Modification of Physicochemical Properties of Breadfruit Flour Using Different Twin-Screw Extrusion Conditions and Its Application in Soy Protein Gels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extrusion of Flour
2.2. Characterization of Flours
2.2.1. Proximate Composition
2.2.2. pH
2.2.3. Water and Oil Holding Capacity
2.2.4. Pasting Properties
2.2.5. Scanning Electron Microscopy
2.2.6. Solubility and Swelling Power
2.3. Characterization of Soy Protein Isolate Gels
2.3.1. Preparation of Soy Protein Isolate Gels
2.3.2. Cooking Loss
2.3.3. Textural Properties
2.3.4. Instrumental Color
2.4. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Native and Extruded Breadfruit Flours
3.1.1. Proximate Composition
3.1.2. pH, Water Holding Capacity, and Oil Holding Capacity
3.1.3. Pasting Properties
3.1.4. Particle Size and Microscopic Appearance
3.1.5. Solubility and Swelling Power
3.2. Characterization of Breadfruit Flour-Soy Protein Isolate Gels
3.2.1. Cooking Loss
3.2.2. Texture Profile Analysis
3.2.3. Instrumental Color
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Roberts-Nkrumah, L.B. Breadfruit and Breadnut Orchard Establishment and Management: A Manual for Commercial Production; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015; Available online: http://www.fao.org/3/a-i4757e.pdf (accessed on 30 July 2020).
- Liu, Y.; Brown, P.N.; Ragone, D.; Gibson, D.L.; Murch, S.J. Breadfruit flour is a healthy option for modern foods and food sercurity. PLoS ONE 2020, 15, e0236300. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.M.P.; Ragone, D.; Bernotas, D.W.; Murch, S.J. Beyond the bounty: Breadfruit (Artocarpus altilis) for food security and novel foods in the 21st Century. Ethnobot. Res. Appl. 2011, 9, 129–149. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Martínez, M.M.; Bohrer, B.M. The compositional and functional attributes of commercial flours from tropical fruits (breadfruit and banana). Foods 2019, 8, 586. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Pan, Z.; Li, B.; Atungulu, G.G.; Olson, D.A.; Wall, M.M.; McHugh, T.H. Properties of extruded expandable breadfruit products. LWT Food Sci. Technol. 2012, 46, 326–334. [Google Scholar] [CrossRef]
- Turi, C.E.; Liu, Y.; Ragone, D.; Murch, S.J. Breadfruit (Artocarpus altilis and hybrids): A traditional crop with the potential to prevent hunger and mitigate diabetes in Oceania. Trends Food Sci. Technol. 2015, 45, 264–272. [Google Scholar] [CrossRef]
- Nochera, C.; Ragone, D. Development of a breadfruit flour pasta product. Foods 2019, 8, 110. [Google Scholar] [CrossRef] [Green Version]
- Esparagoza, R.S.; Tangonan, G.J. Instant baby food using banana and breadfruit flour as food base. Univ. South. Mindanao Coll. Agric. Res. J. 1993, 4, 175–177. [Google Scholar]
- Malomo, S.A.; Eleyinmi, A.F.; Fashakin, J.B. Chemical composition, rheological properties and bread making potentials of composite flours from breadfruit, breadnut and wheat. Afr. J. Food Sci. 2011, 5, 400–410. [Google Scholar]
- Olaoye, O.A.; Onilude, A.A. Microbiological, proximate analysis and sensory evaluation of baked products from blends of wheat-breadfruit flours. Afr. J. Food Agric. Nutr. Dev. 2008, 8, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Ajani, A.O.; Oshundahunsi, O.F.; Akinoso, R.; Arowora, K.A.; Abiodun, A.A.; Pessu, P.O. Proximate composition and sensory qualities of snacks produced from breadfruit flour. Glob. J. Sci. Front. Res. Biol. Sci. 2012, 12, 1–8. [Google Scholar]
- Akubor, P.I.; Badifu, G.I.O. Chemical composition, functional properties and baking potential of African breadfruit kernel and wheat flour blends. Int. J. Food Sci. Tech. 2004, 39, 223–229. [Google Scholar] [CrossRef]
- Huang, S.; Mejía Vasquez, S.M.; Murch, S.J.; Bohrer, B.M. Cooking loss, texture properties, and color of comminuted beef prepared with breadfruit (Artocarpus altilis) flour. Meat Muscl. Biol. 2019, 3, 231–243. [Google Scholar] [CrossRef]
- Huang, S.; Bohrer, B.M. The effect of tropical flours (breadfruit and banana) on structural and technological properties of beef emulsion modeling systems. Meat Sci. 2020, 163, 108082. [Google Scholar] [CrossRef] [PubMed]
- Adepeju, A.B.; Gbadamosi, S.O.; Adeniran, A.H.; Omobuwajo, T.O. Functional and pasting characteristics of breadfruit (Artocarpus altilis) flours. Afr. J. Food Sci. 2011, 5, 529–535. [Google Scholar]
- Rincón, A.M.; Padilla, F.C. Physicochemical properties of Venezuelan breadfruit (Artocarpus altilis) starch. Arch. Latinoam. Nutr. 2004, 54, 449–456. [Google Scholar]
- Wang, X.; Chen, L.; Li, X.; Xie, F.; Liu, H.; Yu, L. Thermal and rheological properties of breadfruit starch. J. Food Sci. 2011, 76, 55–61. [Google Scholar] [CrossRef]
- BeMiller, J.N. Physical modification of starch. In Starch in Food, 2nd ed.; Sjöö, M., Nilsson, L., Eds.; Woodhead Publishing: Duxford, UK, 2018; pp. 223–253. [Google Scholar]
- Busken, D.F. Cleaning it up—What is a clean label ingredient? Cereal Foods World 2015, 60, 112–113. [Google Scholar] [CrossRef]
- Gómez, M.; Martínez, M.M. Changing flour functionality through physical treatments for the production of gluten-free baking goods. J. Cereal Sci. 2016, 67, 68–74. [Google Scholar] [CrossRef]
- Alam, M.S.; Kaur, J.; Khaira, H.; Gupta, K. Extrusion and extruded products: Changes in quality attributes as affected by extrusion process parameters: A review. Crit. Rev. Food Sci. Nutr. 2016, 56, 445–475. [Google Scholar] [CrossRef]
- Jacobs, H.; Delcour, J.A. Hydrothermal modifications of granular starch, with retention of the granular structure: A review. J. Agric. Food Chem. 1998, 46, 2895–2905. [Google Scholar] [CrossRef]
- Atwell, W.; Hood, L.; Lineback, D.; Varrianomarston, E.; Zobel, H.F. The terminology and methodology associated with basic starch phenomena. Cereal Foods World 1988, 33, 306–311. [Google Scholar]
- Mercier, C.; Feillet, P. Modification of carbohydrate components by extrusion cooking of cereal products. Cereal Chem. 1975, 63, 283–297. [Google Scholar]
- Wen, L.; Rodis, P.; Wasserman, B. Starch fragmentation and protein insolubilization during twin-screw extrusion of corn meal. Cereal Chem. 1990, 67, 268–275. [Google Scholar]
- Hagenimana, A.; Ding, X.; Fang, T. Evaluation of rice flour modified by extrusion cooking. J. Cereal Sci. 2016, 43, 38–46. [Google Scholar] [CrossRef]
- Martínez, M.M.; Calviño, A.; Rosell, C.M.; Gómez, M. Effect of different extrusion treatments and particle size distribution on the physicochemical properties of rice flour. Food Bioprocess Tech. 2014, 7, 2657–2665. [Google Scholar] [CrossRef] [Green Version]
- Román, L.; Martínez, M.M.; Gómez, M. Assessing of the potential of extruded flour paste as fat replacer in O/W emulsion: A rheological and microstructural study. Food Res. Int. 2015, 74, 72–79. [Google Scholar] [CrossRef]
- Román, L.; Santos, I.; Martínez, M.M.; Gómez, M. Effect of extruded wheat flour as a fat replacer on batter characteristics and cake quality. J. Food Sci. Tech. 2015, 52, 8188–8195. [Google Scholar] [CrossRef] [Green Version]
- Bravo-Núñez, Á.; Pando, V.; Gómez, M. Physically and chemically modified starches as texturisers of low-fat milk gels. Int. Dairy J. 2019, 92, 21–27. [Google Scholar] [CrossRef]
- Diamantino, V.R.; Costa, M.S.; Taboga, S.R.; Vilamaior, P.S.; Franco, C.M.; Penna, A.L.B. Starch as a potential fat replacer for application in cheese: Behaviour of different starches in casein/starch mixtures and in the casein matrix. Int. Dairy J. 2019, 89, 129–138. [Google Scholar] [CrossRef]
- Hedayati, S.; Shahidi, F.; Koocheki, A.; Farahnaky, A.; Majzoobi, M. Influence of pregelatinized and granular cold water swelling maize starches on stability and physicochemical properties of low fat oil-in-water emulsions. Food Hydrocoll. 2020, 102, 105620. [Google Scholar] [CrossRef]
- Ling, M.Y.; Chou, C.C. Biochemical changes during the preparation of soy sauce koji with extruded and traditional raw materials. Int. J. Food Sci. 1996, 31, 511–517. [Google Scholar] [CrossRef]
- Martínez, M.M.; Oliete, B.; Román, L.; Gómez, M. Influence of the addition of extruded flours on rice bread quality. J. Food Qual. 2014, 37, 83–94. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.; Hu, X.; Luo, S.; Liu, W.; Chen, J.; Zeng, Z.; Liu, C. Properties of starch after extrusion: A review. Starch Stärke 2018, 70, 1700110. [Google Scholar] [CrossRef]
- Román, L.; Reguilon, M.P.; Gómez, M. Physicochemical characteristics of sauce model systems: Influence of particle size and extruded flour source. J. Food Eng. 2018, 219, 93–100. [Google Scholar] [CrossRef]
- Gençcelep, H.; Saricaoglu, F.T.; Anil, M.; Agar, B.; Turhan, S. The effect of starch modification and concentration on steady-state and dynamic rheology of meat emulsions. Food Hydrocoll. 2015, 48, 135–148. [Google Scholar] [CrossRef]
- Adebowale, K.O.; Olu-Owolabi, B.I.; Olawumi, E.K.; Lawal, O.S. Functional properties of native, physically and chemically modified breadfruit (Artocarpus artilis) starch. Ind. Crops Prod. 2005, 21, 343–351. [Google Scholar] [CrossRef]
- Daramola, B.; Adegoke, G.O. Production and partial characterization of food grade breadfruit acetylated starch. J. Food Agric. Environ. 2007, 5, 50–54. [Google Scholar] [CrossRef]
- Haydersah, J.; Chevallier, I.; Rochette, I.; Mouquet-Rivier, C.; Picq, C.; Marianne-Pépin, T.; Icard-Vernière, C.; Guyot, J.P. Fermentation by amylolytic lactic acid bacteria and consequences for starch digestibility of plantain, breadfruit, and sweet potato flours. J. Food Sci. 2012, 77, 466–472. [Google Scholar] [CrossRef]
- Tan, X.; Li, X.; Chen, L.; Xie, F.; Li, L.; Huang, J. Effect of heat-moisture treatment on multi-scale structures and physicochemical properties of breadfruit starch. Carbohydr. Polym. 2017, 161, 286–294. [Google Scholar] [CrossRef]
- Clark, A.H. Gels and gelling. In Physical Chemistry of Foods, 1st ed.; Schwartzberg, H.G., Hartel, R.W., Eds.; Marcel Dekker Inc.: New York, NY, USA, 1992; pp. 263–305. [Google Scholar]
- Renkema, J.M.S. Formation, Structure and Rheological Properties of Soy Protein Gels; Wageningen University: Wageningen, The Netherlands, 2001. [Google Scholar]
- Hsu, S.; Lu, S.; Huang, C. Viscoelastic changes of rice starch suspensions during gelatinization. J. Food Sci. 2000, 65, 215–220. [Google Scholar] [CrossRef]
- Li, J.Y.; Yeh, A.I.; Fan, K.L. Gelation characteristics and morphology of corn starch/soy protein concentrate composites during heating. J. Food Eng. 2007, 78, 1240–1247. [Google Scholar] [CrossRef]
- Ribotta, P.D.; Colombo, A.; León, A.E.; Añón, M.C. Effects of soy protein on physical and rheological properties of wheat starch. Starch Stärke 2007, 59, 614–623. [Google Scholar] [CrossRef]
- Pico, J.; Xu, K.; Guo, M.; Mohamedshah, Z.; Ferruzzi, M.G.; Martinez, M.M. Manufacturing the ultimate green banana flour: Impact of drying and extrusion on phenolic profile and starch bioaccessibility. Food Chem. 2019, 297, 124990. [Google Scholar] [CrossRef]
- AOAC. Official methods of analysis. Official Method 925.10 Moisture in Flour by Air Oven Method, 20th ed.; Association of Official Analytical Chemists (AOAC): Rockville, MD, USA, 2016. [Google Scholar]
- AOAC. Official methods of analysis. Official Method 920.85 Fat in Flour by Ether Extract Method, 20th ed.; Association of Official Analytical Chemists (AOAC): Rockville, MD, USA, 2016. [Google Scholar]
- AOAC. Official methods of analysis. Official Method 992.15 Protein in Foods by Combustion Method, 20th ed.; Association of Official Analytical Chemists (AOAC): Rockville, MD, USA, 2016. [Google Scholar]
- AOAC. Official methods of analysis. Official Method 923.03 Ash in Flour by Ashing Method, 20th ed.; Association of Official Analytical Chemists (AOAC): Rockville, MD, USA, 2016. [Google Scholar]
- AOAC. Official methods of analysis. Official Method 996.11 Total Starch in Foods by Amyloglucosidase-Alpha-Amylase Method, 20th ed.; Association of Official Analytical Chemists (AOAC): Rockville, MD, USA, 2016. [Google Scholar]
- Shand, P.J.; Ya, H.; Pietrasik, Z.; Wanasundara, P.K.J.P.D. Physicochemical and textural properties of heat-induced pea protein isolate gels. Food Chem. 2007, 102, 1119–1130. [Google Scholar] [CrossRef]
- AMSA. Meat Color Measurement Guidelines; American Meat Science Association: Champaign, IL, USA, 2012. [Google Scholar]
- Martínez, M.M.; Rosell, C.M.; Gómez, M. Modification of wheat flour functionality and digestibility through different extrusion conditions. J. Food. Eng. 2014, 143, 74–79. [Google Scholar] [CrossRef] [Green Version]
- Román, L.; Campanella, O.; Martínez, M.M. Shear-induced molecular fragmentation decreases the bioaccessibility of fully gelatinized starch and its gelling capacity. Carbohydr. Polym. 2019, 215, 198–206. [Google Scholar] [CrossRef]
- Camire, M.E.; Camire, A.; Krumhar, K. Chemical and nutritional changes in foods during extrusion. Crit. Rev. Food Sci. Nutr. 1990, 29, 35–57. [Google Scholar] [CrossRef]
- Ho, C.T.; Izzo, M.T. Lipid-protein and lipid-carbohydrate interactions during extrusion. In Food Extrusion Science and Technology, 1st ed.; Kokini, J.L., Ho, C.T., Karwe, M.V., Eds.; Marcel Dekker Inc.: New York, NY, USA, 1992; pp. 415–425. [Google Scholar]
- Björck, I.; Asp, N.G. The effects of extrusion cooking on nutritional value—A literature review. J. Food. Eng. 1983, 2, 281–308. [Google Scholar] [CrossRef]
- Graham, H.D.; De Bravo, E.N. Composition of the breadfruit. J. Food. Sci. 1981, 46, 535–539. [Google Scholar] [CrossRef]
- Badrie, N.; Broomes, J. Beneficial uses of breadfruit (Artocarpus altilis): Nutritional, medicinal and other uses. In Bioactive Foods in Promoting Health, 1st ed.; Watson, R.R., Preedy, V.R., Eds.; Elsevier Academic Press: London, UK, 2010; pp. 491–505. [Google Scholar]
- Huang, Y.L.; Ma, Y.S. The effect of extrusion processing on the physiochemical properties of extruded orange pomace. Food Chem. 2016, 192, 363–369. [Google Scholar] [CrossRef]
- Alonso, R.; Orue, E.; Zabalza, M.J.; Grant, G.; Marzo, F. Effect of extrusion cooking on structure and functional properties of pea and kidney bean proteins. J. Sci. Food Agric. 2000, 80, 397–403. [Google Scholar] [CrossRef]
- Wang, S.; Li, C.; Copeland, L.; Niu, Q.; Wang, S. Starch retrogradation: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 568–585. [Google Scholar] [CrossRef]
- Doublier, J.; Colonna, P.; Mercier, C. Extrusion cooking and drum drying of wheat starch. II. Rheological characterization of wheat starch pastes. Cereal Chem. 1986, 3, 240–246. [Google Scholar]
- Román, L.; Martínez, M.M.; Rosell, C.M.; Gómez, M. Changes in physicochemical properties and in vitro starch digestion of native and extruded maize flours subjected to branching enzyme and maltogenic α-amylase treatment. Int. J. Biol. Macromol. 2017, 101, 326–333. [Google Scholar] [CrossRef] [Green Version]
- Kittipongpatana, O.S.; Kittipongpatana, N. Preparation and physicochemical properties of modified jackfruit starches. LWT Food Sci. Technol. 2011, 44, 1766–1773. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.; Zhang, R.; Zhong, Y.; Luo, Y.; Xu, S.; Liu, J.; Xue, J.; Guo, D. Effects of extrusion treatment on physicochemical properties and in vitro digestion of pregelatinized high amylose maize flour. J. Cereal Sci. 2016, 68, 108–115. [Google Scholar] [CrossRef]
- Clark, A.H.; Kavanagh, G.M.; Ross-Murphy, S.B. Globular protein gelation-theory and experiment. Food Hydrocoll. 2001, 15, 383–400. [Google Scholar] [CrossRef]
Extrusion Treatment | Mechanical Energy-Temperature Conditions | Last Barrel Temperature, °C | Total Moisture Content, % | Screw Speed, rpm | Feed Rate, kg/h | Specific Mechanical Energy, SME, kJ/kg | Melt Temperature, °C |
---|---|---|---|---|---|---|---|
Native | - | - | - | - | - | - | - |
LS-LT | Low SME-Low Temperature | 80 | 30 | 200 | 13.2 | 74 | 83 |
LS-HT | Low SME-High Temperature | 120 | 30 | 200 | 13.2 | 74 | 105 |
HS-LT | High SME-Low Temperature | 80 | 17 | 200 | 13.2 | 145 | 100 |
HS-HT | High SME-High Temperature | 120 | 17 | 200 | 13.2 | 145 | 126 |
Extrusion Treatment 1 | SEM 2 | p-Value | |||||
---|---|---|---|---|---|---|---|
Native Flour | LS-LT | LS-HT | HS-LT | HS-HT | |||
Proximate composition | |||||||
As is basis | |||||||
Moisture, % | 11.58 a | 6.57 d | 7.47 b | 6.98 c | 6.07 e | 0.06 | <0.01 |
Starch, % | 58.88 b | 67.44 a | 65.76 a,b | 63.85 a,b | 67.49 a | 1.64 | 0.02 |
Protein, % | 4.91 b,c | 5.07 a,b | 4.87 c | 5.15 a | 5.09 a,b | 0.05 | <0.01 |
Lipid, % | 3.10 a | 1.86 b | 1.65 c | 1.80 b,c | 1.64 c | 0.04 | <0.01 |
Ash, % | 2.91 c | 3.18 a,b | 3.15 b | 3.22 a | 3.19 a,b | 0.01 | <0.01 |
Dry matter basis | |||||||
Starch, % | 66.59 | 72.19 | 71.06 | 68.64 | 71.85 | 1.76 | 0.20 |
Protein, % | 5.54 a | 5.43 a,b | 5.26 b | 5.53 a | 5.41 a,b | 0.05 | 0.01 |
Lipid, % | 3.51 a | 1.99 b | 1.78 b,c | 1.94 b,c | 1.74 c | 0.05 | 0.01 |
Ash, % | 3.30 c | 3.40 b | 3.41 b | 3.46 a | 3.40 b | 0.01 | <0.01 |
pH | 5.74 d | 7.16 a | 6.99 b | 7.04 b | 6.73 c | 0.02 | <0.01 |
Water holding capacity, g water/g flour | 2.62 c | 4.89 a | 5.01 a | 2.99 b | 2.66 c | 0.06 | <0.01 |
Oil holding capacity, g oil/g flour | 2.02 a | 1.33 b | 1.39 b | 1.15 c | 1.40 b | 0.03 | <0.01 |
Extrusion Treatment 1 | SEM 2 | p-Value | |||||
---|---|---|---|---|---|---|---|
Native Flour | LS-LT | LS-HT | HS-LT | HS-HT | |||
Cold peak viscosity, cP | ND 3 | 726.00 b | 1586.33 a | 679.67 b | 487.33 c | 19.08 | <0.01 |
Hot peak viscosity, cP | 2846.67 a | 978.67 b | ND | ND | ND | 24.28 | <0.01 |
Breakdown, cP | 496.00 b | 784.00 a | ND | ND | ND | 36.83 | <0.01 |
Final Viscosity, cP | 6850.00 a | 583.00 b | 542.00 b | 260.67 c | 222.33 c | 21.72 | <0.01 |
Setback, cP | 4499.33 a | 388.33 b | 378.00 b | 169.33 c | 144.67 c | 29.76 | <0.01 |
Peak time, min | 12.22 a | 9.49 b | ND | ND | ND | 0.04 | <0.01 |
Extrusion Treatment 1 | SEM 2 | p-Value | |||||
---|---|---|---|---|---|---|---|
Native Flour | LS-LT | LS-HT | HS-LT | HS-HT | |||
Cooking loss, % | 1.36 | 1.21 | 1.32 | 1.33 | 1.40 | 0.06 | 0.29 |
Texture profile analysis | |||||||
Hardness, N | 12.14 a | 9.58 b | 8.10 c | 5.82 d | 4.96 e | 0.12 | <0.01 |
Gumminess, no units | 9.62 a | 7.48 b | 6.20 c | 4.35 d | 3.63 e | 0.08 | <0.01 |
Springiness, % | 95.27 a | 94.65 a,b | 94.78 a,b | 93.80 b,c | 93.30 c | 0.31 | <0.01 |
Adhesiveness g·sec | −0.55 a | −1.18 b | −1.06 b | −0.95 b | −0.99 b | 0.05 | <0.01 |
Instrumental color | |||||||
L* (lightness) | 63.73 a | 62.69 a | 62.84 a | 62.97 a | 60.87 b | 0.27 | <0.01 |
a* (redness) | 1.77 d | 2.28 b,c | 2.22 c | 2.34 b | 2.74 a | 0.03 | <0.01 |
b* (yellowness) | 14.72 a | 14.19 b | 14.71 a | 14.03 b | 14.66 a | 0.09 | <0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Roman, L.; Martinez, M.M.; Bohrer, B.M. Modification of Physicochemical Properties of Breadfruit Flour Using Different Twin-Screw Extrusion Conditions and Its Application in Soy Protein Gels. Foods 2020, 9, 1071. https://doi.org/10.3390/foods9081071
Huang S, Roman L, Martinez MM, Bohrer BM. Modification of Physicochemical Properties of Breadfruit Flour Using Different Twin-Screw Extrusion Conditions and Its Application in Soy Protein Gels. Foods. 2020; 9(8):1071. https://doi.org/10.3390/foods9081071
Chicago/Turabian StyleHuang, Shiqi, Laura Roman, Mario M. Martinez, and Benjamin M. Bohrer. 2020. "Modification of Physicochemical Properties of Breadfruit Flour Using Different Twin-Screw Extrusion Conditions and Its Application in Soy Protein Gels" Foods 9, no. 8: 1071. https://doi.org/10.3390/foods9081071
APA StyleHuang, S., Roman, L., Martinez, M. M., & Bohrer, B. M. (2020). Modification of Physicochemical Properties of Breadfruit Flour Using Different Twin-Screw Extrusion Conditions and Its Application in Soy Protein Gels. Foods, 9(8), 1071. https://doi.org/10.3390/foods9081071