Use of Calcium Amino Acid Chelate in the Production of Acid-Curd Goat Cheese
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Goat’s Milk Analysis
2.2. Cheese Manufacture
2.3. Physical and Chemical Parameters of Cheese
2.4. Acid-Curd Cheese Texture Analysis
2.5. Organoleptic Evaluation of Acid-Curd Cheese
2.6. Whey Analysis
2.7. Mineral Composition of Milk, Cheese and Whey
2.8. Statistical Analysis
3. Results
3.1. Quality of Raw Goat’s Milk
3.2. Mineral Composition of Acid-Curd Cheese
3.3. Physicochemical Properties and Texture of Cheese
3.4. Organoleptic Evaluation of Acid-Curd Cheese
3.5. Physicochemical Properties of Whey
3.6. Mineral Composition of Whey
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Clark, S.; Mora Garcia, M.B. A 100-Year Review: Advances in goat milk research. J. Dairy Sci. 2017, 100, 10026–10044. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.W.; Juarez, M.; Ramos, M.; Haenlein, G.F.W. Physico-chemical characteristic of goat and sheep milk. Small Rumin. Res. 2007, 68, 88–113. [Google Scholar] [CrossRef] [Green Version]
- Villa, C.; Costa, J.; Oliveira, M.B.P.; Mafra, I. Bovine Milk Allergens: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 137–164. [Google Scholar] [CrossRef] [Green Version]
- Monaci, L.; Tregoat, V.; van Hengel, A.J.; Anklam, E. Milk allergens, their characteristics and their detection in food: A review. Eur. Food Res. Technol. 2006, 223, 149–179. [Google Scholar] [CrossRef]
- Barłowska, J.; Wolanciuk, A.; Kędzierska-Matysek, M.; Litwińczuk, Z. Wpływ sezonu produkcji na podstawowy skład chemiczny oraz zawartość makro- i mikroelementów w mleku krowim i kozim. Effect of production season on basic chemical composition and content of macro- and microelements in cow’s and goat’s milk. Zywnosc-Nauka Technol. Jakosc 2013, 91, 69–78. (In Polish) [Google Scholar] [CrossRef]
- Danków, R.; Pikul, J. Przydatność technologiczna mleka koziego do przetwórstwa. Technological suitability of goat milk for processing. Nauk. Przyr. Technol. 2011, 5, 1–15. Available online: https://www.npt.up-poznan.net/pub/art_5_6.pdf (accessed on 26 May 2020). (In Polish).
- Mehaia, M.A. Manufacture of fresh soft white cheese (Domiati-type) from ultrafiltered goat’s milk. Food Chem. 2002, 79, 445–452. [Google Scholar] [CrossRef]
- Żylińska, J.; Siemianowski, K.; Bohdziewicz, K.; Pawlikowska, K.; Kołakowski, P.; Szpendowski, J.; Bardowski, J. Kultury starterowe do produkcji twarogów kwasowych—Rola i oczekiwania. Starter cultures for acid curd—Role and expectations. Postep. Mikrobiol. 2014, 53, 288–298. (In Polish) [Google Scholar]
- Da Silva Bonfim, V.; da Costa Pereira, M. Influence of Processing on Rheological and Textural Characteristic of Goat and Sheep Milk Beverages and Methods of Analysis. Process. Sustain. Beverages 2019, 2, 373–412. [Google Scholar] [CrossRef]
- Domagała, J. Instrumental Texture, Syneresis, and Microstructure of Yoghurts Prepared from Ultrafiltrated Goat Milk: Effect of Degree of Concentration. Int. J. Food Prop. 2011, 15, 558–568. [Google Scholar] [CrossRef]
- Miocinovic, J.; Miloradovic, Z.; Josipovic, M.; Nedeljkovic, A.; Radovanovic, M.; Pudja, P. Rheological and textural properties of goat and cow milk set type yoghurts. Int. Dairy J. 2016, 58, 43–45. [Google Scholar] [CrossRef]
- Delgado, K.F.; da Silva Frasao, B.; da Costa, M.P.; Junior, C.A.C. Different Alternatives to Improve Rheological and Textural Characteristics of Fermented Goat Products—A Review. Rheology 2017, 1, 106. [Google Scholar]
- Park, Y.W. Rheological characteristics of goat and sheep milk. Small Rumin. Res. 2007, 68, 73–87. [Google Scholar] [CrossRef]
- Moudrá, K.; Pachlová, V.; Černíková, M.; Šopík, T.; Buňka, F. The combined effects of fat content, calcium chloride, and coagulant concentration on the development of cheese curd structure. Int. Dairy J. 2017, 73, 92–97. [Google Scholar] [CrossRef]
- Soodam, K.; Ong, L.; Powell, I.B.; Kentish, S.E.; Gras, S.L. Effect of calcium chloride addition and draining pH on the microstructure and texture of full fat Cheddar cheese during ripening. Food Chem. 2015, 181, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Szajnar, K.; Znamirowska, A.; Kalicka, D.; Zaguła, G. Fortification of yoghurts with calcium compounds. J. Elem. 2017, 22, 869–879. [Google Scholar] [CrossRef]
- Greenberg, J.A.; Chow, G.; Ziegelstein, R.C. Caffeinated coffee consumption, cardiovascular disease, and heart valve disease in the elderly (from the Framingham Study). Prev. Cardiol. 2008, 102, 1502–1508. [Google Scholar] [CrossRef]
- Weaver, C.M. The role of nutrition on optimizing peak bone mass. Asia Pac. J. Clin. Nutr. 2008, 17, 135–137. [Google Scholar]
- Guéguen, L.; Pointillart, A. The bioavailability of dietary calcium. J. Am. Coll. Nutr. 2000, 19, 119S–136S. [Google Scholar] [CrossRef]
- Siemianowski, K.; Szpendowski, J. Możliwość zwiększania zawartości wapnia w serach twarogowych w świetle dotychczasowych badań. Possibilities of Tvarog cheeses enrichment with calcium in the light of hitherto existing research. Nauk. Inż. Technol. 2012, 4, 83–98. Available online: https://dbc.wroc.pl/Content/22852/Siemianowski_Mozliwosci_Zwiekszania_Zawartosci_Wapnia_w_Serach_2012.pdf (accessed on 26 May 2020). (In Polish).
- da Silva Oselame, C.; de Matos, O.; Oselame, G.B.; Borba Neves, E. Analysis of total calorie, calcium and protein intake and relationship with bone mineral density in postmenopausal women. Rev. Bras. Geriatr. Gerontol. 2016, 19, 653–660. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Zhao, Z. Acid and rennet-induced coagulation behavior of casein micelles with modified structure. Food Chem. 2019, 291, 231–238. [Google Scholar] [CrossRef]
- Schokker, E.P.; Singh, H.; Creamer, L.K. Heat-inducted aggregation of β-lactoglobulin A and B with α-lactoalbumin. Int. Dairy J. 2000, 10, 843–853. [Google Scholar] [CrossRef]
- Szpendowski, J.; Kłobukowski, J.; Prokop, E. Wpływ dodatku chlorku wapnia i ogrzewania mleka na skład chemiczny serów twarogowych. The effect of calcium chloride added to milk and milk heating on the chemical composition of cottage cheeses. Zywnosc-Nauka Technol. Jakosc 2005, 3, 36–45. Available online: http://wydawnictwo.pttz.org/wp-content/uploads/2015/02/03_Szpendowski1.pdf (accessed on 26 May 2020). (In Polish).
- Ziarno, M.; Zaręba, D.; Piskorz, J. Wzbogacanie maślanki w wapń, magnez oraz białka serwatkowe. Fortifying buttermilk with calcium, magnesium, and whey proteins. Zywnosc-Nauka Technol. Jakosc 2009, 2, 14–27. Available online: http://wydawnictwo.pttz.org/wp-content/uploads/2015/02/02_Ziarno.pdf (accessed on 26 May 2020). (In Polish).
- Sindayikengera, S.; Wen-Shui, X. Nutritional evaluation of caseins and whey proteins and their hydrolysates from Protamex. J. Zhejiang Univ. Sci. B 2006, 7, 90–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaworski, J.; Kuncewicz, A. Właściwości fizykochemiczne mleka. Physicochemical properties of milk. In Mleczarstwo; Ziajka, S., Ed.; UWM: Olsztyn, Poland, 2007; pp. 53–99. (In Polish) [Google Scholar]
- Ashmead, H.D. Amino Acid Chelation in Human and Animal Nutrition; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar] [CrossRef]
- Pawlos, M.; Znamirowska, A.; Szajnar, K.; Kalicka, D. The influence of the dose of calcium amino acid chelate on physicochemical properties, sensory analysis and texture profile of kefirs during 21 days of cold storage. Acta Sci. Pol. Technol. Aliment. 2016, 15, 37–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Commission Regulation (EC) No 953/2009 of 13 October 2009 on substances that may be added for specific nutritional purposes in foods for particular nutritional uses (Text with EEA relevance). Off. J. Eur. Union 2009, L269, 216–226. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32009R0953&from=EN (accessed on 26 May 2020).
- Commission Regulation (EC) No 1170/2009 of 30 November 2009 amending Directive 2002/46/EC of the European Parliament and of Council and Regulation (EC) No 1925/2006 of the European Parliament and of the Council as regards the lists of vitamin and minerals and their forms that can be added to foods, including food supplements (Text with EEA relevance). Off. J. Eur. Union 2009, L314, 36–42. Available online: https://eur-lex.europa.eu/legal=-content/EN/TXT/HTML/?uri=CELEX:32009R1170&from=EN (accessed on 26 May 2020).
- Scott., J.E.; Robinson, R.K.; Wilbey, R. Cheesemaking Practice, 3rd ed.; Springer Science + Business Media: New York, NY, USA, 1998; p. 91. [Google Scholar]
- Calamari, L.; Gobbi, L.; Paolo, B. Improving the prediction ability of FT-MIR spectroscopy to assess titratable acidity in cow’s milk. Food Chem. 2016, 192, 477–484. [Google Scholar] [CrossRef]
- Raţu, R.N.; Usturoi, M.G.; Avarvarei, B.V. Quality of Raw Cow Milk Utilised In Cheese Processing. Lucr. Ştiinţifice Ser. Zooteh. 2015, 63, 128–130. [Google Scholar]
- Mleko i Przetwory Mleczarskie Sery Metody Badań. Milk and Dairy Products Cheeses Methods of Analysis; PN-A-86232:1973; Polski Komitet Normalizacyjny: Warszawa, Poland, 1973. (In Polish)
- Kowalska, M.; Janas, S.; Woźniak, M. Innovative application of the moisture analyzer for determination of dry mass content of processed cheese. Heat Mass Transf. 2018, 54, 3071–3080. [Google Scholar] [CrossRef] [Green Version]
- Siemianowski, K.; Szpendowski, J.; Bohdziewicz, K.; Kołakowski, P.; Pawlikowska, K.; Żylińska, J.; Bardowski, J.K. Wpływ zawartości suchej masy w mleku na skład oraz cechy sensoryczne twarogu kwasowego. Effect of the dry matter content in milk on the composition and sensory properties of acid Tvarog cheese. Folia Pomer. Univ. Technol. Stetin. Agric. Aliment. Pisc. Zootech. 2013, 302, 113–124. Available online: http://wydawnictwo.pttz.org/wp-content/uploads/2015/02/12_Siemianowski.pdf (accessed on 26 May 2020). (In Polish).
- Pawlos, M.; Znamirowska, A.; Kluz, M.; Szajnar, K.; Kowalczyk, M. Low-lactose fermented goat milks with Bifidobacterium animals ssp. lactis Bb-12. J. Microbiol. Biotechnol. Food Sci. 2020, 9, 751–755. [Google Scholar] [CrossRef]
- Sensory Analysis—Guidelines for the Use of Quantitative Response Scales; ISO 4121:2003; International Organization for Standardization (ISO): Geneva, Switzerland, 2003.
- Znamirowska, A.; Szajnar, K.; Pawlos, M. Organic magnesium salts fortification in fermented goat’s milk. Int. J. Food Prop. 2019, 22, 1615–1625. [Google Scholar] [CrossRef] [Green Version]
- Wolanciuk, A.; Barłowska, J.; Pastuszka, R.; Topyła, B. Podstawowy skład chemiczny i wybrane parametry tłuszczu mleka koziego z okresu żywienia letniego i jesienno-zimowego. Basic chemical composition and the selected fat parameters of caprine milk from summer and autumn-winter feeding period. Rocz. Nauk. PTZ 2013, 9, 63–70. Available online: http://ptz.icm.edu.pl/download/2013/tom_9_2/VI%2520Wolanciuk.pdf (accessed on 26 May 2020). (In Polish).
- Guo, M.R.; Dixon, P.H.; Park, Y.W.; Gilmore, J.A.; Kindstedt, P.S. Seasonal Changes in the Chemical Composition of Commingled Goat Milk. J. Dairy Sci. 2001, 84, E79–E83. [Google Scholar] [CrossRef]
- Domagała, J.; Wszołek, M. Wpływ sposobu zagęszczania oraz rodzaju szczepionki na teksturę i podatność na synerezę jogurtu i biojogurtów z mleka koziego. Effect of concentration method and starter culture type on the texture and susceptibility to syneresis of yoghurt and bio-yoghurts made of goat’s milk. Zywnosc-Nauka Technol. Jakosc 2008, 15, 118–126. Available online: http://wydawnictwo.pttz.org/wp-content/uploads/2015/02/11_Domagala.pdf (accessed on 26 May 2020). (In Polish).
- Strzałkowska, N.; Jóźwik, A.; Bagnicka, E.; Krzyżewski, J.; Horbańczuk, K.; Pyzel, B.; Horbańczuk, J.O. Chemical composition, physical traits and fatty acid profile of goat milk as related to the stage of lactation. Anim. Sci. Pap. Rep. 2009, 27, 311–320. Available online: http://archiwum.ighz.edu.pl/files/objects/7512/66/str311-320.pdf (accessed on 26 May 2020).
- Haenlein, G.F. Relationship of somatic cell counts in goat milk to mastitis and productivity. Small Rumin. Res. 2002, 45, 163–178. [Google Scholar] [CrossRef]
- Kyozaire, J.K.; Veary, C.M.; Petzer, I.M.; Donkin, E.F. Microbiological quality of goat’s milk obtained under different production systems. J. S. Afr. Vet. Assoc. 2005, 76, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EC) No 1662/2006 of 6 November 2006 amending Regulation (EC) No 853/2004 of the European Parliament and of the Council laying down specific hygiene rules for food of animal origin (Text with EEA relevance). Off. J. Eur. Union 2006, L320, 1–10. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32006R1662&from=EN (accessed on 26 May 2020).
- Park, Y.W.; Humphrey, R.D. Bacterial Cell Counts in Goat Milk and Their Correlations with Somatic Cell Counts, Percent Fat, and Protein. J. Dairy Sci. 1986, 69, 32–37. [Google Scholar] [CrossRef]
- Teleb, D.F.; Youssef, H.F.H.; El-Baz, A.M. Relationship between Somatic Cell Count and Udder Health in Damascus Goats. Egypt. J. Sheep Goat Sci. 2014, 9, 31–41. [Google Scholar] [CrossRef]
- Chen, S.X.; Wang, J.Z.; Van Kessel, J.S.; Ren, F.Z.; Zeng, S.S. Effect of somatic cell count in goat milk on yield, sensory quality, and fatty acid profile of semisoft cheese. J. Dairy Sci. 2010, 93, 1345–1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.W.; Haenlein, G.F.W. Goat Milk, Its Products and Nutrition. In Handbook of Food Products Manufacturing; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 449–488. [Google Scholar] [CrossRef]
- Bagnicka, E.; Winnicka, A.; Jóźwik, A.; Rzewuska, M.; Strzałkowska, N.; Kościuczuk, E.; Prusak, B.; Kaba, J.; Horbańczuk, J.; Krzyżewski, J. Relationship between somatic cell count and bacterial pathogens in goat milk. Small Rumin. Res. 2011, 100, 72–77. [Google Scholar] [CrossRef]
- Pazzola, M.; Balia, F.; Carcangiu, V.; Dettori, M.L.; Piras, G.; Vacca, G.M. Higher somatic cells counted by the electronic counter method do not influence renneting properties of goat milk. Small Rumin. Res. 2002, 102, 32–36. [Google Scholar] [CrossRef]
- Boyazoglu, J.; Morand-Fehr, P. Mediterranean dairy sheep and goat products and their quality. Small Rumin. Res. 2001, 40, 1–11. [Google Scholar] [CrossRef]
- Pirisi, A.; Piredda, G.; Corona, M.; Pes, M.; Pintus, S.; Ledda, A. Influence of somatic cell count on ewe’s milk composition, cheese yield and cheese quality. In Proceedings of the Sixth Great Lakes Dairy Sheep Symposium, Guelph, ON, Canada, 2–4 November 2000; pp. 47–59. [Google Scholar]
- Bergillos-Meca, T.; Cabrera-Vique, C.; Artacho, R.; Moreno-Montoro, M.; Navarro-Alarcón, M.; Olalla, M.; Giménez, R.; Ruiz-López, M.D. Influence of milk ultrafiltration on Ca, Mg, Zn and P levels in fermented goats’ milk. Small Rumin. Res. 2015, 124, 95–100. [Google Scholar] [CrossRef]
- Pastuszka, R.; Barłowska, J.; Litwińczuk, Z. Walory odżywcze i prozdrowotne mleka koziego. Nutritional value and health-promoting properties of goat milk. Med. Wet. 2015, 71, 480–485. (In Polish) [Google Scholar]
- Raynal-Ljutovac, K.; Lagriffoul, G.; Paccard, P.; Guillet, I.; Chilliard, Y. Composition of goat and sheep milk products: An update. Small Rumin. Res. 2008, 79, 57–72. [Google Scholar] [CrossRef]
- Baran, J.; Pieczonka, W.; Pompa-Roborzyński, M. Składniki mineralne w serach i w serwatce otrzymanych z mleka owczego i koziego. Mineral components in cheeses and whey made from ewe’s and goat’s milk. Zywnosc-Nauka Technol. Jakosc 2011, 78, 132–140. (In Polish) [Google Scholar] [CrossRef]
- Allen, J.C.; Miller, W.J. Selenium Binding and Distribution in Goat and Cow Milk. J. Dairy Sci. 1980, 63, 526–531. [Google Scholar] [CrossRef]
- Pechova, A.; Misurova, L.; Pavlata, L.; Dvorak, R. Monitoring of Changes in Selenium Concentration in Goat Milk during Short-Term Supplementation of Various Forms of Selenium. Biol. Trace Elem. Res. 2008, 121, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Pizzoferrato, L. Selenium: Positive and negative aspects. Caseus Int. 2002, 4, 84–86. [Google Scholar]
- Janštová, B.; Dračková, M.; Cupáková, Š.; Přidalová, H.; Pospíšilová, M.; Karpíšková, R.; Vorlová, L. Safety and Quality of Farm Fresh Goat’s Cheese in the Czech Republic. Czech J. Food Sci. 2010, 28, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Cankurt, H. The Effects of Adding Different Stabilizers in Brine on the Physicochemical, Sensory, Microbiological and Textural Properties of White Cheese. Foods 2019, 8, 133. [Google Scholar] [CrossRef] [Green Version]
- Asteri, I.A.; Kittaki, N.; Tsakalidou, E. The effect of wild lactic acid bacteria on the production of goat’s milk soft cheese. Int. J. Dairy Technol. 2010, 63, 234–242. [Google Scholar] [CrossRef]
- Walia, A.; Mishra, N.; Pradyuman, K. Effect of Fermentation on Physicochemical, Textural Properties and Yoghurt Bacteria in Mango Soy Fortified Yoghurt. Afr. J. Food Sci. 2013, 7, 120–127. [Google Scholar] [CrossRef] [Green Version]
- Znamirowska, A.; Szajnar, K.; Pawlos, M.; Kalicka, D. Effect of Magnesium D-Gluconate Fortification on Heat Stability of Goat’s Milk and Physicochemical Properties, Sensory Characteristic and Texture Profile of Yoghurts during Cold Storage. J. Microbiol. Biotechnol. Food Sci. 2015, 5, 68–72. [Google Scholar] [CrossRef] [Green Version]
- Salles, C.; Sommerer, N.; Septier, C.; Issanchou, S.; Chabanet, C.; Garem, A.; Le Quere, J.L. Goat Cheese Flavor: Sensory Evaluation of Branched-Chain Fatty Acids and Small Peptides. J. Food Sci. 2002, 67, 835–841. [Google Scholar] [CrossRef]
- Talavera, M.; Chambers, D.H. Flavor lexicon and characteristics of artisan goat cheese from the United States. J. Sens. Stud. 2016, 31, 492–506. [Google Scholar] [CrossRef]
- Carunchia Whetstine, M.E.; Parker, J.D.; Drake, M.A.; Larick, D.K. Determining Flavor and Flavor Variability in Commercially Produced Liquid Cheddar Whey. J. Dairy Sci. 2003, 86, 439–448. [Google Scholar] [CrossRef] [Green Version]
- Mayer, H.K.; Fiechter, G. Physical and chemical characteristics of sheep and goat milk in Austria. Int. Dairy J. 2012, 24, 57–63. [Google Scholar] [CrossRef]
- Moreno-Indias, I.; Castro, N.; Morales-delaNuez, A.; Sánchez-Macías, D.; Assunção, P.; Capote, J.; Argüello, A. Farm and factory production of goat cheese whey results in distinct chemical composition. J. Dairy Sci. 2009, 92, 4792–4796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.T.; Zhu, H.; Li, Y.; Hong, G. Continuous propionate production from whey permeate using a novel fibrous bed bioreactor. Biotechnol. Bioeng. 1994, 43, 1124–1130. [Google Scholar] [CrossRef] [PubMed]
- Popović Vranješ, A.; Krstović, S.; Kasalica, A.; Jurakić, Ž.; Štrbac, L.; Strugar, K.; Šaran, M. Quality of Milk for Cheese Production on Registered Agricultural Holdings in Vojvodina. Contemp. Agric. 2017, 66, 32–37. [Google Scholar] [CrossRef] [Green Version]
Properties | Mean ± SD 1 | Min 2 − Max 3 |
---|---|---|
TBC 4, cfu mL−1 | 269,800 ± 17,310 | 249,600 − 291,120 |
SCC 5, in 1 mL | 910,000 ± 32,840 | 870,310 − 943,940 |
Density, g mL−1 | 1.030 ± 0.01 | 1.029 − 1.031 |
Freezing point, °C | −0.574 ± 0.05 | −0.634 − 0.524 |
pH | 6.62 ± 0.03 | 6.59 − 6.68 |
Titratable acidity, °SH | 6.70 ± 0.05 | 6.63 − 6.76 |
Protein, g 100 g−1 | 4.02 ± 0.04 | 3.98 − 4.08 |
Casein, g 100 g−1 | 3.29 ± 0.02 | 3.25 − 3.31 |
Fat, g 100 g−1 | 4.03 ± 0.07 | 3.95 − 4.12 |
Lactose, g 100 g−1 | 4.49 ± 0.09 | 4.39 − 4.59 |
Total solids, g 100 g−1 | 12.98 ± 0.01 | 12.95 − 12.99 |
Mineral Compound | Mean ± SD 1 | Min 2 − Max 3 |
---|---|---|
Ca, mg 100 g−1 | 183.57 ± 0.72 | 180.90 − 184.52 |
K, mg 100 g−1 | 220.68 ± 1.07 | 219.01 − 222.00 |
Mg, mg 100 g−1 | 14.61 ± 0.04 | 14.55 − 14.65 |
P, mg 100 g−1 | 134.71 ± 3.91 | 130.80 − 139.54 |
Mn, µg 100 g−1 | 6.00 ± 1.00 | 5.00 − 7.00 |
Se, µg 100 g−1 | 2.00 ± 1.50 | 0.49 − 3.50 |
Cd, mg 100 g−1 | ND 4 | - |
Pb, mg 100 g−1 | ND 4 | - |
Mineral Compound | Cheese Type | r | |||
---|---|---|---|---|---|
CC | C30 | C35 | C40 | ||
Ca, mg 100 g−1 | 157.34 a ± 1.17 | 201.88 b ± 1.65 | 252.54 c ± 5.06 | 256.58 c ± 0.32 | 0.9825 * |
K, mg 100 g−1 | 174.42 a ± 1.57 | 175.94 a ± 1.22 | 175.83 a ± 0.67 | 175.57 a ± 2.37 | 0.0710 |
Mg, mg 100 g−1 | 19.70 a ± 0.84 | 19.89 a ± 0.74 | 20.50 a ± 0.75 | 20.83 a ± 0.88 | 0.5843 |
P, mg 100 g−1 | 161.43 a ± 2.62 | 168.57 a ± 3.17 | 167.98 a ± 1.25 | 164.46 a ± 2.56 | 0.5894 |
Mn, µg 100 g−1 | 6.00 a ± 2.00 | 6.00 a ± 2.00 | 6.00 a ± 3.00 | 6.00 a ± 3.00 | −0.0399 |
Se, µg 100 g−1 | 1.00 a ± 1.00 | 1.00 a ± 1.00 | 1.00 a ± 1.00 | 1.00 a ± 0.00 | −0.0361 |
Cd, mg 100 g−1 | ND | ND | ND | ND | - |
Pb, mg 100 g−1 | ND | ND | ND | ND | - |
Properties | Cheese Type | r | |||
---|---|---|---|---|---|
CC | C30 | C35 | C40 | ||
pH | 4.63 a ± 0.02 | 4.81 b ± 0.01 | 4.83 b ± 0.02 | 4.83 b ± 0.02 | 0.9861 * |
Titratable acidity, °SH | 58.23 c ± 1.07 | 52.41 b ± 0.62 | 48.82 a ± 0.56 | 48.38 a ± 0.10 | −0.9668 * |
Protein retention, % | 73.86 a ± 0.08 | 75.44 b ± 0.12 | 75.85 c ± 0.07 | 76.51 d ± 0.26 | 0.9759 * |
Fat, g 100 g−1 | 20.00 c ± 0.87 | 19.50 b ± 0.50 | 15.67 a ± 0.29 | 15.07 a ± 0.31 | −0.7674 * |
Moisture, g 100 g−1 | 57.39 a ± 0.11 | 61.48 b ± 0.85 | 66.81 c ± 1.60 | 70.67 d ± 0.57 | 0.8801 * |
Hardness, N | 3.61 c ± 0.18 | 3.24 c ± 0.20 | 2.45 b ± 0.05 | 1.95 a ± 0.21 | −0.8285 * |
Cohesiveness | 0.23 c ± 0.01 | 0.20 c ± 0.02 | 0.10 b ± 0.02 | 0.05 a ± 0.03 | −0.8174 * |
Springiness, mm | 3.40 c ± 0.06 | 2.13 b ± 0.20 | 1.97 b ± 0.17 | 1.06 a ± 0.06 | −0.9441 * |
Adhesiveness, mJ | 4.30 a ± 0.35 | 5.60 b ± 0.26 | 5.70 b ± 0.10 | 5.70 b ± 0.10 | −0.9395 * |
Properties | Cheese Type | r | |||
---|---|---|---|---|---|
CC | C30 | C35 | C40 | ||
Overall acceptability | 4.90 b ± 0.10 | 4.86 a, b ± 0.17 | 4.86 a, b ± 0.17 | 4.51 a ± 0.15 | −0.8430 * |
Apperance | 4.80 b ± 0.20 | 4.60 a, b ± 0.41 | 4.60 a, b ± 0.29 | 4.25 a ± 0.48 | −0.6214 * |
Consistency | 4.90 b ± 0.10 | 4.80 b ± 0.25 | 4.80 b ± 0.41 | 4.40 a ± 0.41 | −0.6429 * |
Taste | 4.50 a ± 0.20 | 4.80 b ± 0.15 | 4.80 b ± 0.15 | 4.75 a ± 0.29 | 0.6956 * |
Odour | 5.00 a ± 0.00 | 4.88 a ± 0.25 | 4.90 a ± 0.25 | 4.88 a ± 0.25 | −0.2515 |
Properties | Whey Type | r | |||
---|---|---|---|---|---|
CW | W30 | W35 | W40 | ||
pH | 4.72 a ± 0.01 | 4.87 b ± 0.01 | 4.88 b, c ± 0.01 | 4.89 c ± 0.01 | 0.8939 * |
Titratable acidity, °SH | 37.40 b ± 0.20 | 35.00 a ± 0.20 | 35.07 a ± 0.83 | 34.27 a ± 0.76 | 0.9897 * |
Protein, g 100 g−1 | 1.05 c ± 0.01 | 0.99 b ± 0.01 | 0.97 b ± 0.01 | 0.94 a ± 0.01 | −0.9173 * |
Fat, g 100 g−1 | 0.25 a ± 0.01 | 0.39 b ± 0.01 | 0.43 c ± 0.01 | 0.60 d ± 0.01 | −0.9751 * |
Lactose, g 100 g−1 | 4.07 b ± 0.01 | 4.06 b ± 0.01 | 4.06 b ± 0.01 | 3.85 a ± 0.01 | 0.8876 * |
Mineral Compound | Whey Type | r | |||
---|---|---|---|---|---|
CW | W30 | W35 | W40 | ||
Ca, mg 100 g−1 | 156.15 a ± 0.11 | 188.08 b ± 1.62 | 206.54 c ± 2.95 | 212.06 d ± 2.09 | 0.8939 * |
K, mg 100 g−1 | 197.23 a ± 2.26 | 198.54 a ± 1.06 | 199.30 a ± 2.08 | 200.06 a ± 2.89 | 0.4822 |
Mg, mg 100 g−1 | 24.23 a ± 0.41 | 24.57 a ± 0.18 | 25.59 a ± 0.03 | 25.60 a ± 0.33 | 0.5911 |
Mn, µg 100 g−1 | 5.00 a ± 1.01 | 5.00 a ± 1.02 | 4.00 a ± 1.03 | 4.00 a ± 1.01 | −0.4153 |
P, mg 100 g−1 | 96.59 a ± 1.24 | 96.52 a ± 1.66 | 95.39 a ± 3.77 | 95.24 a ± 1.74 | 0.3318 |
Se, µg 100 g−1 | ND | ND | 1.00 a ± 0.00 | 1.00 a ± 0.00 | 0.2679 |
Cd, mg 100 g−1 | ND | ND | ND | ND | - |
Pb, mg 100 g−1 | ND | ND | ND | ND | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawlos, M.; Znamirowska, A.; Zaguła, G.; Buniowska, M. Use of Calcium Amino Acid Chelate in the Production of Acid-Curd Goat Cheese. Foods 2020, 9, 994. https://doi.org/10.3390/foods9080994
Pawlos M, Znamirowska A, Zaguła G, Buniowska M. Use of Calcium Amino Acid Chelate in the Production of Acid-Curd Goat Cheese. Foods. 2020; 9(8):994. https://doi.org/10.3390/foods9080994
Chicago/Turabian StylePawlos, Małgorzata, Agata Znamirowska, Grzegorz Zaguła, and Magdalena Buniowska. 2020. "Use of Calcium Amino Acid Chelate in the Production of Acid-Curd Goat Cheese" Foods 9, no. 8: 994. https://doi.org/10.3390/foods9080994
APA StylePawlos, M., Znamirowska, A., Zaguła, G., & Buniowska, M. (2020). Use of Calcium Amino Acid Chelate in the Production of Acid-Curd Goat Cheese. Foods, 9(8), 994. https://doi.org/10.3390/foods9080994