. 2016, 19, 1924–1937. [Google Scholar] [CrossRef] [Green Version]
- Botsoglou, N.A.; Fletouris, D.J.; Papageorgiou, G.E.; Vassilopoulos, V.N.; Mantis, A.J.; Trakatellis, A.G. Rapid, sensitive and specific thiobarbituric acid method for measurement of lipid peroxidation in animal tissue, food and feedstuff samples. J. Agric. Food Chem. 1994, 42, 1931–1937. [Google Scholar] [CrossRef]
- ISO. Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 1: Colony Count at 30 °C by the Pour Plate Technique; ISO 4833-1:2013; International Organization for Standardization: Geneva, Switzerland, 2013. [Google Scholar]
- ISO. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Mesophilic Lactic Acid Bacteria—Colony-Count Technique at 30 °C; ISO 15214:1998; International Organization for Standardization: Geneva, Switzerland, 1998. [Google Scholar]
- ISO. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of beta-glucuronidase-positive Escherichia coli—Part 2: Colony-Count Technique at 44 Degrees C Using 5-bromo-4-chloro-3-indolyl beta-D-glucuronide; ISO 16649-2:2001; International Organization for Standardization: Geneva, Switzerland, 2001. [Google Scholar]
- ISO. Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria Monocytogenes and of Listeria spp.—Part 2: Enumeration Method; ISO 11290-2:2017; International Organization for Standardization: Geneva, Switzerland, 2017. [Google Scholar]
- ISO. Microbiology of the food chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp; ISO 6579-1:2017; International Organization for Standardization: Geneva, Switzerland, 2017. [Google Scholar]
- ISO. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Sulfite-Reducing Bacteria Growing Under Anaerobic Conditions; ISO 15213:2003; International Organization for Standardization: Geneva, Switzerland, 2003. [Google Scholar]
- ISO. Sensory Analysis—General Guidelines for The Selection, Training And Monitoring of Selected Assessors and Expert Sensory Assessors; ISO 8586:2012; International Organization for Standardization: Geneva, Switzerland, 2012. [Google Scholar]
- ISO. Sensory Analysis—General Guidance for the Design of Test Rooms; ISO 8589: 2007; International Organization for Standardization: Geneva, Switzerland, 2007. [Google Scholar]
- Meilgaard, M.; Civille, G.V.; Carr, B.T. Selection and training of panel members. In Sensory Evaluation Techniques, 3rd ed.; Taylor & Francis Group: Boca Raton, FL, USA, 1999; pp. 174–176. [Google Scholar]
- Falcão, S.; Bacém, I.; Igrejas, G.; Rodrigues, P.J.; Vilas-Boas, M.; Amaral, J.S. Chemical composition and antimicrobial activity of hydrodistilled oil from juniper berries. Ind. Crop. Prod. 2018, 124, 878–884. [Google Scholar] [CrossRef] [Green Version]
- Radoukova, T.; Zheljazkov, V.D.; Semerdjieva, I.; Dincheva, I.; Stoyanova, A.; Kačániová, M.; Salamon, I. Differences in essential oil yield, composition, and bioactivity of three juniper species from Eastern Europe. Ind. Crop. Prod. 2018, 124, 643–652. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Astatkie, T.; Jeliazkova, E.A.; Heidel, B.; Ciampa, L. Essential oil content, composition and bioactivity of Juniper species in Wyoming, United States. Nat. Prod. Commun. 2017, 12, 1934578X1701200215. [Google Scholar] [CrossRef] [Green Version]
- Orav, A.; Koel, M.; Kailas, T.; Müürisepp, M. Comparative analysis of the composition of essential oils and supercritical carbon dioxide extracts from the berries and needles of Estonian juniper (Juniperus communis L.). Proc. Chem. 2010, 2, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Marković, M.S.; Radosavljević, D.B.; Pavićević, V.P.; Ristić, M.S.; Milojević, S.Ž.; Bošković-Vragolović, N.M.; Veljković, V.B. Influence of common juniper berries pretreatment on the essential oil yield, chemical composition and extraction kinetics of classical and microwave-assisted hydrodistillation. Ind. Crop. Prod. 2018, 122, 402–413. [Google Scholar] [CrossRef]
- Kurćubić, V.S.; Mašković, P.Z.; Vujić, J.M.; Vranić, D.V.; Vesković-Moračanin, S.M.; Okanović, Đ.G.; Lilić, S.V. Antioxidant and antimicrobial activity of Kitaibelia vitifolia extract as alternative to the added nitrite in fermented dry sausage. Meat Sci. 2014, 97, 459–467. [Google Scholar] [CrossRef]
- Lashgari, S.S.; Noorolahi, Z.; Sahari, M.A.; Ahmadi Gavlighi, H. Improvement of oxidative stability and textural properties of fermented sausage via addition of pistachio hull extract. Food Sci. Nutr. 2020, in press. [Google Scholar] [CrossRef]
- Ozaki, M.M.; Munekata, P.E.; de Souza Lopes, A.; do Nascimento, M.D.S.; Pateiro, M.; Lorenzo, J.M.; Pollonio, M.A.R. Using chitosan and radish powder to improve stability of fermented cooked sausages. Meat Sci. 2020, 167, 108165. [Google Scholar] [CrossRef]
- Pateiro, M.; Bermúdez, R.; Lorenzo, J.M.; Franco, D. Effect of addition of natural antioxidants on the shelf-life of “Chorizo”, a Spanish dry-cured sausage. Antioxidants 2015, 4, 42–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faustman, C.; Cassens, R.G. The biochemical basis for discoloration in fresh meat: A review. J. Musc. Foods 1990, 1, 217–243. [Google Scholar] [CrossRef]
- Rubio, B.; Martínez, B.; García-Cachán, M.D.; Rovira, J.; Jaime, I. Effect of the packaging method and the storage time on lipid oxidation and colour stability on dry fermented sausage salchichón manufactured with raw material with a high level of mono and polyunsaturated fatty acids. Meat Sci. 2008, 80, 1182–1187. [Google Scholar] [CrossRef]
- Karwowska, M.; Kononiuk, A.; Wójciak, K.M. Impact of Sodium Nitrite Reduction on Lipid Oxidation and Antioxidant Properties of Cooked Meat Products. Antioxidants 2020, 9, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruberto, G.; Baratta, M.T. Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem. 2000, 69, 167–174. [Google Scholar] [CrossRef]
- Melton, S.L. Methodology for following lipid oxidation in muscle foods. Food Technol. 1983, 38, 105–111. [Google Scholar]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef]
- Ložienė, K.; Venskutonis, P.R. Juniper (Juniperus communis L.) oils. In Essential Oils in Food Preservation, Flavor and Safety; Academic Press: Cambridge, MA, USA, 2016; pp. 495–500. [Google Scholar]
- Hussein, F.H.; Razavi, S.H. Physicochemical properties and sensory evaluation of reduced fat fermented functional beef sausage. Appl. Food Biotechnol. 2017, 4, 93–102. [Google Scholar]
- European Community (EC). Commission regulation (EC) No. 2073/2005. Microbiological criteria for foodstuffs. Off. J. Eur. Union 2005, 338, 1–26. [Google Scholar]
- Triki, M.; Herrero, A.M.; Rodríguez-Salas, L.; Jiménez-Colmenero, F.; Ruiz-Capillas, C. Chilled storage characteristics of low-fat, n-3 PUFA-enriched dry fermented sausage reformulated with a healthy oil combination stabilized in a konjac matrix. Food Control 2016, 31, 158–165. [Google Scholar] [CrossRef]
- Fonseca, S.; Gómez, M.; Domínguez, R.; Lorenzo, J.M. Physicochemical and sensory properties of Celta dry-ripened “salchichón” as affected by fat content. Grasas y Aceites 2015, 66, e059. [Google Scholar]
- Rubio, B.; Martínez, B.; Sánchez, M.J.; García-Cachán, M.D.; Rovira, J.; Jaime, I. Study of the shelf life of a dry fermented sausage “salchichon” made from raw material enriched in monounsaturated and polyunsaturated fatty acids and stored under modified atmospheres. Meat Sci. 2007, 76, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Severini, C.; De Pilli, T.; Baiano, A. Partial substitution of pork backfat with extra-virgin olive oil in ‘salami’products: Effects on chemical, physical and sensorial quality. Meat Sci. 2003, 64, 323–331. [Google Scholar] [CrossRef]
- Dong, Q.L.; Tu, K.; Guo, L.Y.; Yang, J.L.; Wang, H.; Chen, Y.Y. The effect of sodium nitrite on the textural properties of cooked sausage during cold storage. J. Texture Stud. 2007, 38, 537–554. [Google Scholar] [CrossRef]
- Villaverde, A.; Ventanas, J.; Estévez, M. Nitrite promotes protein carbonylation and Strecker aldehyde formation in experimental fermented sausages: Are both events connected? Meat Sci. 2014, 98, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Pérez-Álvarez, J.A. Effect of added citrus fibre and spice essential oils on quality characteristics and shelf-life of mortadella. Meat Sci. 2010, 85, 568–576. [Google Scholar] [CrossRef]
Retention Time (min) | Relative Percentage (%) | |
---|---|---|
Sabinene | 4.37 | 9.51 |
β-Pinene | 4.45 | 5.39 |
β-Myrcene | 4.71 | 14.12 |
Phellandrene | 5.02 | 0.46 |
Δ-3-Carene | 5.14 | 0.22 |
α-Terpinene | 5.29 | 1.95 |
p-Cymene | 5.49 | 3.92 |
d,l-Limonene | 5.58 | 8.36 |
γ-Terpinene | 6.33 | 3.38 |
n.i. 1 | 6.68 | 0.28 |
α-Terpinolene | 7.12 | 2.80 |
Linalool | 7.47 | 0.29 |
n.i. | 7.66 | 0.12 |
n.i. | 8.09 | 0.08 |
n.i. | 8.20 | 0.58 |
trans-Pinocarvenol | 8.60 | 0.47 |
n.i. | 8.77 | 0.23 |
n.i. | 8.89 | 0.25 |
Borneol | 9.47 | 0.36 |
4-Terpineol | 9.80 | 6.88 |
p-Cymen-8-ol | 10.07 | 0.35 |
n.i. | 10.20 | 1.46 |
Benihinal | 10.31 | 0.24 |
Verbenone | 10.72 | 0.39 |
n.i. | 12.34 | 0.10 |
n.i. | 12.71 | 0.27 |
Bornyl acetate | 13.10 | 0.72 |
n.i. | 13.32 | 0.09 |
n.i. | 13.38 | 0.12 |
n.i. | 14.33 | 0.22 |
n.i. | 14.72 | 0.14 |
α-Cubebene | 15.09 | 1.22 |
Ylangene | 15.76 | 0.13 |
α-Copaene | 15.91 | 1.39 |
n.i. | 16.21 | 0.20 |
β-Elemene | 16.45 | 3.38 |
Isoledene | 16.72 | 0.35 |
Caryophyllene | 17.26 | 3.94 |
Aromadendrene | 17.54 | 0.29 |
α-Humulene | 18.30 | 3.26 |
trans-β-Farnesene | 18.44 | 0.86 |
Germacrene D | 19.15 | 3.81 |
β-Selinene | 19.29 | 0.17 |
Ledene | 19.54 | 1.40 |
α-Muurolene | 19.72 | 1.30 |
α-Amorphene | 20.44 | 5.43 |
γ-Selinene | 20.72 | 0.55 |
Aristolene | 20.81 | 0.48 |
Germacrene B | 21.36 | 3.74 |
n.i. | 21.63 | 0.19 |
Spathulenol | 21.99 | 0.62 |
Caryophyllene oxide | 22.10 | 0.51 |
Humulene oxide | 22.86 | 0.31 |
n.i. | 23.01 | 0.38 |
n.i. | 23.40 | 0.24 |
tau-Muurolol | 23.82 | 0.85 |
α-Cadinol | 24.18 | 0.99 |
n.i. | 25.58 | 0.16 |
n.i. | 25.89 | 0.17 |
Total | 100 |
pH | L* | a* | b* | TBARS (mg MDA/kg) | |
---|---|---|---|---|---|
FC (%) | |||||
15 | 5.46 ± 0.10 a | 47.8 ± 3.0 b | 14.0 ± 1.7 a | 8.01 ± 1.27 a | 0.17 ± 0.12 a |
25 | 5.33 ± 0.10 b | 52.4 ± 3.4 a | 12.8 ± 1.7 b | 7.66 ± 1.13 b | 0.15 ± 0.10 a |
p | <0.001 | <0.001 | <0.001 | <0.001 | 0.258 |
NC (mg/kg) | |||||
0 | 5.38 ± 0.12 a | 50.7 ± 4.1 a | 13.5 ± 1.9 a | 7.76 ± 1.16 a | 0.20 ± 0.12 a |
75 | 5.41 ± 0.12 a | 50.1 ± 3.7 a,b | 13.4 ± 1.8 a | 7.83 ± 1.22 a | 0.14 ± 0.10 b |
150 | 5.39 ± 0.12 a | 49.5 ± 3.9 b | 13.3 ± 1.7 a | 7.91 ± 1.27 a | 0.15 ± 0.10 b |
p | 0.362 | 0.019 | 0.680 | 0.484 | <0.001 |
JC (µL/g) | |||||
0 | 5.37 ± 0.10 a | 51.2 ± 4.2 a | 13.3 ± 1.9 a | 7.80 ± 1.13 a | 0.20 ± 0.11 a |
0.01 | 5.40 ± 0.12 a | 49.9 ± 3.8 b | 13.3 ± 1.9 a | 7.83 ± 1.36 a | 0.16 ± 0.11 a,b |
0.05 | 5.40 ± 0.14 a | 49.8 ± 3.7 b | 13.4 ± 1.8 a | 7.82 ± 1.22 a | 0.14 ± 0.11 b |
0.10 | 5.41 ± 0.11 a | 49.4 ± 3.9 b | 13.5 ± 1.7 a | 7.89 ± 1.15 a | 0.14 ± 0.10 b |
p | 0.316 | 0.001 | 0.759 | 0.924 | 0.003 |
SD | |||||
0 | 5.26 ± 0.08 d | 50.8 ± 3.6 a | 13.0 ± 1.8 b | 7.59 ± 1.21 b | 0.04 ± 0.03 d |
75 | 5.47 ± 0.08 a | 50.3 ± 4.1 a,b | 13.2 ± 1.6 b | 7.51 ± 1.11 b | 0.12 ± 0.06 c |
150 | 5.40 ± 0.10 c | 49.7 ± 3.7 b | 13.2 ± 1.8 b | 7.72 ± 1.06 b | 0.20 ± 0.05 b |
225 | 5.44 ± 0.10 b | 49.5 ± 4.3 b | 14.2 ± 1.8 a | 8.52 ± 1.22 a | 0.28 ± 0.09 a |
p | <0.001 | 0.020 | <0.001 | <0.001 | <0.001 |
TPC (log CFU/g) | LAB (log CFU/g) | |
---|---|---|
FC (%) | ||
15 | 5.55 ± 0.73 a | 5.71 ± 0.87 a |
25 | 5.43 ± 0.84 a | 5.53 ± 0.87 a |
p | 0.459 | 0.336 |
NC (mg/kg) | ||
0 | 5.51 ± 0.77 a | 5.64 ± 0.75 a |
75 | 5.57 ± 0.77 a | 5.67 ± 0.80 a |
150 | 5.40 ± 0.81 a | 5.55 ± 1.04 a |
p | 0.705 | 0.851 |
JC (µL/g) | ||
0 | 5.51 ± 0.96 a | 5.62 ± 0.70 a |
0.01 | 5.65 ± 0.66 a | 5.68 ± 0.93 a |
0.05 | 5.44 ± 0.68 a | 5.55 ± 0.93 a |
0.10 | 5.37 ± 0.68 a | 5.63 ± 0.99 a |
p | 0.642 | 0.968 |
SD | ||
0 | 5.10 ± 0.38 c | 6.47 ± 0.51 a |
75 | 4.74 ± 0.53 d | 5.81 ± 0.67 b |
150 | 6.23 ± 0.47 a | 5.52 ± 0.44 b |
225 | 5.91 ± 0.63 b | 4.68 ± 0.71 c |
p | <0.001 | <0.001 |
Hardness (g) | Springiness | Cohesiveness | Chewiness (g) | |
---|---|---|---|---|
FC (%) | ||||
15 | 7579 ± 1611 a | 0.488 ± 0.05 a | 0.511 ± 0.03 b | 1902 ± 489 a |
25 | 5282 ± 1020 b | 0.505 ± 0.05 b | 0.525 ± 0.04 a | 1407 ± 321 b |
p | <0.001 | <0.001 | <0.001 | <0.001 |
NC (mg/kg) | ||||
0 | 6271 ± 1707 a | 0.489 ± 0.05 a | 0.504 ± 0.04 c | 1552 ± 438 b |
75 | 6542 ± 1874 a | 0.500 ± 0.05 a | 0.519 ± 0.04 b | 1694 ± 508 a |
150 | 6462 ± 1712 a | 0.500 ± 0.05 a | 0.531 ± 0.03 a | 1713 ± 480 a |
p | 0.377 | 0.079 | <0.001 | 0.005 |
JC (µL/g) | ||||
0 | 6269 ± 1752 a | 0.508 ± 0.05 a | 0.523 ± 0.04 a | 1654 ± 449 a |
0.01 | 6502 ± 1570 a | 0.492 ± 0.05 b | 0.516 ± 0.03 a | 1671 ± 467 a |
0.05 | 6672 ± 211 a | 0.492 ± 0.05 b | 0.512 ± 0.04 a | 1675 ± 562 a |
0.10 | 6264 ± 1556 a | 0.494 ± 0.04 b | 0.521 ± 0.04 a | 1612 ± 437 a |
p | 0.219 | 0.022 | 0.093 | 0.739 |
SD | ||||
0 | 4730 ± 915 c | 0.444 ± 0.04 c | 0.553 ± 0.04 a | 1153 ± 202 c |
75 | 6649 ± 1341 b | 0.505 ± 0.03 b | 0.521 ± 0.03 b | 1741 ± 323 b |
150 | 7518 ± 1641 a | 0.516 ± 0.03 a | 0.503 ± 0.03 c | 1940 ± 416 a |
225 | 6801 ± 1718 b | 0.521 ± 0.03 a | 0.496 ± 0.03 c | 1777 ± 506 b |
p | <0.001 | <0.001 | <0.001 | <0.001 |
Color | Odor | Flavor | |
---|---|---|---|
FC (%) | |||
15 | 0.32 ± 0.64 b | 0.34 ± 0.67 a | 0.89 ± 1.18 a |
25 | 0.77 ± 0.77 a | 0.29 ± 0.68 a | 0.81 ± 1.12 a |
p | <0.001 | 0.164 | 0.137 |
NC (mg/kg) | |||
0 | 0.58 ± 0.78 a | 0.18 ± 0.46 b | 0.74 ± 1.06 b |
75 | 0.57 ± 0.77 a | 0.36 ± 0.73 a | 0.85 ± 1.17 a,b |
150 | 0.49 ± 0.67 a | 0.41 ± 0.77 a | 0.98 ± 1.20 a |
p | 0.063 | <0.001 | 0.002 |
JC (µL/g) | |||
0 | 0.00 ± 0.00 c | 0.00 ± 0.00 d | 0.00 ± 0.00 d |
0.01 | 0.67 ± 0.72 b | 0.10 ± 0.36 c | 0.17 ± 0.49 c |
0.05 | 0.72 ± 0.81 b | 0.22 ± 0.50 b | 0.80 ± 0.77 b |
0.10 | 0.80 ± 0.79 a | 0.94 ± 0.94 a | 2.44 ± 0.86 a |
p | <0.001 | <0.001 | <0.001 |
SD | |||
0 | 0.34 ± 0.65 c | 0.27 ± 0.68 b | 0.70 ± 1.07 b |
75 | 0.48 ± 0.67 b | 0.15 ± 0.41 c | 0.76 ± 1.09 b |
150 | 0.91 ± 0.82 a | 0.46 ± 0.77 a | 0.94 ± 1.10 a |
225 | 0.45 ± 0.69 b | 0.38 ± 0.73 a | 1.01 ± 1.29 a |
p | <0.001 | <0.001 | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomović, V.; Šojić, B.; Savanović, J.; Kocić-Tanackov, S.; Pavlić, B.; Jokanović, M.; Đorđević, V.; Parunović, N.; Martinović, A.; Vujadinović, D. New Formulation towards Healthier Meat Products: Juniperus communis L. Essential Oil as Alternative for Sodium Nitrite in Dry Fermented Sausages. Foods 2020, 9, 1066. https://doi.org/10.3390/foods9081066
Tomović V, Šojić B, Savanović J, Kocić-Tanackov S, Pavlić B, Jokanović M, Đorđević V, Parunović N, Martinović A, Vujadinović D. New Formulation towards Healthier Meat Products: Juniperus communis L. Essential Oil as Alternative for Sodium Nitrite in Dry Fermented Sausages. Foods. 2020; 9(8):1066. https://doi.org/10.3390/foods9081066
Chicago/Turabian StyleTomović, Vladimir, Branislav Šojić, Jovo Savanović, Sunčica Kocić-Tanackov, Branimir Pavlić, Marija Jokanović, Vesna Đorđević, Nenad Parunović, Aleksandra Martinović, and Dragan Vujadinović. 2020. "New Formulation towards Healthier Meat Products: Juniperus communis L. Essential Oil as Alternative for Sodium Nitrite in Dry Fermented Sausages" Foods 9, no. 8: 1066. https://doi.org/10.3390/foods9081066
APA StyleTomović, V., Šojić, B., Savanović, J., Kocić-Tanackov, S., Pavlić, B., Jokanović, M., Đorđević, V., Parunović, N., Martinović, A., & Vujadinović, D. (2020). New Formulation towards Healthier Meat Products: Juniperus communis L. Essential Oil as Alternative for Sodium Nitrite in Dry Fermented Sausages. Foods, 9(8), 1066. https://doi.org/10.3390/foods9081066