Does Ortho-Substitution Enhance Cytotoxic Potencies in a Series of 3,5-Bis(benzylidene)-4-piperidones?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Compounds
2.2. Cytotoxicity Assays
2.3. Molecular Modeling
2.4. Statistical Analyses
3. Results
4. Discussion
Compound | Aryl Substituent | Molt4/C8 a | CEM a | L1210 a | θA b | θB b |
---|---|---|---|---|---|---|
1a | 2-F | 0.94 ± 0.74 | 1.46 ± 0.52 | 7.18 ± 1.02 | 34.69 | 147.74 |
1b | 3-F | 0.59 ± 0.39 | 0.75 ± 0.42 | 6.48 ± 1.19 | 41.48 | 140.22 |
1c | 2,4-F2 | 3.91 ± 3.15 | 6.21 ± 3.09 | 27.4 ± 17.3 | 34.44 | 148.02 |
1d | 2,5-F2 | 3.26 ± 2.44 | 8.10 ± 0.48 | 37.4 ± 8.80 | 33.57 | 148.55 |
1e | 2,6-F2 | 1.13 ± 0.65 | 3.20 ± 2.07 | 8.83 ± 1.80 | 42.51 | 140.17 |
1f | 2-Cl | 1.13 ± 0.26 | 1.14 ± 0.73 | 6.35 ± 1.63 | 50.64 | 131.52 |
1g | 2,4-Cl2 | 4.70 ± 3.95 | 7.30 ± 0.46 | 34.0 ± 3.60 | 51.67 | 130.39 |
1h | 2,6-Cl2 | 6.01 ± 1.46 | 6.51 ± 0.17 | 9.87 ± 1.31 | 78.62 | 103.08 |
1i | 2-Br | 1.33 ± 0.17 | 1.19 ± 0.54 | 2.54 ± 1.39 | 48.94 | 133.26 |
1j | 3-Br | 5.28 ± 2.64 | 7.10 ± 0.95 | 48.0 ± 6.70 | 41.65 | 139.96 |
1k | 2-CH3 | 1.59 ± 0.07 | 1.62 ± 0.22 | 8.59 ± 0.65 | 51.60 | 130.05 |
1l | 2,4-(CH3)2 | 5.08 ± 4.30 | 6.79 ± 1.66 | 26.0 ± 9.00 | 49.23 | 132.55 |
1m | 2-OCH3 | 0.73 ± 0.44 | 0.91 ± 0.50 | 0.90 ± 0.64 | −55.01 | 145.72 |
1n | 2,3-(OCH3)2 | 0.36 ± 0.11 | 0.66 ± 0.45 | 0.84 ± 0.12 | −56.67 | 144.13 |
2a c | H | 1.67 ± 0.15 | 1.70 ± 0.02 | 7.96 ± 0.11 | 39.81 | 141.78 |
2b | 4-F | 5.00 ± 1.20 | 2.05 ± 0.36 | 0.60 ± 0.01 | --- | --- |
2c | 4-Cl | 13.4 ± 4.00 | 8.63 ± 0.48 | 4.15 ± 0.30 | --- | --- |
2d | 4-Br | 7.70 ± 0.81 | 1.70 ± 0.04 | 31.1 ± 11.0 | --- | --- |
2e | 4-CH3 | 1.69 ± 0.09 | 1.69 ± 0.00 | 8.47 ± 0.14 | --- | --- |
2f | 4-OCH3 | 288 ± 43.0 | 164 ± 104 | 244 ± 43.0 | --- | --- |
Melphalan c | ---- | 3.24 ± 0.56 | 2.47 ± 0.21 | 2.13 ± 0.02 | --- | --- |
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bolton, J.L.; Turnipseed, S.B.; Thompson, J.A. Influence of quinone methide reactivity on the alkylation of thiol and amino groups in proteins: Studies utilizing amino acid and peptide models. Chem. Biol. Interact. 1997, 107, 185–200. [Google Scholar] [CrossRef] [PubMed]
- Peter, M.G. Chemical Modifications of Biopolymers by Quinones and Quinone Methides. Angew. Chem. Int. Ed. Engl. 1989, 28, 555–570. [Google Scholar] [CrossRef]
- Karpavičienė, I.; Valiulienė, G.; Raškevičius, V.; Lebedytė, I.; Brukštus, A.; Kairys, V.; Rūta, N.; Čikotienė, I. Synthesis and antiproliferative activity of α-branched α,β-unsaturated ketones in human hematological and solid cancer cell lines. Eur. J. Med. Chem. 2015, 98, 30–48. [Google Scholar] [CrossRef] [PubMed]
- Page, C.P.; Curtis, M.; Walker, M.; Hoffman, B. Integrated Pharmacology, 3rd ed.; Elsevier: Philadelphia, PA, USA, 2006; p. 643. [Google Scholar]
- Chen, G.; Waxman, D.J. Role of cellular glutathione and glutathione S-transferase in the expression of alkylating agent cytotoxicity in human breast cancer cells. Biochem. Pharmacol. 1994, 47, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, K.; Komuro, C.; Ono, K.; Nishidea, T.; Shibamoto, Y.; Takahashi, M.; Abe, M. Chemosensitization by buthionine sulfoximine in vivo. Int. J. Radiat. Oncol. Biol. Phys. 1986, 12, 1183–1186. [Google Scholar] [CrossRef] [PubMed]
- Andrés, C.M.C.; Pérez de la Lastra, J.M.; Bustamante Munguira, E.; Andrés Juan, C.; Pérez-Lebeña, E. Michael Acceptors as Anti-Cancer Compounds: Coincidence or Causality? Int. J. Mol. Sci. 2024, 25, 6099. [Google Scholar] [CrossRef] [PubMed]
- Selvaraju, K.; Lotfi, K.; Gubat, J.; Miquel, M.; Nilsson, A.; Hill, J.; Jensen, L.D.; Linder, S.; D’Arcy, P. Sensitivity of Acute Myelocytic Leukemia Cells to the Dienone Compound VLX1570 Is Associated with Inhibition of the Ubiquitin-Proteasome System. Biomolecules 2021, 11, 1339. [Google Scholar] [CrossRef] [PubMed]
- Makarov, M.V.; Rybalkina, E.Y.; Anikina, L.V.; Pukhov, S.A.; Klochkov, S.G.; Mischenko, D.V.; Neganova, M.E.; Khrustalev, V.N.; Klemenkova, Z.S.; Brel, V.K. 1,5-Diaryl-3-oxo-1,4-pentadienes based on (4-oxopiperidin-1-yl)(aryl)methyl phosphonate scaffold: Synthesis and antitumor properties. Med. Chem. Res. 2017, 26, 140–152. [Google Scholar] [CrossRef]
- Das, S.; Das, U.; Sakagami, H.; Hashimoto, K.; Kawase, M.; Gorecki, D.K.J.; Dimmock, J.R. Sequential cytotoxicity: A theory examined using a series of 3,5-bis(benzylidene)-1-diethylphosphono-4-oxopiperidines and related phosphonic acids. Bioorg. Med. Chem. Lett. 2010, 20, 6464–6468. [Google Scholar] [CrossRef] [PubMed]
- Baraldi, P.B.; del Carmen Nunez, M.; Tabrizi, M.A.; de Clercq, E.; Balzarini, J.; Bermejo, J.; Estevez, F.; Romagnoli, R. Design, syntheses and biological evaluation of hybrid molecules containing [alpha]-methylene-[gamma]-butyrolactones and polypyrrole minor groove binders. J. Med. Chem. 2004, 47, 2877–2886. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Gul, H.I.; Das, U.; Balzarini, J.; Dimmock, S.G.; Dimmock, J.R. Novel conjugated unsaturated ketones with submicromolar potencies towards some leukemic and colon cancer cells. Med. Chem. 2019, 15, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immun. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Spartan 14, version 1.1.4. 9 January 2014.
- Hansch, C.; Leo, A.J. Substituent Constants for Correlation Analysis in Chemistry and Biology; John Wiley and Sons: New York, NY, USA, 1979; p. 49. [Google Scholar]
- Taft, R.W., Jr. Steric Effects in Organic Chemistry; Newman, M.S., Ed.; John Wiley and Sons, Inc.: New York, NY, USA, 1956; p. 591. [Google Scholar]
- Statistical Package for Social Scientists, SPSS Inc. SPSS Statistics for Windows; Version 17.0; SPSS Inc.: Chicago, IL, USA, 2008. [Google Scholar]
- Dimmock, J.R.; Kandepu, N.M.; Nazarali, A.J.; Kowalchuk, T.P.; Motaganahalli, N.; Quail, J.W.; Mykytiuk, P.A.; Audette, G.F.; Prasad, L.; Perjesi, P.; et al. Conformational and quantitative structure-activity relationship study of cytotoxic 2-arylidenebenzocycloalkanones. J. Med. Chem. 1999, 42, 1358–1366. [Google Scholar] [CrossRef] [PubMed]
- Dimmock, J.R.; Padmanilayam, M.P.; Puthucode, R.N.; Nazarali, A.J.; Motaganahalli, N.L.; Zello, G.A.; Quail, J.W.; Oloo, E.O.; Kraatz, H.-B.; Prisciak, J.S.; et al. A conformational and structure-activity relationship study of cytotoxic 3,5-bis(arylidene)-4-piperidones and related N-acryloyl analogues. J. Med. Chem. 2001, 44, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Suffness, M.; Douros, J. Methods in Cancer Research; Part A; De Vita, V.T., Busch, H., Eds.; Academic Press: New York, NY, USA, 1979; Volume XVI, p. 84. [Google Scholar]
- Das, U.; Alcorn, J.; Shrivastav, A.; Sharma, R.K.; De Clercq, E.; Balzarini, J.; Dimmock, J.R. Design, synthesis and cytotoxic properties of novel 1-[4-(2-alkylaminoethoxy)phenylcarbonyl]-3,5-bis(arylidene)-4-piperidones and related compounds. Eur. J. Med. Chem. 2007, 42, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Pandeya, S.N.; Dimmock, J.R. An Introduction to Drug Design; New Age International Publishers: New Delhi, India, 1997; pp. 72–74. [Google Scholar]
Compound | CC50 (µM) a | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
HSC-2 | SI b | HSC-3 | SI b | HSC-4 | SI b | HL-60 | SI b | Ave. CC50 | Ave. SI | |
1a | 0.57 ± 0.24 | 8.12 | 0.89 ± 0.08 | 5.20 | 0.18 ± 0.08 | 25.7 | 0.29 ± 0.02 | 16.0 | 0.48 | 13.8 |
1b | 0.41 ± 0.12 | 5.81 | 0.47 ± 0.06 | 5.06 | 0.19 ± 0.08 | 12.5 | 0.17 ± 0.10 | 14.0 | 0.31 | 9.34 |
1c | 1.27 ± 0.21 | 6.32 | 1.06 ± 0.16 | 7.58 | 0.72 ± 0.04 | 11.2 | 2.60 ± 0.03 | 3.09 | 1.41 | 7.05 |
1d | 1.17 ± 0.06 | 5.28 | 1.06 ± 0.08 | 5.83 | 0.41 ± 0.14 | 15.1 | 1.00 ± 0.27 | 6.18 | 0.91 | 8.10 |
1e | 0.53 ± 0.17 | 4.74 | 0.67 ± 0.29 | 3.75 | 0.25 ± 0.10 | 10.0 | 0.60 ± 0.28 | 4.18 | 0.51 | 5.67 |
1f | 0.24 ± 0.07 | 8.00 | 0.35 ± 0.05 | 5.49 | 0.12 ± 0.10 | 16.0 | 0.42 ± 0.10 | 4.57 | 0.28 | 8.52 |
1g | 0.95 ± 0.13 | 4.04 | 1.10 ± 0.10 | 3.49 | 0.75 ± 0.20 | 5.12 | 2.60 ± 0.56 | 1.48 | 1.35 | 3.53 |
1h | 10.67 ± 0.8 | >14.8 | 45.33 ± 7.23 | >3.52 | 44.67 ± 1.53 | >3.58 | 7.00 ± 2.90 | >22.8 | 26.9 | >11.2 |
1i | 0.37 ± 0.07 | 11.1 | 0.79 ± 0.06 | 5.18 | 0.32 ± 0.02 | 12.8 | 1.20 ± 0.10 | 3.41 | 0.67 | 8.12 |
1j | 0.81 ± 0.42 | 6.48 | 1.06 ± 0.06 | 4.95 | 0.38 ± 0.08 | 13.8 | 2.60 ± 0.04 | 2.02 | 1.21 | 6.81 |
1k | 0.62 ± 0.42 | 6.23 | 1.04 ± 0.06 | 3.71 | 0.45 ± 0.30 | 8.58 | 1.10 ± 0.21 | 3.51 | 0.80 | 5.51 |
1l | 4.47 ± 0.21 | 3.00 | 8.17 ± 2.16 | 1.64 | 2.80 ± 1.39 | 4.79 | 6.70 ± 2.30 | 2.00 | 5.54 | 2.86 |
1m | 0.87 ± 0.10 | 4.16 | 1.13 ± 0.12 | 3.20 | 0.74 ± 0.14 | 4.89 | 0.74 ± 0.18 | 4.89 | 0.87 | 4.29 |
1n | 0.24 ± 0.02 | 5.63 | 0.33 ± 0.01 | 4.09 | 0.18 ± 0.08 | 7.50 | 0.31 ± 0.01 | 4.36 | 0.27 | 5.40 |
(Average) | 6.69 | 4.48 | 10.83 | 6.61 | ||||||
Melphalan | 6.20 ± 0.32 | 13.9 | 19.00 ± 0.58 | 4.54 | 36.00 ± 1.7 | 2.40 | 1.00 ± 0.04 | 86.3 | 15.6 | 26.8 |
5-Fluorouracil | 4.90 ± 0.91 | >20.4 | 47.00 ± 7.20 | >2.13 | 2.50 ± 0.25 | >40 | 10.00 ± 1.1 | >10.0 | 16.1 | >18.1 |
Compound | CC50 (µM) a | PSE b | |||
---|---|---|---|---|---|
HGF | HPC | HPLF | Ave. CC50 | ||
1a | 5.57 ± 2.37 | 3.83 ± 0.55 | 4.50 ± 0.44 | 4.63 | 28.8 |
1b | 2.21 ± 0.09 | 2.33 ± 0.55 | 2.60 ± 0.17 | 2.38 | 30.1 |
1c | 8.73 ± 0.64 | 5.56 ± 0.05 | 9.80 ± 1.04 | 8.03 | 5.00 |
1d | 7.70 ± 0.50 | 4.60 ± 0.44 | 6.23 ± 0.74 | 6.18 | 8.90 |
1e | 2.47 ± 0.11 | 1.50 ± 0.20 | 3.57 ± 0.71 | 2.51 | 11.1 |
1f | 1.95 ± 0.46 | 1.43 ± 0.38 | 2.37 ± 0.12 | 1.92 | 30.4 |
1g | 5.03 ± 0.32 | 1.97 ± 0.50 | 4.53 ± 0.23 | 3.84 | 2.62 |
1h | >160 | >160 | >160 | >160 | >0.42 |
1i | 4.68 ± 0.21 | 3.40 ± 0.62 | 4.20 ± 0.26 | 4.09 | 12.1 |
1j | 5.40 ± 0.66 | 3.93 ± 1.00 | 6.43 ± 1.12 | 5.25 | 5.63 |
1k | 4.00 ± 1.13 | 2.55 ± 0.09 | 5.02 ± 0.10 | 3.86 | 6.89 |
1l | 15.03 ± 3.86 | 10.10 ± 1.39 | 15.00 ± 3.00 | 13.4 | 0.52 |
1m | 3.80 ± 0.78 | 3.13 ± 0.42 | 3.93 ± 1.08 | 3.62 | 4.93 |
1n | 1.36 ± 0.13 | 1.19 ± 0.02 | 1.50 ± 0.40 | 1.35 | 20.0 |
Melphalan | 96.00 ± 6.40 | 83.00 ± 4.50 | 80.00 ± 0.58 | 86.3 | 1.72 |
5-Fluorouracil | >100 | >100 | >100 | >100 | >1.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karki, S.S.; Das, U.; Balzarini, J.; De Clercq, E.; Sakagami, H.; Uesawa, Y.; Roayapalley, P.K.; Dimmock, J.R. Does Ortho-Substitution Enhance Cytotoxic Potencies in a Series of 3,5-Bis(benzylidene)-4-piperidones? Medicines 2024, 11, 19. https://doi.org/10.3390/medicines11080019
Karki SS, Das U, Balzarini J, De Clercq E, Sakagami H, Uesawa Y, Roayapalley PK, Dimmock JR. Does Ortho-Substitution Enhance Cytotoxic Potencies in a Series of 3,5-Bis(benzylidene)-4-piperidones? Medicines. 2024; 11(8):19. https://doi.org/10.3390/medicines11080019
Chicago/Turabian StyleKarki, Subhas S., Umashankar Das, Jan Balzarini, Erik De Clercq, Hiroshi Sakagami, Yoshihiro Uesawa, Praveen K. Roayapalley, and Jonathan R. Dimmock. 2024. "Does Ortho-Substitution Enhance Cytotoxic Potencies in a Series of 3,5-Bis(benzylidene)-4-piperidones?" Medicines 11, no. 8: 19. https://doi.org/10.3390/medicines11080019
APA StyleKarki, S. S., Das, U., Balzarini, J., De Clercq, E., Sakagami, H., Uesawa, Y., Roayapalley, P. K., & Dimmock, J. R. (2024). Does Ortho-Substitution Enhance Cytotoxic Potencies in a Series of 3,5-Bis(benzylidene)-4-piperidones? Medicines, 11(8), 19. https://doi.org/10.3390/medicines11080019