Seasonal Variation of Chemical Composition, Fatty Acid Profile, and Sensory Properties of a Mountain Pecorino Cheese
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design and Sampling Procedure
2.3. Analysis
2.3.1. Chemical and Instrumental Analysis of Milk and Cheese
2.3.2. Sensory Analysis and Consumer Liking of Pecorino Cheese
2.4. Statistical Analysis
3. Results and Discussion
3.1. Pasture Composition
3.2. Milk Traits and Cheese Chemical Composition and Color
3.3. Cheese Sensory Properties and Consumer Liking
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Braghieri, A.; Girolami, A.; Riviezzi, A.M.; Piazzolla, N.; Napolitano, F. Liking of Traditional Cheese and Consumer Willingness to Pay. Ital. J. Anim. Sci. 2014, 13, 3029. [Google Scholar] [CrossRef] [Green Version]
- Uzun, P.; Serrapica, F.; Masucci, F.; Barone, C.M.A.; Yildiz, H.; Grasso, F.; Di Francia, A. Diversity of traditional Caciocavallo cheeses produced in Italy. Int. J. Dairy Technol. 2020, 73, 234–243. [Google Scholar] [CrossRef]
- Fox, P.F.; Cogan, T.M.; Guinee, T.P. Chapter 25—Factors That Affect the Quality of Cheese. In Cheese, 4th ed.; McSweeney, P.L.H., Fox, P.F., Cotter, P.D., Everett, D.W., Eds.; Academic Press: San Diego, CA, USA, 2017; pp. 617–641. ISBN 978-0-12-417012-4. [Google Scholar]
- Sabia, E.; Gauly, M.; Napolitano, F.; Cifuni, G.F.; Claps, S. The effect of different dietary treatments on volatile organic compounds and aromatic characteristics of buffalo Mozzarella cheese. Int. J. Dairy Technol. 2020, 73, 594–603. [Google Scholar] [CrossRef]
- Giaccone, D.; Revello-Chion, A.; Galassi, L.; Bianchi, P.; Battelli, G.; Coppa, M.; Tabacco, E.; Borreani, G. Effect of milk thermisation and farming system on cheese sensory profile and fatty acid composition. Int. Dairy J. 2016, 59, 10–19. [Google Scholar] [CrossRef]
- Martin, B.; Verdier-Metz, I.; Buchin, S.; Hurtaud, C.; Coulon, J.-B. How do the nature of forages and pasture diversity influence the sensory quality of dairy livestock products? Anim. Sci. 2005, 81, 205–212. [Google Scholar] [CrossRef]
- Uzun, P.; Masucci, F.; Serrapica, F.; Napolitano, F.; Braghieri, A.; Romano, R.; Manzo, N.; Esposito, G.; Di Francia, A. The inclusion of fresh forage in the lactating buffalo diet affects fatty acid and sensory profile of mozzarella cheese. J. Dairy Sci. 2018, 101, 6752–6761. [Google Scholar] [CrossRef]
- Giorgio, D.; Di Trana, A.; Di Napoli, M.; Sepe, L.; Cecchini, S.; Rossi, R.; Claps, S. Comparison of cheeses from goats fed 7 forages based on a new health index. J. Dairy Sci. 2019, 102, 6790–6801. [Google Scholar] [CrossRef] [PubMed]
- Serrapica, F.; Uzun, P.; Masucci, F.; Napolitano, F.; Braghieri, A.; Genovese, A.; Sacchi, R.; Romano, R.; Barone, C.M.A.; Di Francia, A. Hay or silage? How the forage preservation method changes the volatile compounds and sensory properties of Caciocavallo cheese. J. Dairy Sci. 2020, 103, 1391–1403. [Google Scholar] [CrossRef]
- Alothman, M.; Hogan, S.A.; Hennessy, D.; Dillon, P.; Kilcawley, K.N.; O’Donovan, M.; Tobin, J.T.; Fenelon, M.; O’Callaghan, T.F. The “Grass-Fed” Milk Story: Understanding the Impact of Pasture Feeding on the Composition and Quality of Bovine Milk. Foods 2019, 8, 350. [Google Scholar] [CrossRef] [Green Version]
- Sabia, E.; Gauly, M.; Napolitano, F.; Serrapica, F.; Cifuni, G.F.; Claps, S. Dairy sheep carbon footprint and ReCiPe end-point study. Small Rumin. Res. 2020, 185, 106085. [Google Scholar] [CrossRef]
- Scocco, P.; Piermarteri, K.; Malfatti, A.; Tardella, F.M.; Catorci, A. Increase of drought stress negatively affects the sustainability of extensive sheep farming in sub-Mediterranean climate. J. Arid. Environ. 2016, 128, 50–58. [Google Scholar] [CrossRef]
- Nudda, A.; Battacone, G.; Neto, O.B.; Cannas, A.; Francesconi, A.H.D.; Atzori, A.; Pulina, G. Feeding strategies to design the fatty acid profile of sheep milk and cheese. Rev. Bras. de Zootec. 2014, 43, 445–456. [Google Scholar] [CrossRef] [Green Version]
- Cabiddu, A.; Delgadillo-Puga, C.; DeCandia, M.; Molle, G.; Delgadillo-Puga, C. Extensive Ruminant Production Systems and Milk Quality with Emphasis on Unsaturated Fatty Acids, Volatile Compounds, Antioxidant Protection Degree and Phenol Content. Animals 2019, 9, 771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nudda, A.; McGuire, M.; Battacone, G.; Pulina, G. Seasonal Variation in Conjugated Linoleic Acid and Vaccenic Acid in Milk Fat of Sheep and its Transfer to Cheese and Ricotta. J. Dairy Sci. 2005, 88, 1311–1319. [Google Scholar] [CrossRef] [Green Version]
- Todaro, M.; Bonanno, A.; Scatassa, M.L. The quality of Valle del Belice sheep’s milk and cheese produced in the hot summer season in Sicily. Dairy Sci. Technol. 2013, 94, 225–239. [Google Scholar] [CrossRef] [Green Version]
- Addis, M.; Fiori, M.; Riu, G.; Pes, M.; Salvatore, E.; Pirisi, A. Physico-chemical characteristics and acidic profile of PDO Pecorino Romano cheese: Seasonal variation. Small Rumin. Res. 2015, 126, 73–79. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 17th ed.; Horwitz, W., Ed.; AOAC International: Gaithersburg, MD, USA, 2002. [Google Scholar]
- Van Soest, P.; Robertson, J.; Lewis, B. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Sauvant, D.; Nozière, P. La quantification des principaux phénomènes digestifs chez les ruminants: Les relations utilisées pour rénover les systèmes d’unités d’alimentation énergétique et protéique. INRA Prod. Anim. 2013, 26, 327–346. [Google Scholar] [CrossRef] [Green Version]
- Romano, R.; Masucci, F.; Giordano, A.; Spagna Musso, S.; Naviglio, D.; Santini, A. Effect of tomato by-products in the diet of Comisana sheep on composition and conjugated linoleic acid content of milk fat. Int. Dairy J. 2010, 20, 858–862. [Google Scholar] [CrossRef]
- Ulbricht, T.; Southgate, D. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Masucci, F.; De Rosa, G.; Barone, C.M.A.; Napolitano, F.; Grasso, F.; Uzun, P.; Di Francia, A. Effect of group size and maize silage dietary levels on behaviour, health, carcass and meat quality of Mediterranean buffaloes. Animals 2015, 10, 531–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, J.; Delahunty, C.; Baxter, I. Descriptive sensory analysis: Past, present and future. Food Res. Int. 2001, 34, 461–471. [Google Scholar] [CrossRef]
- ISO. ISO 8586:2012Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessor; International Organization for Standardization: Geneva, Switzerland, 2012; Available online: https://www.iso.org/obp/ui/#iso:std:iso:8586:ed-1:v2:en (accessed on 7 July 2020).
- Albenzio, M.; Santillo, A.; Caroprese, M.; Braghieri, A.; Sevi, A.; Napolitano, F. Composition and sensory profiling of probiotic Scamorza ewe milk cheese. J. Dairy Sci. 2013, 96, 2792–2800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Cagno, R.; Banks, J.; Sheehan, L.; Fox, P.F.; Brechany, E.; Corsetti, A.; Gobbetti, M. Comparison of the microbiological, compositional, biochemical, volatile profile and sensory characteristics of three Italian PDO ewes’ milk cheeses. Int. Dairy J. 2003, 13, 961–972. [Google Scholar] [CrossRef]
- Torracca, B.; Pedonese, F.; López, M.B.; Turchi, B.; Fratini, F.; Nuvoloni, R. Effect of milk pasteurisation and of ripening in a cave on biogenic amine content and sensory properties of a pecorino cheese. Int. Dairy J. 2016, 61, 189–195. [Google Scholar] [CrossRef]
- Braghieri, A.; Zotta, T.; Morone, G.; Piazzolla, N.; Majlesi, M.; Napolitano, F. Starter cultures and preservation liquids modulate consumer liking and shelf life of mozzarella cheese. Int. Dairy J. 2018, 85, 254–262. [Google Scholar] [CrossRef]
- Markey, O.; Souroullas, K.; Fagan, C.C.; Kliem, K.E.; Vasilopoulou, D.; Jackson, K.G.; Humphries, D.J.; Grandison, A.S.; Givens, D.I.; Lovegrove, J.A.; et al. Consumer acceptance of dairy products with a saturated fatty acid–reduced, monounsaturated fatty acid–enriched content. J. Dairy Sci. 2017, 100, 7953–7966. [Google Scholar] [CrossRef] [Green Version]
- Esposito, G.; Masucci, F.; Napolitano, F.; Braghieri, A.; Romano, R.; Manzo, N.; Di Francia, A. Fatty acid and sensory profiles of Caciocavallo cheese as affected by management system. J. Dairy Sci. 2014, 97, 1918–1928. [Google Scholar] [CrossRef] [Green Version]
- Uzun, P.; Masucci, F.; Serrapica, F.; Varricchio, M.L.; Pacelli, C.; Claps, S.; Di Francia, A. Use of mycorrhizal inoculum under low fertilizer application: Effects on forage yield, milk production, and energetic and economic efficiency. J. Agric. Sci. 2018, 156, 127–135. [Google Scholar] [CrossRef]
- Sevi, A.; Albenzio, M.; Marino, R.; Santillo, A.; Muscio, A. Effects of lambing season and stage of lactation on ewe milk quality. Small Rumin. Res. 2004, 51, 251–259. [Google Scholar] [CrossRef]
- Sitzia, M.; Bonanno, A.; Todaro, M.; Cannas, A.; Atzori, A.S.; Francesconi, A.H.D.; Trabalza-Marinucci, M. Feeding and management techniques to favour summer sheep milk and cheese production in the Mediterranean environment. Small Rumin. Res. 2015, 126, 43–58. [Google Scholar] [CrossRef]
- Todaro, M.; Dattena, M.; Acciaioli, A.; Bonanno, A.; Bruni, G.; Caroprese, M.; Mele, M.; Sevi, A.C.; Trabalza-Marinucci, M. Aseasonal sheep and goat milk production in the Mediterranean area: Physiological and technical insights. Small Rumin. Res. 2015, 126, 59–66. [Google Scholar] [CrossRef]
- Bianchi, L.; Casoli, C.; Pauselli, M.; Budelli, E.; Caroli, A.; Bolla, A.; Duranti, E. Effect of somatic cell count and lactation stage on sheep milk quality. Ital. J. Anim. Sci. 2004, 3, 147–156. [Google Scholar] [CrossRef]
- Fthenakis, G. Prevalence and aetiology of subclinical mastitis in ewes of Southern Greece. Small Rumin. Res. 1994, 13, 293–300. [Google Scholar] [CrossRef]
- Fthenakis, G. Somatic cell counts in milk of Welsh-Mountain, Dorset-Horn and Chios ewes throughout lactation. Small Rumin. Res. 1996, 20, 155–162. [Google Scholar] [CrossRef]
- Carpino, S.; Mallia, S.; La Terra, S.; Melilli, C.; Licitra, G.; Acree, T.; Barbano, D.M.; Van Soest, P. Composition and Aroma Compounds of Ragusano Cheese: Native Pasture and Total Mixed Rations. J. Dairy Sci. 2004, 87, 816–830. [Google Scholar] [CrossRef]
- Segato, S.; Balzan, S.; Elia, C.A.; Lignitto, L.; Granata, A.; Magro, L.; Contiero, B.; Andrighetto, I.; Novelli, E. Effect of period of milk production and ripening on quality traits of Asiago cheese. Ital. J. Anim. Sci. 2007, 6, 469–471. [Google Scholar] [CrossRef]
- Cozzi, G.; Ferlito, J.; Pasini, G.; Contiero, B.; Gottardo, F. Application of Near-Infrared Spectroscopy as an Alternative to Chemical and Color Analysis to Discriminate the Production Chains of Asiago d’Allevo Cheese. J. Agric. Food Chem. 2009, 57, 11449–11454. [Google Scholar] [CrossRef]
- Cardinault, N.; Doreau, M.; Poncet, C.; Nozière, P. Digestion and absorption of carotenoids in sheep given fresh red clover. Anim. Sci. 2006, 82, 49–55. [Google Scholar] [CrossRef]
- Palmquist, D.L. Milk Fat: Origin of Fatty Acids and Influence of Nutritional Factors Thereon. In Advanced Dairy Chemistry Volume 2 Lipids; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2007; pp. 43–92. [Google Scholar]
- Bauman, D.E.; Griinari, J.M. Nutritional regulation of milk fat synthesis. Annu. Rev. Nutr. 2003, 23, 203–227. [Google Scholar] [CrossRef] [Green Version]
- MacGibbon, A.; Taylor, M.W. Composition and Structure of Bovine Milk Lipids. In Advanced Dairy Chemistry Volume 2 Lipids; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2007; Volume 2, pp. 1–42. [Google Scholar]
- Mele, M. Designing milk fat to improve healthfulness and functional properties of dairy products: From feeding strategies to a genetic approach. Ital. J. Anim. Sci. 2009, 8, 365–374. [Google Scholar] [CrossRef]
- Dewhurst, R.J.; Shingfield, K.; Lee, M.; Scollan, N. Increasing the concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy cows in high-forage systems. Anim. Feed. Sci. Technol. 2006, 131, 168–206. [Google Scholar] [CrossRef]
- Trani, A.; Gambacorta, G.; Loizzo, P.; Cassone, A.; Faccia, M. Short communication: Chemical and sensory characteristics of Canestrato di Moliterno cheese manufactured in spring. J. Dairy Sci. 2016, 99, 6080–6085. [Google Scholar] [CrossRef] [PubMed]
- Altomonte, I.; Conte, G.; Serra, A.; Mele, M.; Cannizzo, L.; Salari, F.; Martini, M. Nutritional characteristics and volatile components of sheep milk products during two grazing seasons. Small Rumin. Res. 2019, 180, 41–49. [Google Scholar] [CrossRef]
- Caprioli, G.; Nzekoue, F.K.; Fiorini, D.; Scocco, P.; Trabalza-Marinucci, M.; Acuti, G.; Tardella, F.M.; Sagratini, G.; Catorci, A. The effects of feeding supplementation on the nutritional quality of milk and cheese from sheep grazing on dry pasture. Int. J. Food Sci. Nutr. 2019, 71, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Fusaro, I.; Giammarco, M.; Odintsov Vaintrub, M.; Chincarini, M.; Manetta, A.C.; Mammi, L.M.E.; Palmonari, A.; Formigoni, A.; Vignola, G. Effects of three different diets on the fatty acid profile and sensory properties of fresh Pecorino cheese “Primo Sale”. Asian-Australasian J. Anim. Sci. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Cortés, P.; Frutos, P.; Mantecon, A.R.; Juárez, M.; De La Fuente, M.A.; Hervás, G. Addition of Olive Oil to Dairy Ewe Diets: Effect on Milk Fatty Acid Profile and Animal Performance. J. Dairy Sci. 2008, 91, 3119–3127. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Cortés, P.; Frutos, P.; Mantecon, A.R.; Juárez, M.; De La Fuente, M.; Hervás, G. Milk Production, Conjugated Linoleic Acid Content, and In Vitro Ruminal Fermentation in Response to High Levels of Soybean Oil in Dairy Ewe Diet. J. Dairy Sci. 2008, 91, 1560–1569. [Google Scholar] [CrossRef]
- Gómez-Cortés, P.; Bach, A.; Luna, P.; Juárez, M.; De La Fuente, M.A. Effects of extruded linseed supplementation on n-3 fatty acids and conjugated linoleic acid in milk and cheese from ewes. J. Dairy Sci. 2009, 92, 4122–4134. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Cortés, P.; De La Fuente, M.; Toral, P.G.; Frutos, P.; Juárez, M.; Hervás, G. Effects of different forage:concentrate ratios in dairy ewe diets supplemented with sunflower oil on animal performance and milk fatty acid profile. J. Dairy Sci. 2011, 94, 4578–4588. [Google Scholar] [CrossRef] [Green Version]
- Toral, P.G.; Frutos, P.; Hervás, G.; Gómez-Cortés, P.; Juarez, M.; De La Fuente, M. Changes in milk fatty acid profile and animal performance in response to fish oil supplementation, alone or in combination with sunflower oil, in dairy ewes. J. Dairy Sci. 2010, 93, 1604–1615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toral, P.G.; Gómez-Cortés, P.; Frutos, P.; de la Fuente, M.A.; Juárez, M.; Hervás, G. Milk production and fatty acid profile after three weeks of diet supplementation with sunflower oil and marine algae in dairy ewes. In Challenging Strategies to Promote the Sheep and Goat Sector in the Current Global Context; Ranilla, M.J., Carro, M.D., Ben Salem, H., Morand-Fehr, P., Eds.; Options Méditerranéennes: Série A. Séminaires Méditerranéens; n. 99; CIHEAM: Bari, Italy, 2011; pp. 337–342. [Google Scholar]
- Vecchio, R.; Lombardi, A.; Cembalo, L.; Caracciolo, F.; Cicia, G.; Masucci, F.; Di Francia, A. Consumers’ willingness to pay and drivers of motivation to consume omega-3 enriched mozzarella cheese. Br. Food J. 2016, 118, 2404–2419. [Google Scholar] [CrossRef]
- Collomb, M.; Bütikofer, U.; Sieber, R.; Jeangros, B.; Bosset, J.-O. Correlation between fatty acids in cows’ milk fat produced in the Lowlands, Mountains and Highlands of Switzerland and botanical composition of the fodder. Int. Dairy J. 2002, 12, 661–666. [Google Scholar] [CrossRef]
- Falchero, L.; Lombardi, G.; Gorlier, A.; Lonati, M.; Odoardi, M.; Cavallero, A. Variation in fatty acid composition of milk and cheese from cows grazed on two alpine pastures. Dairy Sci. Technol. 2010, 90, 657–672. [Google Scholar] [CrossRef]
- Kelsey, J.; Corl, B.; Collier, R.; Bauman, D. The Effect of Breed, Parity, and Stage of Lactation on Conjugated Linoleic Acid (CLA) in Milk Fat from Dairy Cows. J. Dairy Sci. 2003, 86, 2588–2597. [Google Scholar] [CrossRef] [Green Version]
- Braghieri, A.; Piazzolla, N.; Romaniello, A.; Paladino, F.; Ricciardi, A.; Napolitano, F. Effect of adjuncts on sensory properties and consumer liking of Scamorza cheese. J. Dairy Sci. 2015, 98, 1479–1491. [Google Scholar] [CrossRef] [Green Version]
- Khattab, A.R.; Guirguis, H.A.; Tawfik, S.M.; Farag, M.A. Cheese ripening: A review on modern technologies towards flavor enhancement, process acceleration and improved quality assessment. Trends Food Sci. Technol. 2019, 88, 343–360. [Google Scholar] [CrossRef]
- Farruggia, A.; Pomiès, D.; Coppa, M.; Ferlay, A.; Verdier-Metz, I.; Le Morvan, A.; Bethier, A.; Pompanon, F.; Troquier, O.; Martin, B. Animal performances, pasture biodiversity and dairy product quality: How it works in contrasted mountain grazing systems. Agric. Ecosyst. Environ. 2014, 185, 231–244. [Google Scholar] [CrossRef]
- Coppa, M.; Verdier-Metz, I.; Ferlay, A.; Pradel, P.; Didienne, R.; Farruggia, A.; Montel, M.-C.; Martin, B. Effect of different grazing systems on upland pastures compared with hay diet on cheese sensory properties evaluated at different ripening times. Int. Dairy J. 2011, 21, 815–822. [Google Scholar] [CrossRef]
- Sacchi, R.; Marrazzo, A.; Masucci, F.; Di Francia, A.; Serrapica, F.; Genovese, A. Effects of Inclusion of Fresh Forage in the Diet for Lactating Buffaloes on Volatile Organic Compounds of Milk and Mozzarella Cheese. Molecules 2020, 25, 1332. [Google Scholar] [CrossRef] [Green Version]
- McSweeney, P.L.H. Biochemistry of cheese ripening. Int. J. Dairy Technol. 2004, 57, 127–144. [Google Scholar] [CrossRef]
- Lappalainen, R.; Kearney, J.; Gibney, M. A pan EU survey of consumer attitudes to food, nutrition and health: An overview. Food Qual. Preference 1998, 9, 467–478. [Google Scholar] [CrossRef]
Item | InS | OutS | ||
---|---|---|---|---|
Farm A | Farm B | Farm A | Farm B | |
Farm Characteristics | ||||
Usable agricultural area, ha | 21 | 17 | 21 | 17 |
Available grazing areas, ha | - | - | 14 | 8 |
Lactating ewes, no. | 106 | 78 | 140 | 104 |
Ingredients of the Diets Fed in the Barn | ||||
Concentrate 1, kg of DM/head per day | 0.8 | 0.8 | 0.25 | 0.25 |
Hay 2, kg of DM/head per day | 1.8 | 1.9 | 0.25 | 0.40 |
Composition of the Diets Fed in Barn | ||||
Crude protein, % of DM | 14.1 ± 0.7 | 15.4 ± 0.8 | 14.9 ± 0.5 | 15.1 ± 0.7 |
Ether extract, % of DM | 2.5 ± 0.4 | 1.2 ± 0.6 | 2.6 ± 0.2 | 1.1 ± 0.4 |
NDF, % of DM | 46.6 ± 1.4 | 51.7 ± 1.3 | 40.7 ± 1.1 | 48.8 ± 1.8 |
ADF, % of DM | 29.6 ± 1.8 | 23.6 ± 1.5 | 23.5 ± 0.9 | 18.2 ± 0.6 |
NEL, MJ/kg of DM | 3.6 ± 0.13 | 3.9 ± 0.17 | 4.4 ± 0.15 | 4.5 ± 0.2 |
Descriptor | Definition | Reference Samples | |
---|---|---|---|
Lower Anchor | Upper Anchor | ||
Odor | |||
Barn | Odor arising from a sheep barn | 60 g ricotta cheese | 60 g ricotta cheese + 60 g grated pecorino cheese |
Hay | Odor arising from hay | 200 mL water | 5 g hay in 200 mL water |
Flavor | |||
Pecorino | Typical flavor of pecorino cheese | cacioricotta cheese | Bagnolese pecorino cheese |
Barn | Flavor arising from a sheep barn | 60 g ricotta cheese | 60 g ricotta cheese + 60 g grated pecorino cheese |
Taste | |||
Sweet | Taste elicited by sucrose | 8 mL stock solution 100 mL−1 | 20 mL stock solution 100 mL−1 |
Salty | Taste elicited by sodium chloride | 1.5 mL stock solution 100 mL−1 | 3 mL stock solution 100 mL−1 |
Acid | Taste elicited by citric acid | 8 mL stock solution 101 | 16 mL stock solution 100 mL−1 |
Bitter | Taste elicited by quinine | 4 mL stock solution 100 mL−1 | 8 mL stock solution 100 mL−1 |
Spicy | Taste associated with an irritating or aggressive sensation perceived in the mouth or in the throat | 10 g ricotta cheese | 10 g ricotta cheese + 0.2 g hot pepper in powder |
Texture | |||
Hardness | Highest force required to chew cheese samples | 20 g mozzarella cheese | 20 g Pecorino cheese ripened 12 months |
Friability | Increasing perception of cheese fragments during mastication | 20 g Emmental cheese | 20 g parmesan cheese ripened 36 months |
Grainess | Perception of course particles in the mouth | 20 g Fontina cheese | 20 g parmesan cheese ripened 36 months |
Solubility | Perception of cheese melting in the mouth | 20 g Fontina cheese | 20 g mini cheese spread |
Adhesivity | Effort needed to remove the layer of cheese coating the mouth | 20 g mozzarella cheese | 20 g Taleggio cheese |
Item | Farm | |
---|---|---|
A | B | |
Botanical Composition | ||
Nonedible biomass,1 % DM | 12.8 ± 1.2 | 11.5 ± 1.3 |
Poaceae, % DM of edible biomass | 64.5 ± 3.9 | 63.8 ± 1.3 |
Lolium spp., % DM of Poaceae | 70.8 ± 2.6 | 65.1 ± 0.6 |
Other Poaceae,2 % DM of Poaceae | 29.2 ± 2.6 | 34.9 ± 0.6 |
Fabaceae, % DM of edible biomass | 22.8 ± 4.2 | 19.2 ± 4.1 |
Trifolium spp., % DM of Fabaceae | 71.1 ± 4.3 | 61.3 ± 3.8 |
Other Fabaceae,3 % DM of Fabaceae | 28.9 ± 4.3 | 38.7 ± 3.8 |
Other species,4 % DM of edible biomass | 12.7 ± 1.1 | 16.9 ± 3.0 |
Chemical Composition | ||
DM, % | 23.8 ± 1.3 | 22.6 ± 0.6 |
Crude Protein, % of DM | 17.5 ± 0.5 | 17.2 ± 0.5 |
Ether extract, % of DM | 2.3 ± 0.1 | 2.5 ± 0.1 |
NDF, % of DM | 47.8 ± 2.0 | 47.2 ± 1.1 |
ADF, % of DM | 22.3 ± 1.3 | 25.7 ± 3.0 |
NEL, MJ/kg of DM | 5.4 ± 0.5 | 5.4 ± 0.2 |
Item | OutS | InS | SEM | Significance 1 | ||||
---|---|---|---|---|---|---|---|---|
Farm A | Farm B | Farm A | Farm B | Management | Farm | M × F | ||
Milk | ||||||||
Fat, % | 6.87 | 6.92 | 6.62 | 7.03 | 0.10 | * | NS | NS |
Protein, % | 4.80 | 4.99 | 4.87 | 5.21 | 0.13 | + | NS | NS |
Lactose, mg/dL | 4.80 | 5.03 | 4.70 | 4.73 | 0.08 | NS | * | NS |
SCC, log10 n. cells/mL | 5.65 | 6.29 | 5.84 | 6.02 | 0.19 | + | NS | NS |
Cheese | ||||||||
DM, % | 69.73 | 72.38 | 67.43 | 68.6 | 0.82 | ** | * | NS |
Ash, % of DM | 4.61 | 4.51 | 4.31 | 4.51 | 0.20 | NS | NS | NS |
Fat, % of DM | 49.55 | 46.58 | 46.58 | 44.35 | 0.56 | *** | *** | NS |
Protein, % of DM | 32.18 | 36.08 | 33.45 | 37.30 | 1.17 | NS | ** | NS |
Cheese Color | ||||||||
L * | 72.33 | 71.88 | 71.75 | 70.95 | 1.26 | NS | NS | NS |
A * | 4.28 | 5.00 | 4.60 | 4.00 | 0.37 | NS | NS | NS |
B * | 11.10 | 10.50 | 11.63 | 11.08 | 0.45 | NS | NS | NS |
FA, g/100 g of FA | OutS | InS | SEM | Significance 1 | ||||
---|---|---|---|---|---|---|---|---|
Farm A | Farm B | Farm A | Farm B | Management | Farm | M × F | ||
C4:0 | 5.78 | 4.04 | 3.97 | 3.20 | 0.61 | + | NS | NS |
C6:0 | 3.18 | 2.79 | 3.25 | 3.20 | 0.32 | NS | NS | NS |
C8:0 | 2.66 | 2.52 | 2.59 | 2.27 | 0.10 | NS | * | NS |
C10:0 | 6.58 | 7.41 | 7.41 | 7.25 | 0.16 | NS | NS | * |
C12:0 | 3.57 | 4.22 | 4.72 | 4.82 | 0.19 | * | NS | NS |
C14:0 | 11.39 | 12.09 | 13.22 | 13.79 | 0.12 | *** | *** | NS |
C14:1 | 1.14 | 1.20 | 1.19 | 1.08 | 0.07 | NS | NS | NS |
C15:0 | 1.43 | 1.43 | 1.47 | 1.42 | 0.06 | NS | NS | NS |
C16:0 | 23.58 | 23.92 | 27.37 | 27.60 | 0.74 | *** | *** | NS |
C16:1 | 1.08 | 1.29 | 1.08 | 1.25 | 0.05 | NS | ** | NS |
C17:0 | 0.67 | 0.78 | 0.80 | 0.76 | 0.06 | NS | NS | NS |
C17:1 | 0.42 | 0.43 | 0.42 | 0.39 | 0.03 | NS | NS | NS |
C18:0 | 10.01 | 10.59 | 10.66 | 10.69 | 0.64 | NS | NS | NS |
C18:1 n9 trans | 4.03 | 3.50 | 2.96 | 2.90 | 0.31 | * | NS | NS |
C18:1 trans-11 | 0.38 | 0.35 | 0.20 | 0.15 | 0.02 | *** | NS | NS |
C18: 1 n9 cis | 17.57 | 17.36 | 14.12 | 15.02 | 0.47 | *** | NS | NS |
C18:2 n6 | 1.83 | 1.72 | 1.14 | 0.99 | 0.08 | *** | NS | NS |
C18:3 n3 | 1.57 | 1.31 | 0.76 | 0.77 | 0.17 | ** | NS | NS |
C20:1 | 0.25 | 0.23 | 0.23 | 0.20 | 0.02 | NS | NS | NS |
Cis-9 trans-11 CLA | 2.10 | 1.93 | 1.60 | 1.43 | 0.19 | * | NS | NS |
C20:4 | 0.13 | 0.12 | 0.15 | 0.11 | 0.01 | NS | ** | NS |
Others | 0.66 | 0.76 | 0.70 | 0.71 | 0.03 | NS | * | NS |
MUFA | 24.87 | 24.40 | 20.17 | 21.00 | 0.43 | *** | NS | NS |
PUFA | 5.64 | 5.08 | 3.66 | 3.31 | 0.23 | * | NS | NS |
SFA | 68.84 | 69.79 | 75.45 | 74.99 | 0.42 | *** | NS | NS |
Atherogenic index 2 | 2.38 | 2.60 | 3.57 | 3.60 | 0.08 | *** | NS | NS |
Descriptor | OutS | InS | SEM | Significance 1 | ||||
---|---|---|---|---|---|---|---|---|
Farm A | Farm B | Farm A | Farm B | Management | Farm | M × F | ||
Odour | ||||||||
Barn | 36.38 | 72.91 | 33.36 | 50.11 | 3.9 | ** | *** | * |
Hay | 36.20 | 49.44 | 34.84 | 35.09 | 4.0 | * | * | * |
Flavor | ||||||||
Pecorino | 43.04 | 65.07 | 35.66 | 51.15 | 3.7 | ** | *** | NS |
Barn | 23.18 | 58.88 | 24.16 | 38.89 | 3.4 | ** | *** | ** |
Taste | ||||||||
Sweet | 7.73 | 3.27 | 30.86 | 14.67 | 2.5 | *** | *** | * |
Salty | 35.51 | 58.36 | 18.39 | 39.26 | 3.0 | *** | *** | NS |
Acid | 11.96 | 26.49 | 16.93 | 22.41 | 3.0 | NS | ** | NS |
Bitter | 14.29 | 24.53 | 13.12 | 23.22 | 3.1 | NS | ** | NS |
Spicy | 14.38 | 31.53 | 10.18 | 19.65 | 3.1 | * | *** | NS |
Texture | ||||||||
Hardness | 55.33 | 71.82 | 21.65 | 43.85 | 2.7 | *** | *** | NS |
Friability | 44.69 | 55.04 | 25.02 | 44.82 | 3.5 | *** | *** | NS |
Grainess | 51.18 | 68.20 | 23.39 | 46.33 | 3.5 | *** | *** | NS |
Solubility | 23.11 | 22.04 | 30.27 | 25.61 | 3.5 | NS | NS | NS |
Adhesivity | 26.20 | 25.67 | 32.52 | 33.82 | 3.4 | * | NS | NS |
Hedonic scores | ||||||||
Overall liking | 6.44 | 6.13 | 7.23 | 7.06 | 0.21 | *** | NS | NS |
Appearance | 6.63 | 6.18 | 7.35 | 7.07 | 0.19 | *** | * | NS |
Taste/flavor | 6.33 | 6.16 | 7.03 | 7.00 | 0.21 | *** | NS | NS |
Texture | 6.53 | 6.04 | 7.34 | 6.89 | 0.20 | *** | * | NS |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrapica, F.; Masucci, F.; Di Francia, A.; Napolitano, F.; Braghieri, A.; Esposito, G.; Romano, R. Seasonal Variation of Chemical Composition, Fatty Acid Profile, and Sensory Properties of a Mountain Pecorino Cheese. Foods 2020, 9, 1091. https://doi.org/10.3390/foods9081091
Serrapica F, Masucci F, Di Francia A, Napolitano F, Braghieri A, Esposito G, Romano R. Seasonal Variation of Chemical Composition, Fatty Acid Profile, and Sensory Properties of a Mountain Pecorino Cheese. Foods. 2020; 9(8):1091. https://doi.org/10.3390/foods9081091
Chicago/Turabian StyleSerrapica, Francesco, Felicia Masucci, Antonio Di Francia, Fabio Napolitano, Ada Braghieri, Giulia Esposito, and Raffaele Romano. 2020. "Seasonal Variation of Chemical Composition, Fatty Acid Profile, and Sensory Properties of a Mountain Pecorino Cheese" Foods 9, no. 8: 1091. https://doi.org/10.3390/foods9081091
APA StyleSerrapica, F., Masucci, F., Di Francia, A., Napolitano, F., Braghieri, A., Esposito, G., & Romano, R. (2020). Seasonal Variation of Chemical Composition, Fatty Acid Profile, and Sensory Properties of a Mountain Pecorino Cheese. Foods, 9(8), 1091. https://doi.org/10.3390/foods9081091