A Modern Approach to the Treatment of Traumatic Brain Injury
Abstract
:1. Introduction
2. Concepts and Strategies for TBI Therapy
3. Secondary Brain Injury in TBI
4. Emergency Care for TBI
4.1. Head Position
4.2. Airway Management
4.2.1. Tracheostomy
4.2.2. Hyperventilation
4.2.3. Ventilator-Associated Pneumonia
4.3. Prevention of Seizures
4.4. Sedation and Induced Coma
- Administration of barbiturates to suppress seizures and as a prophylaxis for intracranial hypertension is not recommended (grade IIB).
- High doses of barbiturates are recommended to control intracranial pressure refractory to maximum standard surgical and medical treatments while maintaining hemodynamic stability.
- Although propofol can be used to control intracranial pressure, it is not recommended for reducing mortality or six-month outcomes.
4.5. Hypothermia
4.6. Blood Pressure and Cerebral Perfusion Pressure (CPP)
- To reduce mortality and improve the outcomes (level III), maintain SBP at ≥100 mm Hg for patients aged 50 to 69 years or at a level ≥110 mm Hg or higher for patients aged 15 to 49 or older than 70.
- The recommended CPP target for survival and good outcomes is 60 to 70 mm Hg. The optimal CPP may depend on the patient’s autoregulatory status (level IIB).
- Aggressive attempts to maintain CPP above 70 mm Hg with fluids and vasopressors should be avoided.
4.7. Fluid Management
4.8. Tranexamic Acid
5. Surgical Interventions for TBI
6. Pharmacological Therapy of TBI
6.1. Corticosteroids
6.2. Progesterone
6.3. Erythropoietin
6.4. Amantadine
6.5. N-Acetylcysteine
6.6. Minocycline
6.7. Phenserine
6.8. Calcium Channel Blockers
6.9. Antioxidants
6.10. Beta-Blockers
6.11. Metformin
6.12. Cerebrolysin
6.13. Vitamin D
7. Regenerative Treatment
7.1. Neurotrophic Factors
7.2. Suppression of RhoA GTPase
7.3. DNA Vaccine
7.4. Protein S100B
7.5. Overcoming the Glial Scar
7.6. Stem Cell Therapy
7.7. Nanoparticles
8. Treatment Based on Physical Principles
8.1. Hyperbaric Oxygen Therapy (HBOT)
8.2. Non-Invasive Brain Stimulation
9. Complementary Medicine
10. Mild TBI Management
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patel, A.; Vieira, M.M.; Abraham, J.; Reid, N.; Tran, T.; Tomecsek, K.; Vissoci, J.R.; Eucker, S.; Gerardo, C.J.; Staton, C.A. Quality of the Development of Traumatic Brain Injury Clinical Practice Guidelines: A Systematic Review. PLoS ONE 2016, 11, e0161554. [Google Scholar] [CrossRef]
- Hawryluk, G.W.J.; Rubiano, A.M.; Totten, A.M.; O’Reilly, C.; Ullman, J.S.; Bratton, S.L.; Chesnut, R.; Harris, O.A.; Kissoon, N.; Shutter, L.; et al. Guidelines for the Management of Severe Traumatic Brain Injury: 2020 Update of the Decompressive Craniectomy Recommendations. Neurosurgery 2020, 87, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Nichol, A.; French, C.; Little, L.; Haddad, S.; Presneill, J.; Arabi, Y.; Bailey, M.; Cooper, D.J.; Duranteau, J.; Huet, O.; et al. Erythropoietin in traumatic brain injury (EPO-TBI): A double-blind randomised controlled trial. Lancet 2015, 386, 2499–2506. [Google Scholar] [CrossRef]
- Wright, D.W.; Yeatts, S.D.; Silbergleit, R.; Palesch, Y.Y.; Hertzberg, V.S.; Frankel, M.; Goldstein, F.C.; Caveney, A.F.; Howlett-Smith, H.; Bengelink, E.M.; et al. Very early administration of progesterone for acute traumatic brain injury. N. Engl. J. Med. 2014, 371, 2457–2466. [Google Scholar] [CrossRef] [PubMed]
- Kontos, A.P.; Collins, M.W.; Holland, C.L.; Reeves, V.L.; Edelman, K.; Benso, S.; Schneider, W.; Okonkwo, D. Preliminary Evidence for Improvement in Symptoms, Cognitive, Vestibular, and Oculomotor Outcomes Following Targeted Intervention with Chronic mTBI Patients. Mil. Med. 2018, 183, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Carney, N.; Totten, A.M.; O’Reilly, C.; Ullman, J.S.; Hawryluk, G.W.; Bell, M.J.; Bratton, S.L.; Chesnut, R.; Harris, O.A.; Kissoon, N.; et al. Guidelines for the Management of Severe Traumatic Brain Injury, Fourth Edition. Neurosurgery 2017, 80, 6–15. [Google Scholar] [CrossRef]
- Kochanek, P.M.; Carney, N.; Adelson, P.D.; Ashwal, S.; Bell, M.J.; Bratton, S.; Carson, S.; Chesnut, R.M.; Ghajar, J.; Goldstein, B.; et al. Guidelines for the acute medical management of severe traumatic brain injury in infants, children, and adolescents--second edition. Pediatr. Crit. Care Med. 2012, 13 (Suppl. S1), S1–S82. [Google Scholar] [CrossRef]
- Chesnut, R.M.; Temkin, N.; Carney, N.; Dikmen, S.; Rondina, C.; Videtta, W.; Petroni, G.; Lujan, S.; Pridgeon, J.; Barber, J.; et al. A trial of intracranial-pressure monitoring in traumatic brain injury. N. Engl. J. Med. 2012, 367, 2471–2481. [Google Scholar] [CrossRef] [PubMed]
- Kochanek, P.M.; Jackson, T.C.; Ferguson, N.M.; Carlson, S.W.; Simon, D.W.; Brockman, E.C.; Ji, J.; Bayir, H.; Poloyac, S.M.; Wagner, A.K.; et al. Emerging therapies in traumatic brain injury. Semin. Neurol. 2015, 35, 83–100. [Google Scholar] [CrossRef]
- Smith, D.H.; Hicks, R.; Povlishock, J.T. Therapy development for diffuse axonal injury. J. Neurotrauma 2013, 30, 307–323. [Google Scholar] [CrossRef]
- Mondello, S.; Shear, D.A.; Bramlett, H.M.; Dixon, C.E.; Schmid, K.E.; Dietrich, W.D.; Wang, K.K.; Hayes, R.L.; Glushakova, O.; Catania, M.; et al. Insight into Pre-Clinical Models of Traumatic Brain Injury Using Circulating Brain Damage Biomarkers: Operation Brain Trauma Therapy. J. Neurotrauma 2016, 33, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhu, T.; Mondello, S.; Akel, M.; Wong, A.T.; Kothari, I.M.; Lin, F.; Shear, D.A.; Gilsdorf, J.S.; Leung, L.Y.; et al. Serum-Based Phospho-Neurofilament-Heavy Protein as Theranostic Biomarker in Three Models of Traumatic Brain Injury: An Operation Brain Trauma Therapy Study. J. Neurotrauma 2019, 36, 348–359. [Google Scholar] [CrossRef] [PubMed]
- Browning, M.; Shear, D.A.; Bramlett, H.M.; Dixon, C.E.; Mondello, S.; Schmid, K.E.; Poloyac, S.M.; Dietrich, W.D.; Hayes, R.L.; Wang, K.K.; et al. Levetiracetam Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. J. Neurotrauma 2016, 33, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Jha, R.M.; Molyneaux, B.J.; Jackson, T.C.; Wallisch, J.S.; Park, S.Y.; Poloyac, S.; Vagni, V.A.; Janesko-Feldman, K.L.; Hoshitsuki, K.; Minnigh, M.B.; et al. Glibenclamide Produces Region-Dependent Effects on Cerebral Edema in a Combined Injury Model of Traumatic Brain Injury and Hemorrhagic Shock in Mice. J. Neurotrauma 2018, 35, 2125–2135. [Google Scholar] [CrossRef]
- Jha, R.M.; Mondello, S.; Bramlett, H.M.; Dixon, C.E.; Shear, D.A.; Dietrich, W.D.; Wang, K.K.W.; Yang, Z.; Hayes, R.L.; Poloyac, S.M.; et al. Glibenclamide Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. J. Neurotrauma 2021, 38, 628–645. [Google Scholar] [CrossRef] [PubMed]
- Aghili-Mehrizi, S.; Williams, E.; Yan, S.; Willman, M.; Willman, J.; Lucke-Wold, B. Secondary Mechanisms of Neurotrauma: A Closer Look at the Evidence. Diseases 2022, 10, 30. [Google Scholar] [CrossRef] [PubMed]
- Ismail, H.; Shakkour, Z.; Tabet, M.; Abdelhady, S.; Kobaisi, A.; Abedi, R.; Nasrallah, L.; Pintus, G.; Al-Dhaheri, Y.; Mondello, S.; et al. Traumatic Brain Injury: Oxidative Stress and Novel Anti-Oxidants Such as Mitoquinone and Edaravone. Antioxidants 2020, 9, 943. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.K.; Dixon, C.E.; Banik, N.L. Molecular mechanisms in the pathogenesis of traumatic brain injury. Histol. Histopathol. 2002, 17, 1137–1152. [Google Scholar] [CrossRef] [PubMed]
- Jassam, Y.N.; Izzy, S.; Whalen, M.; McGavern, D.B.; El Khoury, J. Neuroimmunology of Traumatic Brain Injury: Time for a Paradigm Shift. Neuron 2017, 95, 1246–1265. [Google Scholar] [CrossRef]
- Kaur, P.; Sharma, S. Recent Advances in Pathophysiology of Traumatic Brain Injury. Curr. Neuropharmacol. 2018, 16, 1224–1238. [Google Scholar] [CrossRef]
- Bramlett, H.M.; Dietrich, W.D. Long-Term Consequences of Traumatic Brain Injury: Current Status of Potential Mechanisms of Injury and Neurological Outcomes. J. Neurotrauma 2015, 32, 1834–1848. [Google Scholar] [CrossRef] [PubMed]
- Mira, R.G.; Lira, M.; Cerpa, W. Traumatic Brain Injury: Mechanisms of Glial Response. Front. Physiol. 2021, 12, 740939. [Google Scholar] [CrossRef]
- Frati, A.; Cerretani, D.; Fiaschi, A.I.; Frati, P.; Gatto, V.; La Russa, R.; Pesce, A.; Pinchi, E.; Santurro, A.; Fraschetti, F.; et al. Diffuse Axonal Injury and Oxidative Stress: A Comprehensive Review. Int. J. Mol. Sci. 2017, 18, 2600. [Google Scholar] [CrossRef] [PubMed]
- Meythaler, J.M.; Peduzzi, J.D.; Eleftheriou, E.; Novack, T.A. Current concepts: Diffuse axonal injury-associated traumatic brain injury. Arch. Phys. Med. Rehabil. 2001, 82, 1461–1471. [Google Scholar] [CrossRef] [PubMed]
- Oakes, S.A.; Papa, F.R. The role of endoplasmic reticulum stress in human pathology. Annu. Rev. Pathol. 2015, 10, 173–194. [Google Scholar] [CrossRef]
- Chen, X.; Mi, L.; Gu, G.; Gao, X.; Gao, X.; Shi, M.; Chai, Y.; Chen, F.; Yang, W.; Zhang, J. Dysfunctional Endoplasmic Reticulum-Mitochondrion Coupling Is Associated with Endoplasmic Reticulum Stress-Induced Apoptosis and Neurological Deficits in a Rodent Model of Severe Head Injury. J. Neurotrauma 2022, 39, 560–576. [Google Scholar] [CrossRef]
- Shi, M.; Chai, Y.; Zhang, J.; Chen, X. Endoplasmic Reticulum Stress-Associated Neuronal Death and Innate Immune Response in Neurological Diseases. Front. Immunol. 2021, 12, 794580. [Google Scholar] [CrossRef]
- McAllister, T.W. Neurobiological consequences of traumatic brain injury. Dialogues Clin. Neurosci. 2011, 13, 287–300. [Google Scholar] [CrossRef]
- Mietto, B.S.; Mostacada, K.; Martinez, A.M. Neurotrauma and inflammation: CNS and PNS responses. Mediat. Inflamm. 2015, 2015, 251204. [Google Scholar] [CrossRef]
- Swadron, S.P.; LeRoux, P.; Smith, W.S.; Weingart, S.D. Emergency neurological life support: Traumatic brain injury. Neurocrit Care 2012, 17 (Suppl. S1), S112–S121. [Google Scholar] [CrossRef]
- Osier, N.D.; Carlson, S.W.; DeSana, A.; Dixon, C.E. Chronic Histopathological and Behavioral Outcomes of Experimental Traumatic Brain Injury in Adult Male Animals. J. Neurotrauma 2015, 32, 1861–1882. [Google Scholar] [CrossRef] [PubMed]
- Geeraerts, T.; Velly, L.; Abdennour, L.; Asehnoune, K.; Audibert, G.; Bouzat, P.; Bruder, N.; Carrillon, R.; Cottenceau, V.; Cotton, F.; et al. Management of severe traumatic brain injury (first 24hours). Anaesth. Crit. Care Pain. Med. 2018, 37, 171–186. [Google Scholar] [CrossRef] [PubMed]
- Feldman, Z.; Kanter, M.J.; Robertson, C.S.; Contant, C.F.; Hayes, C.; Sheinberg, M.A.; Villareal, C.A.; Narayan, R.K.; Grossman, R.G. Effect of head elevation on intracranial pressure, cerebral perfusion pressure, and cerebral blood flow in head-injured patients. J. Neurosurg. 1992, 76, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Steidl, C.; Bosel, J.; Suntrup-Krueger, S.; Schonenberger, S.; Al-Suwaidan, F.; Warnecke, T.; Minnerup, J.; Dziewas, R.; Initiative for German Neuro-Intensive Trial, E. Tracheostomy, Extubation, Reintubation: Airway Management Decisions in Intubated Stroke Patients. Cerebrovasc. Dis. 2017, 44, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Young, D.; Harrison, D.A.; Cuthbertson, B.H.; Rowan, K.; TracMan, C. Effect of early vs late tracheostomy placement on survival in patients receiving mechanical ventilation: The TracMan randomized trial. JAMA 2013, 309, 2121–2129. [Google Scholar] [CrossRef] [PubMed]
- McCredie, V.A.; Adhikari, N.K. Early tracheostomy in critically ill patients: Still too fast. Lancet Respir. Med. 2015, 3, 95–96. [Google Scholar] [CrossRef] [PubMed]
- McCredie, V.A.; Alali, A.S.; Scales, D.C.; Adhikari, N.K.; Rubenfeld, G.D.; Cuthbertson, B.H.; Nathens, A.B. Effect of Early Versus Late Tracheostomy or Prolonged Intubation in Critically Ill Patients with Acute Brain Injury: A Systematic Review and Meta-Analysis. Neurocrit Care 2017, 26, 14–25. [Google Scholar] [CrossRef]
- Hyde, G.A.; Savage, S.A.; Zarzaur, B.L.; Hart-Hyde, J.E.; Schaefer, C.B.; Croce, M.A.; Fabian, T.C. Early tracheostomy in trauma patients saves time and money. Injury 2015, 46, 110–114. [Google Scholar] [CrossRef]
- Alali, A.S.; Scales, D.C.; Fowler, R.A.; Mainprize, T.G.; Ray, J.G.; Kiss, A.; de Mestral, C.; Nathens, A.B. Tracheostomy timing in traumatic brain injury: A propensity-matched cohort study. J. Trauma Acute Care Surg. 2014, 76, 70–76; discussion 76–78. [Google Scholar] [CrossRef]
- Bosel, J.; Schiller, P.; Hacke, W.; Steiner, T. Benefits of early tracheostomy in ventilated stroke patients? Current evidence and study protocol of the randomized pilot trial SETPOINT (Stroke-related Early Tracheostomy vs. Prolonged Orotracheal Intubation in Neurocritical care Trial). Int. J. Stroke 2012, 7, 173–182. [Google Scholar] [CrossRef]
- Bosel, J.; Schiller, P.; Hook, Y.; Andes, M.; Neumann, J.O.; Poli, S.; Amiri, H.; Schonenberger, S.; Peng, Z.; Unterberg, A.; et al. Stroke-related Early Tracheostomy versus Prolonged Orotracheal Intubation in Neurocritical Care Trial (SETPOINT): A randomized pilot trial. Stroke 2013, 44, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Shekhar, S.; Singh, R.B.; De, R.R.; Singh, R.; Akhileshwar; Kumar, N. Early versus Late Tracheostomy in Patients with Acute Brain Injury: Importance of SET Score. Anesth. Essays Res. 2022, 16, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Grubb, R.L., Jr.; Raichle, M.E.; Eichling, J.O.; Ter-Pogossian, M.M. The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke 1974, 5, 630–639. [Google Scholar] [CrossRef] [PubMed]
- Darby, J.M.; Yonas, H.; Marion, D.W.; Latchaw, R.E. Local “inverse steal” induced by hyperventilation in head injury. Neurosurgery 1988, 23, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic, B.; Milan, Z.; Markovic-Denic, L.; Djuric, O.; Radinovic, K.; Doklestic, K.; Velickovic, J.; Ivancevic, N.; Gregoric, P.; Pandurovic, M.; et al. Risk factors for ventilator-associated pneumonia in patients with severe traumatic brain injury in a Serbian trauma centre. Int. J. Infect. Dis. 2015, 38, 46–51. [Google Scholar] [CrossRef]
- Esnault, P.; Nguyen, C.; Bordes, J.; D’Aranda, E.; Montcriol, A.; Contargyris, C.; Cotte, J.; Goutorbe, P.; Joubert, C.; Dagain, A.; et al. Early-Onset Ventilator-Associated Pneumonia in Patients with Severe Traumatic Brain Injury: Incidence, Risk Factors, and Consequences in Cerebral Oxygenation and Outcome. Neurocrit Care 2017, 27, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Gamberini, L.; Giugni, A.; Ranieri, S.; Meconi, T.; Coniglio, C.; Gordini, G.; Bardi, T. Early-Onset Ventilator-Associated Pneumonia in Severe Traumatic Brain Injury: Is There a Relationship with Prehospital Airway Management? J. Emerg. Med. 2019, 56, 657–665. [Google Scholar] [CrossRef]
- Torbic, H.; Forni, A.A.; Anger, K.E.; Degrado, J.R.; Greenwood, B.C. Use of antiepileptics for seizure prophylaxis after traumatic brain injury. Am. J. Health Syst. Pharm. 2013, 70, 759–766. [Google Scholar] [CrossRef]
- Zafar, S.N.; Khan, A.A.; Ghauri, A.A.; Shamim, M.S. Phenytoin versus Leviteracetam for seizure prophylaxis after brain injury—A meta analysis. BMC Neurol. 2012, 12, 30. [Google Scholar] [CrossRef]
- Chou, A.; Krukowski, K.; Jopson, T.; Zhu, P.J.; Costa-Mattioli, M.; Walter, P.; Rosi, S. Inhibition of the integrated stress response reverses cognitive deficits after traumatic brain injury. Proc. Natl. Acad. Sci. USA 2017, 114, E6420–E6426. [Google Scholar] [CrossRef]
- Oddo, M.; Crippa, I.A.; Mehta, S.; Menon, D.; Payen, J.F.; Taccone, F.S.; Citerio, G. Optimizing sedation in patients with acute brain injury. Crit. Care 2016, 20, 128. [Google Scholar] [CrossRef] [PubMed]
- Sharshar, T.; Citerio, G.; Andrews, P.J.; Chieregato, A.; Latronico, N.; Menon, D.K.; Puybasset, L.; Sandroni, C.; Stevens, R.D. Neurological examination of critically ill patients: A pragmatic approach. Report of an ESICM expert panel. Intensive Care Med. 2014, 40, 484–495. [Google Scholar] [CrossRef] [PubMed]
- Bayir, H.; Adelson, P.D.; Wisniewski, S.R.; Shore, P.; Lai, Y.; Brown, D.; Janesko-Feldman, K.L.; Kagan, V.E.; Kochanek, P.M. Therapeutic hypothermia preserves antioxidant defenses after severe traumatic brain injury in infants and children. Crit. Care Med. 2009, 37, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Andrews, P.J.; Sinclair, H.L.; Rodriguez, A.; Harris, B.; Rhodes, J.; Watson, H.; Murray, G. Therapeutic hypothermia to reduce intracranial pressure after traumatic brain injury: The Eurotherm3235 RCT. Health Technol. Assess. 2018, 22, 1–134. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.R.; Evans, D.J.; Butler, A.R.; Schofield-Robinson, O.J.; Alderson, P. Hypothermia for traumatic brain injury. Cochrane Database Syst. Rev. 2017, 9, CD001048. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D.J.; Nichol, A.D.; Bailey, M.; Bernard, S.; Cameron, P.A.; Pili-Floury, S.; Forbes, A.; Gantner, D.; Higgins, A.M.; Huet, O.; et al. Effect of Early Sustained Prophylactic Hypothermia on Neurologic Outcomes Among Patients With Severe Traumatic Brain Injury: The POLAR Randomized Clinical Trial. JAMA 2018, 320, 2211–2220. [Google Scholar] [CrossRef] [PubMed]
- Polderman, K.H. Induced hypothermia and fever control for prevention and treatment of neurological injuries. Lancet 2008, 371, 1955–1969. [Google Scholar] [CrossRef]
- Badjatia, N. Hypothermia in neurocritical care. Neurosurg. Clin. N. Am. 2013, 24, 457–467. [Google Scholar] [CrossRef]
- Vella, M.A.; Crandall, M.L.; Patel, M.B. Acute Management of Traumatic Brain Injury. Surg. Clin. N. Am. 2017, 97, 1015–1030. [Google Scholar] [CrossRef]
- Puccio, A.M.; Fischer, M.R.; Jankowitz, B.T.; Yonas, H.; Darby, J.M.; Okonkwo, D.O. Induced normothermia attenuates intracranial hypertension and reduces fever burden after severe traumatic brain injury. Neurocrit Care 2009, 11, 82–87. [Google Scholar] [CrossRef]
- Klauber, M.R.; Marshall, L.F.; Luerssen, T.G.; Frankowski, R.; Tabaddor, K.; Eisenberg, H.M. Determinants of head injury mortality: Importance of the low risk patient. Neurosurgery 1989, 24, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Fuller, G.; Hasler, R.M.; Mealing, N.; Lawrence, T.; Woodford, M.; Juni, P.; Lecky, F. The association between admission systolic blood pressure and mortality in significant traumatic brain injury: A multi-centre cohort study. Injury 2014, 45, 612–617. [Google Scholar] [CrossRef]
- Pigott, A.; Rudloff, E. Traumatic Brain Injury-A Review of Intravenous Fluid Therapy. Front. Vet. Sci. 2021, 8, 643800. [Google Scholar] [CrossRef]
- Alvis-Miranda, H.R.; Castellar-Leones, S.M.; Moscote-Salazar, L.R. Intravenous Fluid Therapy in Traumatic Brain Injury and Decompressive Craniectomy. Bull. Emerg. Trauma 2014, 2, 3–14. [Google Scholar] [PubMed]
- Dash, H.H.; Chavali, S. Management of traumatic brain injury patients. Korean J. Anesthesiol. 2018, 71, 12–21. [Google Scholar] [CrossRef] [PubMed]
- White, H.; Cook, D.; Venkatesh, B. The use of hypertonic saline for treating intracranial hypertension after traumatic brain injury. Anesth. Analg. 2006, 102, 1836–1846. [Google Scholar] [CrossRef] [PubMed]
- Weed, L.H.; McKibben, P.S. Experimental alteration of brain bulk. Am. J. Physiol. 1919, 48, 531–558. [Google Scholar] [CrossRef]
- Rudloff, E.; Hopper, K. Crystalloid and Colloid Compositions and Their Impact. Front. Vet. Sci. 2021, 8, 639848. [Google Scholar] [CrossRef] [PubMed]
- Wakai, A.; McCabe, A.; Roberts, I.; Schierhout, G. Mannitol for acute traumatic brain injury. Cochrane Database Syst. Rev. 2013, 8, CD001049. [Google Scholar] [CrossRef]
- Maas, A.I.; Dearden, M.; Teasdale, G.M.; Braakman, R.; Cohadon, F.; Iannotti, F.; Karimi, A.; Lapierre, F.; Murray, G.; Ohman, J.; et al. EBIC-guidelines for management of severe head injury in adults. European Brain Injury Consortium. Acta Neurochir. 1997, 139, 286–294. [Google Scholar] [CrossRef]
- The Brain Trauma Foundation; The American Association of Neurological Surgeons. The Joint Section on Neurotrauma and Critical Care. Computed tomography scan features. J. Neurotrauma 2000, 17, 597–627. [Google Scholar] [CrossRef] [PubMed]
- Dorman, H.R.; Sondheimer, J.H.; Cadnapaphornchai, P. Mannitol-induced acute renal failure. Medicine 1990, 69, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Roberts, I.; Schierhout, G.; Wakai, A. Mannitol for acute traumatic brain injury. Cochrane Database Syst. Rev. 2003, 2, CD001049. [Google Scholar] [CrossRef] [PubMed]
- SAFE Study Investigators; Australian and New Zealand Intensive Care Society Clinical Trials Group; Australian Red Cross Blood Service; George Institute for International Health; Myburgh, J.; Cooper, D.J.; Finfer, S.; Bellomo, R.; Norton, R.; Bishop, N.; et al. Saline or albumin for fluid resuscitation in patients with traumatic brain injury. N. Engl. J. Med. 2007, 357, 874–884. [Google Scholar] [CrossRef]
- Li, N.; Zhao, W.G.; Zhang, W.F. Acute kidney injury in patients with severe traumatic brain injury: Implementation of the acute kidney injury network stage system. Neurocrit Care 2011, 14, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Perel, P.; Roberts, I.; Ker, K. Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst. Rev. 2013, 6, CD000567. [Google Scholar] [CrossRef] [PubMed]
- Roberts, I.; Shakur-Still, H.; Aeron-Thomas, A.; Beaumont, D.; Belli, A.; Brenner, A.; Cargill, M.; Chaudhri, R.; Douglas, N.; Frimley, L.; et al. Tranexamic acid to reduce head injury death in people with traumatic brain injury: The CRASH-3 international RCT. Health Technol. Assess. 2021, 25, 1–76. [Google Scholar] [CrossRef] [PubMed]
- Yokobori, S.; Yatabe, T.; Kondo, Y.; Kinoshita, K.; Kosaku Kinoshita for the Japan Resuscitation Council (JRC) Neuroresuscitation Task Force and the Guidelines Editorial Committee. Efficacy and safety of tranexamic acid administration in traumatic brain injury patients: A systematic review and meta-analysis. J. Intensive Care 2020, 8, 46. [Google Scholar] [CrossRef] [PubMed]
- Bossers, S.M.; Loer, S.A.; Bloemers, F.W.; Den Hartog, D.; Van Lieshout, E.M.M.; Hoogerwerf, N.; van der Naalt, J.; Absalom, A.R.; Peerdeman, S.M.; Schwarte, L.A.; et al. Association Between Prehospital Tranexamic Acid Administration and Outcomes of Severe Traumatic Brain Injury. JAMA Neurol. 2021, 78, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Xin, M.; Wu, X.; Liu, J.; Zhang, W.; Yang, K.; Zhang, J. The efficacy of tranexamic acid treatment with different time and doses for traumatic brain injury: A systematic review and meta-analysis. Thromb. J. 2022, 20, 79. [Google Scholar] [CrossRef]
- Abecassis, I.J.; Young, C.C.; Caldwell, D.J.; Feroze, A.H.; Williams, J.R.; Meyer, R.M.; Kellogg, R.T.; Bonow, R.H.; Chesnut, R.M. The Kempe incision for decompressive craniectomy, craniotomy, and cranioplasty in traumatic brain injury and stroke. J. Neurosurg. 2021, 135, 1807–1816. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Xue, Q.; Chen, J.; Dong, Y.; Hou, L.; Jiang, Y.; Wang, J. Decompressive craniectomy in the management of intracranial hypertension after traumatic brain injury: A systematic review and meta-analysis. Sci. Rep. 2017, 7, 8800. [Google Scholar] [CrossRef]
- Iaccarino, C.; Kolias, A.G.; Roumy, L.G.; Fountas, K.; Adeleye, A.O. Cranioplasty Following Decompressive Craniectomy. Front. Neurol. 2019, 10, 1357. [Google Scholar] [CrossRef] [PubMed]
- Chandra, V.V.R.; Mowliswara Prasad, B.C.; Banavath, H.N.; Chandrasekhar Reddy, K. Cisternostomy versus Decompressive Craniectomy for the Management of Traumatic Brain Injury: A Randomized Controlled Trial. World Neurosurg. 2022, 162, e58–e64. [Google Scholar] [CrossRef]
- Parthiban, J.; Sundaramahalingam, S.; Rao, J.B.; Nannaware, V.P.; Rathwa, V.N.; Nasre, V.Y.; Prahlad, S.T. Basal Cisternostomy—A Microsurgical Cerebro Spinal Fluid Let Out Procedure and Treatment Option in the Management of Traumatic Brain Injury. Analysis of 40 Consecutive Head Injury Patients Operated with and without Bone Flap Replacement Following Cisternostomy in a Tertiary Care Centre in India. Neurol. India 2021, 69, 328–333. [Google Scholar] [CrossRef]
- Giammattei, L.; Starnoni, D.; Messerer, M.; Daniel, R.T. Basal Cisternostomy for Severe TBI: Surgical Technique and Cadaveric Dissection. Front. Surg. 2022, 9, 915818. [Google Scholar] [CrossRef]
- Roberts, I.; Yates, D.; Sandercock, P.; Farrell, B.; Wasserberg, J.; Lomas, G.; Cottingham, R.; Svoboda, P.; Brayley, N.; Mazairac, G.; et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults with clinically significant head injury (MRC CRASH trial): Randomised placebo-controlled trial. Lancet 2004, 364, 1321–1328. [Google Scholar] [CrossRef] [PubMed]
- Aloizos, S.; Evodia, E.; Gourgiotis, S.; Isaia, E.C.; Seretis, C.; Baltopoulos, G.J. Neuroprotective Effects of Erythropoietin in Patients with Severe Closed Brain Injury. Turk. Neurosurg. 2015, 25, 552–558. [Google Scholar] [CrossRef]
- Li, Z.M.; Xiao, Y.L.; Zhu, J.X.; Geng, F.Y.; Guo, C.J.; Chong, Z.L.; Wang, L.X. Recombinant human erythropoietin improves functional recovery in patients with severe traumatic brain injury: A randomized, double blind and controlled clinical trial. Clin. Neurol. Neurosurg. 2016, 150, 80–83. [Google Scholar] [CrossRef]
- Lee, J.; Cho, Y.; Choi, K.S.; Kim, W.; Jang, B.H.; Shin, H.; Ahn, C.; Lim, T.H.; Yi, H.J. Efficacy and safety of erythropoietin in patients with traumatic brain injury: A systematic review and meta-analysis. Am. J. Emerg. Med. 2019, 37, 1101–1107. [Google Scholar] [CrossRef]
- Skrifvars, M.B.; Bailey, M.; French, C.; Presneill, J.; Nichol, A.; Little, L.; Duranteau, J.; Huet, O.; Haddad, S.; Arabi, Y.; et al. Erythropoietin in patients with traumatic brain injury and extracranial injury-A post hoc analysis of the erythropoietin traumatic brain injury trial. J. Trauma Acute Care Surg. 2017, 83, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Mizoguchi, K.; Yokoo, H.; Yoshida, M.; Tanaka, T.; Tanaka, M. Amantadine increases the extracellular dopamine levels in the striatum by re-uptake inhibition and by N-methyl-D-aspartate antagonism. Brain Res. 1994, 662, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, E.; Mauro, L.S.; Ohlinger, M.J. Amantadine enhancement of arousal and cognition after traumatic brain injury. Ann. Pharmacother. 2008, 42, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Giacino, J.T.; Whyte, J.; Bagiella, E.; Kalmar, K.; Childs, N.; Khademi, A.; Eifert, B.; Long, D.; Katz, D.I.; Cho, S.; et al. Placebo-controlled trial of amantadine for severe traumatic brain injury. N. Engl. J. Med. 2012, 366, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Spritzer, S.D.; Kinney, C.L.; Condie, J.; Wellik, K.E.; Hoffman-Snyder, C.R.; Wingerchuk, D.M.; Demaerschalk, B.M. Amantadine for patients with severe traumatic brain injury: A critically appraised topic. Neurologist 2015, 19, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Ellis, E.F.; Dodson, L.Y.; Police, R.J. Restoration of cerebrovascular responsiveness to hyperventilation by the oxygen radical scavenger n-acetylcysteine following experimental traumatic brain injury. J. Neurosurg. 1991, 75, 774–779. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Peterson, P.L.; Lee, C.P. Effect of N-acetylcysteine on mitochondrial function following traumatic brain injury in rats. J. Neurotrauma 1999, 16, 1067–1082. [Google Scholar] [CrossRef]
- Chen, G.; Shi, J.; Hu, Z.; Hang, C. Inhibitory effect on cerebral inflammatory response following traumatic brain injury in rats: A potential neuroprotective mechanism of N-acetylcysteine. Mediat. Inflamm. 2008, 2008, 716458. [Google Scholar] [CrossRef] [PubMed]
- Hoffer, M.E.; Balaban, C.; Slade, M.D.; Tsao, J.W.; Hoffer, B. Amelioration of acute sequelae of blast induced mild traumatic brain injury by N-acetyl cysteine: A double-blind, placebo controlled study. PLoS ONE 2013, 8, e54163. [Google Scholar] [CrossRef]
- Haber, M.; James, J.; Kim, J.; Sangobowale, M.; Irizarry, R.; Ho, J.; Nikulina, E.; Grin’kina, N.M.; Ramadani, A.; Hartman, I.; et al. Minocycline plus N-acteylcysteine induces remyelination, synergistically protects oligodendrocytes and modifies neuroinflammation in a rat model of mild traumatic brain injury. J. Cereb. Blood Flow. Metab. 2018, 38, 1312–1326. [Google Scholar] [CrossRef]
- Zhang, L.; Xiao, H.; Yu, X.; Deng, Y. Minocycline attenuates neurological impairment and regulates iron metabolism in a rat model of traumatic brain injury. Arch. Biochem. Biophys. 2020, 682, 108302. [Google Scholar] [CrossRef] [PubMed]
- Kadir, A.; Andreasen, N.; Almkvist, O.; Wall, A.; Forsberg, A.; Engler, H.; Hagman, G.; Larksater, M.; Winblad, B.; Zetterberg, H.; et al. Effect of phenserine treatment on brain functional activity and amyloid in Alzheimer’s disease. Ann. Neurol. 2008, 63, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Poole, N.A.; Agrawal, N. Cholinomimetic agents and neurocognitive impairment following head injury: A systematic review. Brain Inj. 2008, 22, 519–534. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, S.C.; Lecca, D.; Greig, N.H.; Wang, J.Y.; Selman, W.; Hoffer, B.J.; Miller, J.P.; Chiang, Y.H. (-)-Phenserine Ameliorates Contusion Volume, Neuroinflammation, and Behavioral Impairments Induced by Traumatic Brain Injury in Mice. Cell Transplant. 2019, 28, 1183–1196. [Google Scholar] [CrossRef] [PubMed]
- Lecca, D.; Bader, M.; Tweedie, D.; Hoffman, A.F.; Jung, Y.J.; Hsueh, S.C.; Hoffer, B.J.; Becker, R.E.; Pick, C.G.; Lupica, C.R.; et al. (-)-Phenserine and the prevention of pre-programmed cell death and neuroinflammation in mild traumatic brain injury and Alzheimer’s disease challenged mice. Neurobiol. Dis. 2019, 130, 104528. [Google Scholar] [CrossRef] [PubMed]
- Langham, J.; Goldfrad, C.; Teasdale, G.; Shaw, D.; Rowan, K. Calcium channel blockers for acute traumatic brain injury. Cochrane Database Syst. Rev. 2003, 2003, CD000565. [Google Scholar] [CrossRef] [PubMed]
- Vergouwen, M.D.; Vermeulen, M.; Roos, Y.B. Effect of nimodipine on outcome in patients with traumatic subarachnoid haemorrhage: A systematic review. Lancet Neurol. 2006, 5, 1029–1032. [Google Scholar] [CrossRef] [PubMed]
- Verweij, B.H.; Muizelaar, J.P.; Vinas, F.C.; Peterson, P.L.; Xiong, Y.; Lee, C.P. Improvement in mitochondrial dysfunction as a new surrogate efficiency measure for preclinical trials: Dose-response and time-window profiles for administration of the calcium channel blocker Ziconotide in experimental brain injury. J. Neurosurg. 2000, 93, 829–834. [Google Scholar] [CrossRef]
- Berman, R.F.; Verweij, B.H.; Muizelaar, J.P. Neurobehavioral protection by the neuronal calcium channel blocker ziconotide in a model of traumatic diffuse brain injury in rats. J. Neurosurg. 2000, 93, 821–828. [Google Scholar] [CrossRef]
- Lee, L.L.; Galo, E.; Lyeth, B.G.; Muizelaar, J.P.; Berman, R.F. Neuroprotection in the rat lateral fluid percussion model of traumatic brain injury by SNX-185, an N-type voltage-gated calcium channel blocker. Exp. Neurol. 2004, 190, 70–78. [Google Scholar] [CrossRef]
- Kulbe, J.R.; Singh, I.N.; Wang, J.A.; Cebak, J.E.; Hall, E.D. Continuous Infusion of Phenelzine, Cyclosporine A, or Their Combination: Evaluation of Mitochondrial Bioenergetics, Oxidative Damage, and Cytoskeletal Degradation following Severe Controlled Cortical Impact Traumatic Brain Injury in Rats. J. Neurotrauma 2018, 35, 1280–1293. [Google Scholar] [CrossRef] [PubMed]
- Mazzeo, A.T.; Brophy, G.M.; Gilman, C.B.; Alves, O.L.; Robles, J.R.; Hayes, R.L.; Povlishock, J.T.; Bullock, M.R. Safety and tolerability of cyclosporin a in severe traumatic brain injury patients: Results from a prospective randomized trial. J. Neurotrauma 2009, 26, 2195–2206. [Google Scholar] [CrossRef] [PubMed]
- Alali, A.S.; McCredie, V.A.; Golan, E.; Shah, P.S.; Nathens, A.B. Beta blockers for acute traumatic brain injury: A systematic review and meta-analysis. Neurocrit Care 2014, 20, 514–523. [Google Scholar] [CrossRef]
- Cotton, B.A.; Snodgrass, K.B.; Fleming, S.B.; Carpenter, R.O.; Kemp, C.D.; Arbogast, P.G.; Morris, J.A., Jr. Beta-blocker exposure is associated with improved survival after severe traumatic brain injury. J. Trauma 2007, 62, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Ko, A.; Harada, M.Y.; Barmparas, G.; Thomsen, G.M.; Alban, R.F.; Bloom, M.B.; Chung, R.; Melo, N.; Margulies, D.R.; Ley, E.J. Early propranolol after traumatic brain injury is associated with lower mortality. J. Trauma Acute Care Surg. 2016, 80, 637–642. [Google Scholar] [CrossRef] [PubMed]
- Ley, E.J.; Leonard, S.D.; Barmparas, G.; Dhillon, N.K.; Inaba, K.; Salim, A.; O’Bosky, K.R.; Tatum, D.; Azmi, H.; Ball, C.G.; et al. Beta blockers in critically ill patients with traumatic brain injury: Results from a multicenter, prospective, observational American Association for the Surgery of Trauma study. J. Trauma Acute Care Surg. 2018, 84, 234–244. [Google Scholar] [CrossRef]
- Mohseni, S.; Talving, P.; Wallin, G.; Ljungqvist, O.; Riddez, L. Preinjury beta-blockade is protective in isolated severe traumatic brain injury. J. Trauma Acute Care Surg. 2014, 76, 804–808. [Google Scholar] [CrossRef]
- Alexander, R.W.; Davis, J.N.; Lefkowitz, R.J. Direct identification and characterisation of beta-adrenergic receptors in rat brain. Nature 1975, 258, 437–440. [Google Scholar] [CrossRef]
- MacKenzie, E.T.; McCulloch, J.; Harper, A.M. Influence of endogenous norepinephrine on cerebral blood flow and metabolism. Am. J. Physiol. 1976, 231, 489–494. [Google Scholar] [CrossRef]
- Heffernan, D.S.; Inaba, K.; Arbabi, S.; Cotton, B.A. Sympathetic hyperactivity after traumatic brain injury and the role of beta-blocker therapy. J. Trauma 2010, 69, 1602–1609. [Google Scholar] [CrossRef]
- Kemp, C.D.; Johnson, J.C.; Riordan, W.P.; Cotton, B.A. How we die: The impact of nonneurologic organ dysfunction after severe traumatic brain injury. Am. Surg. 2008, 74, 866–872. [Google Scholar] [CrossRef] [PubMed]
- Khalili, H.; Ahl, R.; Paydar, S.; Sjolin, G.; Cao, Y.; Abdolrahimzadeh Fard, H.; Niakan, A.; Hanna, K.; Joseph, B.; Mohseni, S. Beta-Blocker Therapy in Severe Traumatic Brain Injury: A Prospective Randomized Controlled Trial. World J. Surg. 2020, 44, 1844–1853. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Liao, L.; Zheng, X.; Wang, Q.; Liu, Z.; Xu, G.; Li, X.; Liu, L. beta-Blockers for traumatic brain injury: A systematic review and meta-analysis. J. Trauma Acute Care Surg. 2021, 90, 1077–1085. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gallagher, D.; DeVito, L.M.; Cancino, G.I.; Tsui, D.; He, L.; Keller, G.M.; Frankland, P.W.; Kaplan, D.R.; Miller, F.D. Metformin activates an atypical PKC-CBP pathway to promote neurogenesis and enhance spatial memory formation. Cell Stem Cell 2012, 11, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Afshari, K.; Dehdashtian, A.; Haddadi, N.S.; Haj-Mirzaian, A.; Iranmehr, A.; Ebrahimi, M.A.; Tavangar, S.M.; Faghir-Ghanesefat, H.; Mohammadi, F.; Rahimi, N.; et al. Anti-inflammatory effects of Metformin improve the neuropathic pain and locomotor activity in spinal cord injured rats: Introduction of an alternative therapy. Spinal Cord. 2018, 56, 1032–1041. [Google Scholar] [CrossRef] [PubMed]
- Kothari, V.; Galdo, J.A.; Mathews, S.T. Hypoglycemic agents and potential anti-inflammatory activity. J. Inflamm. Res. 2016, 9, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Cameron, A.R.; Morrison, V.L.; Levin, D.; Mohan, M.; Forteath, C.; Beall, C.; McNeilly, A.D.; Balfour, D.J.; Savinko, T.; Wong, A.K.; et al. Anti-Inflammatory Effects of Metformin Irrespective of Diabetes Status. Circ. Res. 2016, 119, 652–665. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.L.; Kobori, N.; Zhao, J.; Rozas, N.S.; Hylin, M.J.; Moore, A.N.; Dash, P.K. Traumatic brain injury decreases AMP-activated protein kinase activity and pharmacological enhancement of its activity improves cognitive outcome. J. Neurochem. 2016, 139, 106–119. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.; Li, D.; Liu, H.; Jiang, F.; Xu, Y.; Cao, Y.; Gao, R.; Chen, G. Neuroprotective effects of metformin on traumatic brain injury in rats associated with NF-kappaB and MAPK signaling pathway. Brain Res. Bull. 2018, 140, 154–161. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, Z.; Han, W.; Yuan, Y.; Li, Y.; Zhou, K.; Wang, Q.; Xie, L.; Xu, K.; Zhang, H.; et al. Metformin Promotes Axon Regeneration after Spinal Cord Injury through Inhibiting Oxidative Stress and Stabilizing Microtubule. Oxid. Med. Cell Longev. 2020, 2020, 9741369. [Google Scholar] [CrossRef]
- DiBona, V.L.; Shah, M.K.; Krause, K.J.; Zhu, W.; Voglewede, M.M.; Smith, D.M.; Crockett, D.P.; Zhang, H. Metformin reduces neuroinflammation and improves cognitive functions after traumatic brain injury. Neurosci. Res. 2021, 172, 99–109. [Google Scholar] [CrossRef]
- Fiani, B.; Covarrubias, C.; Wong, A.; Doan, T.; Reardon, T.; Nikolaidis, D.; Sarno, E. Cerebrolysin for stroke, neurodegeneration, and traumatic brain injury: Review of the literature and outcomes. Neurol. Sci. 2021, 42, 1345–1353. [Google Scholar] [CrossRef] [PubMed]
- Wong, G.K.; Zhu, X.L.; Poon, W.S. Beneficial effect of cerebrolysin on moderate and severe head injury patients: Result of a cohort study. Acta Neurochir. Suppl. 2005, 95, 59–60. [Google Scholar] [CrossRef]
- Chen, C.C.; Wei, S.T.; Tsaia, S.C.; Chen, X.X.; Cho, D.Y. Cerebrolysin enhances cognitive recovery of mild traumatic brain injury patients: Double-blind, placebo-controlled, randomized study. Br. J. Neurosurg. 2013, 27, 803–807. [Google Scholar] [CrossRef]
- Alvarez, X.A.; Sampedro, C.; Figueroa, J.; Tellado, I.; Gonzalez, A.; Garcia-Fantini, M.; Cacabelos, R.; Muresanu, D.; Moessler, H. Reductions in qEEG slowing over 1 year and after treatment with Cerebrolysin in patients with moderate-severe traumatic brain injury. J. Neural Transm. 2008, 115, 683–692. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, X.A.; Sampedro, C.; Perez, P.; Laredo, M.; Couceiro, V.; Hernandez, A.; Figueroa, J.; Varela, M.; Arias, D.; Corzo, L.; et al. Positive effects of cerebrolysin on electroencephalogram slowing, cognition and clinical outcome in patients with postacute traumatic brain injury: An exploratory study. Int. Clin. Psychopharmacol. 2003, 18, 271–278. [Google Scholar] [CrossRef]
- Onose, G.; Muresanu, D.F.; Ciurea, A.V.; Daia Chendreanu, C.; Mihaescu, A.S.; Mardare, D.C.; Andone, I.; Spanu, A.; Popescu, C.; Dumitrescu, A.; et al. Neuroprotective and consequent neurorehabilitative clinical outcomes, in patients treated with the pleiotropic drug cerebrolysin. J. Med. Life 2009, 2, 350–360. [Google Scholar]
- Ghaffarpasand, F.; Torabi, S.; Rasti, A.; Niakan, M.H.; Aghabaklou, S.; Pakzad, F.; Beheshtian, M.S.; Tabrizi, R. Effects of cerebrolysin on functional outcome of patients with traumatic brain injury: A systematic review and meta-analysis. Neuropsychiatr. Dis. Treat. 2019, 15, 127–135. [Google Scholar] [CrossRef]
- Lucena, L.L.N.; Briones, M.V.A. Effect of Cerebrolysin in severe traumatic brain injury: A multi-center, retrospective cohort study. Clin. Neurol. Neurosurg. 2022, 216, 107216. [Google Scholar] [CrossRef] [PubMed]
- Jamall, O.A.; Feeney, C.; Zaw-Linn, J.; Malik, A.; Niemi, M.E.; Tenorio-Jimenez, C.; Ham, T.E.; Jilka, S.R.; Jenkins, P.O.; Scott, G.; et al. Prevalence and correlates of vitamin D deficiency in adults after traumatic brain injury. Clin. Endocrinol. 2016, 85, 636–644. [Google Scholar] [CrossRef]
- Lee, P.; Nair, P.; Eisman, J.A.; Center, J.R. Vitamin D deficiency in the intensive care unit: An invisible accomplice to morbidity and mortality? Intensive Care Med. 2009, 35, 2028–2032. [Google Scholar] [CrossRef] [PubMed]
- Viglianti, E.M.; Zajic, P.; Iwashyna, T.J.; Amrein, K. Neither vitamin D levels nor supplementation are associated with the development of persistent critical illness: A retrospective cohort analysis. Crit. Care Resusc. 2019, 21, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.; Heuberger, R. Outcomes of Vitamin D Supplementation in Adults Who are Deficient and Critically Ill: A Review of the Literature. Am. J. Ther. 2016, 23, e1890–e1902. [Google Scholar] [CrossRef] [PubMed]
- Arabi, S.M.; Sedaghat, A.; Ehsaei, M.R.; Safarian, M.; Ranjbar, G.; Rezaee, H.; Rezvani, R.; Tabesh, H.; Norouzy, A. Efficacy of high-dose versus low-dose vitamin D supplementation on serum levels of inflammatory factors and mortality rate in severe traumatic brain injury patients: Study protocol for a randomized placebo-controlled trial. Trials 2020, 21, 685. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Lu, D.; Jiang, H.; Xiong, Y.; Qu, C.; Li, B.; Mahmood, A.; Zhou, D.; Chopp, M. Simvastatin-mediated upregulation of VEGF and BDNF, activation of the PI3K/Akt pathway, and increase of neurogenesis are associated with therapeutic improvement after traumatic brain injury. J. Neurotrauma 2008, 25, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Bullock, M.R.; McGinn, M.J.; Zhou, Z.; Altememi, N.; Hagood, S.; Hamm, R.; Colello, R.J. Basic fibroblast growth factor-enhanced neurogenesis contributes to cognitive recovery in rats following traumatic brain injury. Exp. Neurol. 2009, 216, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Auer, M.; Schweigreiter, R.; Hausott, B.; Thongrong, S.; Holtje, M.; Just, I.; Bandtlow, C.; Klimaschewski, L. Rho-independent stimulation of axon outgrowth and activation of the ERK and Akt signaling pathways by C3 transferase in sensory neurons. Front. Cell Neurosci. 2012, 6, 43. [Google Scholar] [CrossRef] [PubMed]
- Auer, M.; Allodi, I.; Barham, M.; Udina, E.; Neiss, W.F.; Navarro, X.; Klimaschewski, L. C3 exoenzyme lacks effects on peripheral axon regeneration in vivo. J. Peripher. Nerv. Syst. 2013, 18, 30–36. [Google Scholar] [CrossRef]
- McKerracher, L.; Guertin, P. Rho as a target to promote repair: Translation to clinical studies with cethrin. Curr. Pharm. Des. 2013, 19, 4400–4410. [Google Scholar] [CrossRef]
- Zhang, Y.; Ang, B.T.; Xiao, Z.C.; Ng, I. DNA vaccination against neurite growth inhibitors to enhance functional recovery following traumatic brain injury. Acta Neurochir. Suppl. 2008, 102, 347–351. [Google Scholar] [CrossRef]
- Xu, G.; Nie, D.Y.; Chen, J.T.; Wang, C.Y.; Yu, F.G.; Sun, L.; Luo, X.G.; Ahmed, S.; David, S.; Xiao, Z.C. Recombinant DNA vaccine encoding multiple domains related to inhibition of neurite outgrowth: A potential strategy for axonal regeneration. J. Neurochem. 2004, 91, 1018–1023. [Google Scholar] [CrossRef]
- Blyth, B.J.; Farhavar, A.; Gee, C.; Hawthorn, B.; He, H.; Nayak, A.; Stocklein, V.; Bazarian, J.J. Validation of serum markers for blood-brain barrier disruption in traumatic brain injury. J. Neurotrauma 2009, 26, 1497–1507. [Google Scholar] [CrossRef] [PubMed]
- Thelin, E.P.; Nelson, D.W.; Bellander, B.M. A review of the clinical utility of serum S100B protein levels in the assessment of traumatic brain injury. Acta Neurochir. 2017, 159, 209–225. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Pena, P.; Pereira, A.R.; Sourour, N.A.; Biondi, A.; Lejean, L.; Colonne, C.; Boch, A.L.; Al Hawari, M.; Abdennour, L.; Puybasset, L. S100B as an additional prognostic marker in subarachnoid aneurysmal hemorrhage. Crit. Care Med. 2008, 36, 2267–2273. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Kwok, J.C.; Crespo, D.; Fawcett, J.W. Chondroitinase ABC has a long-lasting effect on chondroitin sulphate glycosaminoglycan content in the injured rat brain. J. Neurochem. 2008, 104, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Cafferty, W.B.; Yang, S.H.; Duffy, P.J.; Li, S.; Strittmatter, S.M. Functional axonal regeneration through astrocytic scar genetically modified to digest chondroitin sulfate proteoglycans. J. Neurosci. 2007, 27, 2176–2185. [Google Scholar] [CrossRef] [PubMed]
- Galindo, L.T.; Filippo, T.R.; Semedo, P.; Ariza, C.B.; Moreira, C.M.; Camara, N.O.; Porcionatto, M.A. Mesenchymal stem cell therapy modulates the inflammatory response in experimental traumatic brain injury. Neurol. Res. Int. 2011, 2011, 564089. [Google Scholar] [CrossRef]
- Luo, M.L.; Pan, L.; Wang, L.; Wang, H.Y.; Li, S.; Long, Z.Y.; Zeng, L.; Liu, Y. Transplantation of NSCs Promotes the Recovery of Cognitive Functions by Regulating Neurotransmitters in Rats with Traumatic Brain Injury. Neurochem. Res. 2019, 44, 2765–2775. [Google Scholar] [CrossRef] [PubMed]
- Moshayedi, P.; Nih, L.R.; Llorente, I.L.; Berg, A.R.; Cinkornpumin, J.; Lowry, W.E.; Segura, T.; Carmichael, S.T. Systematic optimization of an engineered hydrogel allows for selective control of human neural stem cell survival and differentiation after transplantation in the stroke brain. Biomaterials 2016, 105, 145–155. [Google Scholar] [CrossRef]
- Blaya, M.O.; Tsoulfas, P.; Bramlett, H.M.; Dietrich, W.D. Neural progenitor cell transplantation promotes neuroprotection, enhances hippocampal neurogenesis, and improves cognitive outcomes after traumatic brain injury. Exp. Neurol. 2015, 264, 67–81. [Google Scholar] [CrossRef]
- Gao, J.; Grill, R.J.; Dunn, T.J.; Bedi, S.; Labastida, J.A.; Hetz, R.A.; Xue, H.; Thonhoff, J.R.; DeWitt, D.S.; Prough, D.S.; et al. Human Neural Stem Cell Transplantation-Mediated Alteration of Microglial/Macrophage Phenotypes after Traumatic Brain Injury. Cell Transplant. 2016, 25, 1863–1877. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Perets, N.; Betzer, O.; Ben-Shaul, S.; Sheinin, A.; Michaelevski, I.; Popovtzer, R.; Offen, D.; Levenberg, S. Intranasal Delivery of Mesenchymal Stem Cell Derived Exosomes Loaded with Phosphatase and Tensin Homolog siRNA Repairs Complete Spinal Cord Injury. ACS Nano 2019, 13, 10015–10028. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, V.N.; Nguyen, D.T.; Kodibagkar, V.D.; Stabenfeldt, S.E. Nanoparticle-Based Therapeutics for Brain Injury. Adv. Healthc. Mater. 2018, 7, 1700668. [Google Scholar] [CrossRef]
- Orive, G.; Anitua, E.; Pedraz, J.L.; Emerich, D.F. Biomaterials for promoting brain protection, repair and regeneration. Nat. Rev. Neurosci. 2009, 10, 682–692. [Google Scholar] [CrossRef]
- Bailey, Z.S.; Nilson, E.; Bates, J.A.; Oyalowo, A.; Hockey, K.S.; Sajja, V.; Thorpe, C.; Rogers, H.; Dunn, B.; Frey, A.S.; et al. Cerium Oxide Nanoparticles Improve Outcome after In Vitro and In Vivo Mild Traumatic Brain Injury. J. Neurotrauma 2020, 37, 1452–1462. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Ifergan, I.; Kurz, J.E.; Linsenmeier, R.A.; Xu, D.; Cooper, J.G.; Miller, S.D.; Kessler, J.A. Intravenous Immunomodulatory Nanoparticle Treatment for Traumatic Brain Injury. Ann. Neurol. 2020, 87, 442–455. [Google Scholar] [CrossRef]
- Narouiepour, A.; Ebrahimzadeh-Bideskan, A.; Rajabzadeh, G.; Gorji, A.; Negah, S.S. Neural stem cell therapy in conjunction with curcumin loaded in niosomal nanoparticles enhanced recovery from traumatic brain injury. Sci. Rep. 2022, 12, 3572. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zhou, L.; XingWu, F. Tracking neural stem cells in patients with brain trauma. N. Engl. J. Med. 2006, 355, 2376–2378. [Google Scholar] [CrossRef]
- Harch, P.G.; Andrews, S.R.; Fogarty, E.F.; Amen, D.; Pezzullo, J.C.; Lucarini, J.; Aubrey, C.; Taylor, D.V.; Staab, P.K.; Van Meter, K.W. A phase I study of low-pressure hyperbaric oxygen therapy for blast-induced post-concussion syndrome and post-traumatic stress disorder. J. Neurotrauma 2012, 29, 168–185. [Google Scholar] [CrossRef]
- Geng, F.; Ma, Y.; Xing, T.; Zhuang, X.; Zhu, J.; Yao, L. Effects of Hyperbaric Oxygen Therapy on Inflammasome Signaling after Traumatic Brain Injury. Neuroimmunomodulation 2016, 23, 122–129. [Google Scholar] [CrossRef]
- Lv, L.Q.; Hou, L.J.; Yu, M.K.; Ding, X.H.; Qi, X.Q.; Lu, Y.C. Hyperbaric oxygen therapy in the management of paroxysmal sympathetic hyperactivity after severe traumatic brain injury: A report of 6 cases. Arch. Phys. Med. Rehabil. 2011, 92, 1515–1518. [Google Scholar] [CrossRef] [PubMed]
- Prakash, A.; Parelkar, S.V.; Oak, S.N.; Gupta, R.K.; Sanghvi, B.V.; Bachani, M.; Patil, R. Role of hyperbaric oxygen therapy in severe head injury in children. J. Pediatr. Neurosci. 2012, 7, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Harch, P.G. Systematic Review and Dosage Analysis: Hyperbaric Oxygen Therapy Efficacy in Mild Traumatic Brain Injury Persistent Postconcussion Syndrome. Front. Neurol. 2022, 13, 815056. [Google Scholar] [CrossRef] [PubMed]
- Kreuzer, P.M.; Landgrebe, M.; Frank, E.; Langguth, B. Repetitive transcranial magnetic stimulation for the treatment of chronic tinnitus after traumatic brain injury: A case study. J. Head. Trauma Rehabil. 2013, 28, 386–389. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zaninotto, A.L.; Neville, I.S.; Paiva, W.S.; Nunn, D.; Fregni, F. Clinical utility of brain stimulation modalities following traumatic brain injury: Current evidence. Neuropsychiatr. Dis. Treat. 2015, 11, 1573–1586. [Google Scholar] [CrossRef] [PubMed]
- Neville, I.S.; Hayashi, C.Y.; El Hajj, S.A.; Zaninotto, A.L.; Sabino, J.P.; Sousa, L.M., Jr.; Nagumo, M.M.; Brunoni, A.R.; Shieh, B.D.; Amorim, R.L.; et al. Repetitive Transcranial Magnetic Stimulation (rTMS) for the cognitive rehabilitation of traumatic brain injury (TBI) victims: Study protocol for a randomized controlled trial. Trials 2015, 16, 440. [Google Scholar] [CrossRef] [PubMed]
- Dhaliwal, S.K.; Meek, B.P.; Modirrousta, M.M. Non-Invasive Brain Stimulation for the Treatment of Symptoms Following Traumatic Brain Injury. Front. Psychiatry 2015, 6, 119. [Google Scholar] [CrossRef] [PubMed]
- Galgano, M.; Toshkezi, G.; Qiu, X.; Russell, T.; Chin, L.; Zhao, L.R. Traumatic Brain Injury: Current Treatment Strategies and Future Endeavors. Cell Transplant. 2017, 26, 1118–1130. [Google Scholar] [CrossRef] [PubMed]
- Polich, G.; Iaccarino, M.A.; Kaptchuk, T.J.; Morales-Quezada, L.; Zafonte, R. Placebo Effects in Traumatic Brain Injury. J. Neurotrauma 2018, 35, 1205–1212. [Google Scholar] [CrossRef]
- Tan, L.; Zeng, L.; Wang, N.; Deng, M.; Chen, Y.; Ma, T.; Zhang, L.; Xu, Z. Acupuncture to Promote Recovery of Disorder of Consciousness after Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Evid. Based Complement. Altern. Med. 2019, 2019, 5190515. [Google Scholar] [CrossRef]
- Gau, B.S.; Yang, H.L.; Huang, S.J.; Lou, M.F. The use of complementary and alternative medicine for patients with traumatic brain injury in Taiwan. BMC Complement. Altern. Med. 2012, 12, 211. [Google Scholar] [CrossRef] [PubMed]
- Kay, A.; Teasdale, G. Head injury in the United Kingdom. World J. Surg. 2001, 25, 1210–1220. [Google Scholar] [CrossRef] [PubMed]
- af Geijerstam, J.L.; Britton, M. Mild head injury—Mortality and complication rate: Meta-analysis of findings in a systematic literature review. Acta Neurochir. 2003, 145, 843–850; discussion 850. [Google Scholar] [CrossRef] [PubMed]
- Sercy, E.; Orlando, A.; Carrick, M.; Lieser, M.; Madayag, R.; Vasquez, D.; Tanner, A., 2nd; Rubin, B.; Bar-Or, D. Long-term mortality and causes of death among patients with mild traumatic brain injury: A 5-year multicenter study. Brain Inj. 2020, 34, 556–566. [Google Scholar] [CrossRef] [PubMed]
- Carroll, L.J.; Cassidy, J.D.; Holm, L.; Kraus, J.; Coronado, V.G. Methodological issues and research recommendations for mild traumatic brain injury: The WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. J. Rehabil. Med. 2004, 36, 113–125. [Google Scholar] [CrossRef] [PubMed]
- van Gils, A.; Stone, J.; Welch, K.; Davidson, L.R.; Kerslake, D.; Caesar, D.; McWhirter, L.; Carson, A. Management of mild traumatic brain injury. Pract. Neurol. 2020, 20, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Kushner, D. Mild traumatic brain injury: Toward understanding manifestations and treatment. Arch. Intern. Med. 1998, 158, 1617–1624. [Google Scholar] [CrossRef] [PubMed]
- McInnes, K.; Friesen, C.L.; MacKenzie, D.E.; Westwood, D.A.; Boe, S.G. Mild Traumatic Brain Injury (mTBI) and chronic cognitive impairment: A scoping review. PLoS ONE 2017, 12, e0174847. [Google Scholar] [CrossRef] [PubMed]
- Snowden, T.M.; Hinde, A.K.; Reid, H.M.O.; Christie, B.R. Does Mild Traumatic Brain Injury Increase the Risk for Dementia? A Systematic Review and Meta-Analysis. J. Alzheimers Dis. 2020, 78, 757–775. [Google Scholar] [CrossRef]
- Nemetz, P.N.; Leibson, C.; Naessens, J.M.; Beard, M.; Kokmen, E.; Annegers, J.F.; Kurland, L.T. Traumatic brain injury and time to onset of Alzheimer’s disease: A population-based study. Am. J. Epidemiol. 1999, 149, 32–40. [Google Scholar] [CrossRef]
- Graham, A.; Livingston, G.; Purnell, L.; Huntley, J. Mild Traumatic Brain Injuries and Future Risk of Developing Alzheimer’s Disease: Systematic Review and Meta-Analysis. J. Alzheimers Dis. 2022, 87, 969–979. [Google Scholar] [CrossRef] [PubMed]
- Annegers, J.F.; Coan, S.P. The risks of epilepsy after traumatic brain injury. Seizure 2000, 9, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Turner, G.M.; McMullan, C.; Aiyegbusi, O.L.; Bem, D.; Marshall, T.; Calvert, M.; Mant, J.; Belli, A. Stroke risk following traumatic brain injury: Systematic review and meta-analysis. Int. J. Stroke 2021, 16, 370–384. [Google Scholar] [CrossRef] [PubMed]
- Malec, J.F.; Brown, A.W.; Leibson, C.L.; Flaada, J.T.; Mandrekar, J.N.; Diehl, N.N.; Perkins, P.K. The mayo classification system for traumatic brain injury severity. J. Neurotrauma 2007, 24, 1417–1424. [Google Scholar] [CrossRef]
Strategies of TBI Management | Specific Methods of TBI Treatment |
---|---|
Emergency care of TBI | Head position Airway management Tracheostomy Hyperventilation Ventilator-associated pneumonia Prevention of seizures Sedation and induced coma Hypothermia Blood pressure and cerebral perfusion pressure Fluid management Tranexamic acid |
Surgical interventions for TBI | Decompressive craniectomy Kempe hemispherectomy incision Cisternostomy |
Pharmacological therapy of TBI | Corticosteroids Progesterone Erythropoietin Amantadine N-acetylcysteine Minocycline Phenserine Calcium channel blockers Antioxidants Beta-blockers Metformin Cerebrolysin Vitamin D |
Regenerative treatments | Neurotrophic factors Suppression of RhoA GTPase DNA vaccine Protein S100B Overcoming the glial scar Stem cell therapy Nanoparticles |
Treatment based on physical principles | Hyperbaric oxygen therapy Non-invasive brain stimulation |
Complementary therapy | Phytotherapy Acupuncture |
Mild TBI management |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syzdykbayev, M.; Kazymov, M.; Aubakirov, M.; Kurmangazina, A.; Kairkhanov, E.; Kazangapov, R.; Bryzhakhina, Z.; Imangazinova, S.; Sheinin, A. A Modern Approach to the Treatment of Traumatic Brain Injury. Medicines 2024, 11, 10. https://doi.org/10.3390/medicines11050010
Syzdykbayev M, Kazymov M, Aubakirov M, Kurmangazina A, Kairkhanov E, Kazangapov R, Bryzhakhina Z, Imangazinova S, Sheinin A. A Modern Approach to the Treatment of Traumatic Brain Injury. Medicines. 2024; 11(5):10. https://doi.org/10.3390/medicines11050010
Chicago/Turabian StyleSyzdykbayev, Marat, Maksut Kazymov, Marat Aubakirov, Aigul Kurmangazina, Ernar Kairkhanov, Rustem Kazangapov, Zhanna Bryzhakhina, Saule Imangazinova, and Anton Sheinin. 2024. "A Modern Approach to the Treatment of Traumatic Brain Injury" Medicines 11, no. 5: 10. https://doi.org/10.3390/medicines11050010
APA StyleSyzdykbayev, M., Kazymov, M., Aubakirov, M., Kurmangazina, A., Kairkhanov, E., Kazangapov, R., Bryzhakhina, Z., Imangazinova, S., & Sheinin, A. (2024). A Modern Approach to the Treatment of Traumatic Brain Injury. Medicines, 11(5), 10. https://doi.org/10.3390/medicines11050010