β-Selinene-Rich Essential Oils from the Parts of Callicarpa macrophylla and Their Antioxidant and Pharmacological Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Isolation of Essential Oil
2.3. GC Analysis
2.4. GC/MS Analysis
2.5. Antioxidant Assay
2.5.1. Reducing Power Activity
2.5.2. Effect on the Chelating Activity of Fe2+
2.5.3. DPPH Radical Scavenging Activity
2.5.4. NO Radical Scavenging Activity
2.5.5. Super Oxide Radical Scavenging Activity
2.5.6. OH Radical Scavenging Activity
2.6. Evaluation of Pharmacological Activities
2.7. Anti-Inflammatory Activity
2.7.1. Carrageenan-Induced Paw Edema
2.7.2. Formaldehyde-Induced Inflammatory Activity
2.8. Analgesic Activity
Acetic Acid-Induced Abdominal Writhing Test
2.9. Antipyretic Activity
2.10. Assessment of Toxicity
2.11. Statistical Analysis
3. Results and Discussion
3.1. Antioxidant Assay
3.1.1. Reducing Power
3.1.2. Ability of Chelating Fe2+ Ion
3.1.3. DPPH Radical Scavenging Activity
3.1.4. Superoxide Radical Scavenging Activity
3.1.5. NO Radical Scavenging Activity
3.1.6. OH Radical Scavenging Activity
3.2. Anti-Inflammatory Activity
3.2.1. Mice Paw Edema (Carrageenan-Induced)
3.2.2. Formaldehyde-Induced Inflammatory Activity
3.3. Analgesic Activity
3.4. Antipyretic Activity
3.5. Acute Toxicity
4. Conclusions
Acknowledgement
Author Contributions
Conflicts of Interest
References
- Babu, C.R. Herbaceous Flora of Dehradun; PID Publication: New Delhi, India, 1977; pp. 395–396. [Google Scholar]
- Yatato, S.; Chunyong, W.; Yanhua, C.; Wenyuan, L.; Feng, F.; Ning, X. Comparative analysis of three Callicarpa herbs using high performance liquid chromatography with diode array detector and electrospray ionization-trap mass spectrometry method. J. Pharm. Biom. Anal. 2013, 75, 239–247. [Google Scholar]
- Megoneitso; Rao, R.R. Enthnobotanical studies in Nagaland-4. Sixty two medicinal plants used by the Agami Nagas. J. Econ. Tax. Bot. 1983, 4, 167–172. [Google Scholar]
- Balodi, V. Introductory note on the enthnobotany of Gori Valley. J. Econ. Tax. Bot. 1998, 12, 453–455. [Google Scholar]
- Singh, A.K.; Pawan, K.A. A diterpenoid from Callicarpa macrophylla. Phytochemistry 1994, 37, 587–588. [Google Scholar] [CrossRef]
- Yadav, V.; Jayalakshmi, S.; Patra, A.; Singla, P.K. Investigation of Analgesic & Anti-Pyretic Potentials of Callicarpa macrophylla Vahl. Leaves Extracts. Int. J. Med. Mol. Med. 2012, 3, 1–7. [Google Scholar]
- Yadav, V.; Jayalakshmi, S.; Singh, R.K.; Patra, A. Preliminary Assessment of Anti-Inflammatory Activity of Callicarpa macrophylla Vahl. Leaves Extracts Indo-Global. J. Pharm. Sci. 2011, 1, 219–222. [Google Scholar]
- Mozaina, K.; Mario, R.T.; Franck, E.D.; Stephen, O.D. Phytotoxicity and volatile constituents from leaves of Callicarpa japonica Thunb. Phytochemistry 2002, 61, 37–40. [Google Scholar]
- Chandra, M.; Prakash, O.; Punetha, H.; Bhushan, B.; Bachetti, R.K.; Kumar, M.; Pant, A.K. An analgesic and anti-inflammatory activity of hydro-alcoholic leaves extracts of some indigenous herbs growing in Uttarakhand, India. Int. J. Inst. Pharm. Life Sci. 2015, 5, 116–123. [Google Scholar]
- Singh, A.K.; Chanotiya, C.S.; Yadav, A.; Kalra, A. Volatile of Callicarpa macropylla: A rich source of selinene isomer. Nat. Prod. Commun. 2010, 5, 269–272. [Google Scholar] [PubMed]
- Chatterjee, A.; Desmukh, S.K.; Chandrasekharan, S. Diterpenoid constituents of Callicarpa macrophylla Vahl: The structures and stereochemistry of calliterpenone and calliterpenonemonoacetate. Tetrahedron 1972, 28, 4319–4323. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Business Media Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Kumar, R.; Prakash, O.; Pant, A.K.; Isidorov, V.A.; Mathela, C.S. Chemical composition, antioxidant and myorelaxant activity of essential oils of Globba sessiliflora Sims. J. Essent. Oil Res. 2012, 24, 385–391. [Google Scholar] [CrossRef]
- Naskar, S.; Islam, A.; Mazumdar, U.K.; Saha, P.P.; Haldar, K.; Gupta, M. In vitro and in vivo antioxidant Potential of hydromethanolic extract of Phoenix dactylifera fruits. J. Sci. Res. 2010, 2, 144–157. [Google Scholar] [CrossRef]
- Fu, W.; Chen, J.L.; Cai, Y.L.; Lei, Y.F.; Chen, L.M.; Pei, L.; Zhou, D.N.; Liang, X.F.; Ruan, J.L. Antioxidant, free radical scavenging, antiinflammatoryand hepatoprotective potential of the extract from Parathelypteris nipponica (Franch.etSav.) Ching. J. Ethnopharm. 2010, 130, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Olabinri, B.M.; Odedire, O.O.; Olaleye, M.T.; Adekunle, A.S.; Ehigie, L.O.; Olabinri, P.F. Evaluation of hydroxyl and nitric oxide radical scavenging activities. Res. J. Biol. Sci. 2010, 5, 102–105. [Google Scholar]
- Chandra, M.; Parakash, O.; Bachheti, R.K.; Kumar, M.; Pant, A.K. Essential oil composition and pharmacological activities of Micromeria biflora (Buch.-Ham. Ex D. Don) Benth. collected from Uttarakhand region of India. J. Med. Res. 2013, 7, 2538–2544. [Google Scholar]
- Italenti, A.; Ianaro, A.; Mancada, S.; Di Rosa, M. Modulation of acute inflammation by endogenous nitric oxide. Eur. J. Pharmacol. 1995, 211, 177–182. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on product of browning reaction prepared from glucose amine Japan. J. Nutr. 1986, 44, 307–315. [Google Scholar]
- Soares, J.R.; Dins, T.C.P.; Cunha, A.P.; Ameida, L.M. Antioxidant activity of some extracts of Thymus zygis. Free Rad. Res. 1997, 26, 469–478. [Google Scholar] [CrossRef]
- Floyd, R.A. Nitric oxide and cancer development. J. Toxi. Pathol. 2007, 20, 77–92. [Google Scholar] [CrossRef]
- Manjamalai, A.; Berlin Grace, V.M. Antioxidant Activity of Essential Oils from Wedelia chinensis (Osbeck) in vitro and in vivo Lung Cancer Bearing C57BL/6 Mice. Asian Pac. J. Cancer Prev. 2012, 13, 3065–3071. [Google Scholar] [CrossRef] [PubMed]
- Mandal, P.; Mishra, T.K.; Ghosal, M. Free radical scavenging activity and phytochemical analysis in the leaf and stem of Drymaria diandra Glume. Indian J. Tuberc. 2009, 7, 80–84. [Google Scholar]
- Halliwell, B.; Gutteridge, J.M.C. Free radicals in biology and medicine. In Free Radicals, Ageing, and Disease; Clarendron Press: Oxford, UK, 1985; Volume 2, pp. 279–315. [Google Scholar]
- Beauchamp, C.; Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276–277. [Google Scholar] [CrossRef]
- Gutteridge, M.C. Reactivity of hydroxyl and hydroxyl-like radicals discriminated by release of thiobarbituric acid reactive material from deoxy sugars, nucleosides and benzoate. Biochem. J. 1984, 224, 761–767. [Google Scholar] [CrossRef]
- Spencer, J.P.E.; Jenner, A.O.I. Aroma Intense oxidative DNA damage promoted by L-DOPA and its metabolites, implications for neurodegenerative disease. FEBS Lett. 1994, 353, 246–250. [Google Scholar] [CrossRef]
- Sanchez, M.C.; Larrauri, J.A.; Saura, C.F. Free radical scavenging capacity and inhibition of lipid oxidation of wines, grape juices and related polyphenolic constituents. Food Res. Int. 1999, 32, 407–412. [Google Scholar] [CrossRef]
- Zakaria, Z.A.; Gani, A.Z.D.F. Antinociceptive, anti-inflammatory, and antipyretic properties of an aqueous extract of Dicranopteris linearis leaves in experimental animal models. J. Nat. Med. 2008, 62, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Collier, H.D.J.; Dinnin, L.C.C.; Johnson, A.; Schneider, C. The abdominal response and its suppression by analgesic drugs in mouse. Br. J. Pharm. 1968, 32, 295–310. [Google Scholar] [CrossRef]
- Brazezinska, S.E. Fever induced oxidative stress. The effect on thyroid status and the S’ monodeiodinase activity protective role of selenium vitamin. Eur. J. Phys. Pharm. 2001, 52, 275–284. [Google Scholar]
- Devi, B.P.; Boominathan, R.; Mandal, S.C. Evalution of antipyreticpotential of Cleome viscose Linn. (Capparidaceae) extract in rats. J. Ethnopharmacol. 2003, 87, 11–13. [Google Scholar]
- Dannhardt, G.; Kiefer, W. Cyclooxygenase inhibitors—Current status and future prospects. Eur. J. Med. Chem. 2001, 36, 109–126. [Google Scholar] [CrossRef]
- Rao, C.V.; Kartik, R.; Ojha, S.K.; Amresh Rao, G.M.M. Anti-inflammatory and antinociceptive activity of stem juice powder of Tinospora cordifolia Miers. in experimental animals. Hamdard Med. 2005, XLVIII, 102–106. [Google Scholar]
- Adedapo, A.A.; Sofidiya, M.O.; Maphosa, V.; Moyo, B.; Masika, P.J.; Afolayan, A.J. Anti-inflammatory and analgesic activities of the aqueous extract of Cussonia paniculata stem Bark. Rec. Nat. Prod. 2008, 2, 46–53. [Google Scholar]
S.N. | Compounds Name | KI/RI | FID % | ||
---|---|---|---|---|---|
CMLEO | CMOE-I | CMEO-II | |||
1 | hex-2E-enal | 850 | 0.20 | - | - |
2 | α-pinene | 933 | 0.06 | - | 0.40 |
3 | β-pinene | 943 | 0.53 | 1.07 | 2.32 |
4 | 1-octene-3one | 943 | 0.02 | 0.12 | 0.02 |
5 | 3-octanone | 952 | 0.10 | 0.12 | 0.06 |
6 | banzaldehide | 960 | 0.14 | - | - |
7 | sabinene | 972 | 0.17 | 0.40 | 0.25 |
8 | hexanoic acid | 979 | - | 0.47 | - |
9 | myrcene | 991 | - | - | 0.04 |
10 | hex-3Z-ethyl acetate | 1008 | 0.01 | - | - |
11 | p-cymene | 1025 | 0.13 | 0.41 | 0.14 |
12 | limonene | 1030 | - | 0.15 | 0.12 |
13 | 1,8-cineole | 1032 | 2.23 | 3.10 | 1.62 |
14 | β-ocimene | 1046 | - | - | 0.31 |
15 | 2-nonanone | 1052 | 0.02 | - | - |
16 | trans-2-octenal | 1067 | - | 0.27 | - |
17 | cis linalool oxide | 1069 | - | 0.21 | - |
18 | trans linalool oxide | 1086 | - | 0.15 | - |
19 | linalool | 1101 | 0.20 | 0.86 | - |
20 | nopinone | 1139 | - | 0.50 | - |
21 | sabina ketone | 1154 | 0.03 | - | - |
22 | pinocarvone | 1164 | - | 0.64 | 0.45 |
23 | terpinen-4-ol | 1180 | - | 0.43 | - |
24 | myrtenal | 1197 | 0.23 | 0.74 | 0.20 |
25 | 1-butyryl-1,2,3,6-tetrahydropyridine | 1249 | 0.05 | ||
26 | 3,9-dodecadiyn | 1249 | 0.37 | - | - |
27 | bornyl acetate | 1285 | - | 0.42 | - |
28 | leden oxide (I) | 1293 | - | 0.40 | - |
29 | myrtenal acetate | 1326 | - | 0.19 | - |
30 | α-copaene | 1375 | 0.35 | - | 0.27 |
31 | β-elemene | 1390 | 0.98 | 0.82 | 0.61 |
32 | β-cubebene | 1392 | 0.10 | 0.09 | 0.48 |
33 | α-gurjunene | 1406 | 0.50 | 0.95 | 0.15 |
34 | nopyl acetate | 1413 | - | 0.26 | - |
35 | β-caryophelline | 1424 | 3.26 | - | 1.84 |
36 | (E) caryophellene | 1424 | 0.44 | - | 0.11 |
37 | aromadandrene | 1438 | - | 2.14 | 0.19 |
38 | 4-camphenylbutan-2-one | 1451 | - | 0.80 | - |
39 | α-humulene | 1454 | - | - | 0.14 |
40 | aromadendrene oxide II | 1462 | 0.43 | 0.46 | 0.25 |
41 | 9E-epi-caryophelline | 1464 | 6.23 | 1.27 | 3.43 |
42 | α-selinene | 1474 | 0.26 | ||
43 | α-cubebene | 1480 | 0.11 | - | - |
44 | ar-curcumene | 1480 | 0.19 | 0.10 | 0.14 |
45 | β-selinene | 1492 | 37.51 | 44.66 | 57.01 |
46 | amorphene | 1502 | 0.41 | - | - |
47 | perhydropyrene | 1502 | 0.37 | ||
48 | caryophelline oxide | 1507 | 7.34 | 8.74 | 5.0 |
49 | δ-cadinine | 1518 | 0.85 | 0.41 | 0.59 |
50 | trans-calamene | 1527 | 0.35 | 0.15 | 0.31 |
51 | globulol | 1530 | 0.42 | - | - |
52 | Z-α-bisaboline epoxide | 1531 | 0.21 | ||
53 | α-agarofuron | 1548 | - | 0.40 | - |
54 | (E)-nerolidol | 1561 | - | 0.20 | - |
55 | longicamphenylone | 1563 | - | 3.08 | - |
56 | longipinocarvone | 1569 | 4.96 | 1.17 | 2.0 |
57 | sphathulenol | 1576 | 1.06 | 2.10 | 0.30 |
58 | β-copaen-4 α-ol | 1590 | 1.03 | - | - |
59 | trans longipinocarveol | 1590 | 0.63 | 0.71 | - |
60 | fokienol | 1596 | 0.38 | 0.31 | - |
61 | salvial-4 (14)-en-1-one | 1596 | 0.73 | - | - |
62 | β-oplopanone | 1607 | 0.33 | ||
63 | humulene epoxide II | 1613 | 0.21 | - | - |
64 | Z-3-hexadecane-7-yne | 1637 | - | 0.31 | - |
65 | solavetivone | 1645 | 0.99 | 0.30 | 0.40 |
66 | cedren-13-ol | 1646 | - | 0.52 | - |
67 | vulgarone | 1649 | 2.92 | 1.02 | 0.40 |
68 | α-muurolol | 1651 | 1.76 | - | - |
69 | cadalene | 1677 | - | 0.32 | - |
70 | khusinol | 1679 | - | - | 0.10 |
71 | juniper camphor | 1696 | 3.13 | 3.03 | - |
72 | cis-lanceol | 1760 | 0.12 | - | - |
73 | 14-oxy α-muurolene | 1767 | 2.50 | - | - |
74 | phyllocladene | 1789 | 9.76 | 5.80 | 12.38 |
75 | cupressene | 1880 | - | 0.47 | - |
76 | 5-octen-2-one | 1932 | 0.53 | ||
77 | androsta-4,16-dien-3-one | 1933 | 0.71 | 0.50 | 0.70 |
78 | androsta-3,5-dien-7-one | 1933 | 0.55 | 0.26 | 0.32 |
79 | 6-androstanone | 1940 | 0.13 | ||
80 | n-hexadecanoic acid | 1977 | 0.43 | ||
81 | 9Z,12Z,15Z-octadecatrien-1-ol | 2077 | 0.20 | ||
82 | pimara-7,15-dien-3-one | 2097 | 0.36 | 0.16 | 0.24 |
83 | thunbergol | 2211 | - | 0.98 | 0.23 |
84 | andrographolide | 2944 | 0.84 | 0.74 | |
Total | 96.55 | 94.56 | 95.35 |
Extracts | (IC 50 in (µL/µg)/mL)/R2 | % Absorbance (Reducing Power) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Radical scavenging Activities | Chelating Activity | At lower Dose Level (5 µL/µg)/mL | At Higher Dose Level (25 µL/µg)/mL | |||||||||
DPPH Scavenging | NO scavenging | Super Oxide Scavenging | OH Scavenging | |||||||||
IC50 | R2 | IC50 | R2 | IC50 | R2 | IC50 | R2 | IC50 | R2 | |||
CMLEO | 18.35 ± 0.18 | 0.933 ± 0.003 | 10.61 ± 0.02 | 0.941 ± 0.000 | 18.58 ± 0.19 | 0.956 ± 0.006 | 16.06 ± 0.16 | 0.963 ± 0.006 | 14.38 ± 0.27 | 0.913 ± 0.009 | 0.426 ± 0.004 | 0.602 ± 0.000 |
CMEO-I | 20.29 ± .11 | 0.960 ± 0.06 | 11.18 ± 0.06 | 0.95 ± 0.004 | 20.79 ± 0.30 | 0.954 ± 0.005 | 18.59 ± 0.25 | 0.960 ± 0.006 | 13.42 ± 0.17 | 0.950 ± 0.004 | 0.411 ± 0.003 | 0.573 ± 0.000 |
CMEO-II | 15.66 ± 0.03 | 0.961 ± 00.005 | 7.37 ± 0.11 | 0.922 ± 0.002 | 17.49 ± 0.13 | 0.954 ± 0.015 | 14. 59 ± 0.18 | 0.956 ± 0.016 | 11.49 ± 0.87 | 0.979 ± 0.006 | 0.450 ± 0.004 | 0.418 ± 0.000 |
BHT | 8.55 ± 0.10 | 0.947 ± 0.005 | NA | NA | NA | NA | NA | NA | NA | NA | 0.55 ± 0.008 | 0.735 ± 0.009 |
Catechin | 8.18 ± 0.11 | 0.950 ± 0.004 | NA | NA | NA | NA | NA | NA | NA | NA | 0.455 ± 0.006 | 0.623 ± 0.004 |
Gallic Acid | 7.95 ± 0.11 | 0.964 ± 0.004 | NA | NA | NA | NA | NA | NA | NA | NA | 0.575 ± 0.003 | 0.715 ± 0.003 |
Ascorbic acid | NA | NA | 7.72 ± 0.19 | 0.942 ± 0.002 | 15.03 ± 0.13 | 0.951 ± 0.007 | 11.22 ± 0.30 | 0.960 ± 0.017 | NA | NA | NA | NA |
EDTA | NA | NA | NA | NA | NA | NA | NA | NA | 9.27 ± 0.11 | 0.955 ± 0.003 | NA | NA |
Citric Acid | NA | NA | NA | NA | NA | NA | NA | NA | 9.42 ± 0.95 | 0.981 ± 0.021 | NA | NA |
Group | Treatment | Doses (0.2 mL) | Paw Volume (in mm3) | % Inhibition | |||
---|---|---|---|---|---|---|---|
0 h | 4 h | 24 h | 4 h | 24 h | |||
I | CMLEO | 5% | 2.34 ± 0.01 | 2.29 ± 0.02b | 2.23 ± 0.02 ab | 2.14 | 4.7 |
II | CMLEO | 10% | 2.31 ± 0.03 a | 2.21 ± 0.02 ab | 2.12 ± 0.01 ab | 4.33 | 8.23 |
III | CMLEO | 20% | 2.25 ± 0.02 ab | 2.05 ± 0.02 ab | 1.85 ± 0.03 ab | 8.89 | 17.78 |
IV | CMEO-II | 5% | 2.29 ± 0.01 a | 2.19 ± 0.02 ab | 2.14 ± 0.03 ab | 4.37 | 6.55 |
V | CMEO-II | 10% | 2.38 ± 0.02 | 2.30 ± 0.02 b | 2.21 ± 0.02 ab | 3.36 | 7.14 |
VI | CMEO-II | 20% | 2.41 ± 0.02 | 2.17 ± 0.02 ab | 1.90 ± 0.05 ab | 9.96 | 21.16 |
VII | CMEO-I | 5% | 2.32 ± 0.03 a | 2.29 ± 0.03 b | 2.21 ± 0.02 ab | 1.29 | 4.74 |
VIII | CMEO-I | 10% | 2.26 ± 0.02 ab | 2.20 ± 0.02 ab | 2.15 ± 0.03 ab | 2.65 | 4.87 |
IX | CMEO-I | 20% | 2.27 ± 0.02 a | 2.08 ± 0.03a b | 1.90 ± 0.03 ab | 8.37 | 16.3 |
X | Control | - | 2.40 ± 0.02 | 2.33 ± 0.01 | 2.32 ± 0.01 | 2.92 | 3.33 |
XI | Ibuprofen | 40 mg/kg b. wt. | 2.34 ± 0.01 a | 1.73 ± 0.02 a | 1.47 ± 0.02 a | 26.07 | 37.17 |
Group | Treatment | Dose | Volume of Paw Edema (in mm3) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 Day | 1 Day | 2 Day | 3 Day | 4 Day | 5 Day | 6 Day | 7 Day | 8 Day | 9 Day | 10 Day | |||
I | CMLEO | 5% (0.2 mL) | 2.28 ± 0.02 | 2.36 ± 0.02 ab | 2.37 ± 0.04 b | 2.42 ± 0.04 b | 2.41 ±0.04 b | 2.40 ± 0.04 b | 2.40 ± 0.04 b | 2.39 ± 0.04 b | 2.39 ± 0.03 b | 2.36 ± 0.03 b | 2.36 ± 0.04 b |
II | CMLEO | 10% (0.2 mL) | 2.23 ± 0.03 | 2.26 ± 0.02 ab | 2.31 ± 0.03 b | 2.35 ± 0.04 a | 2.34 ±0.03 b | 2.32 ± 0.03 b | 2.32 ± 0.03 b | 2.31 ± 0.03 b | 2.31 ± 0.03 b | 2.31 ± 0.03 b | 2.30 ± 0.03 b |
III | CMLEO | 20% (0.2 mL) | 2.23 ± 0. 02 | 2.25 ± 0.02 ab | 2.29 ± 0.02 b | 2.30 ± 0.04 a | 2.29 ± 0.04 ab | 2.27 ± 0.03 a | 2.26 ± 0.03 ab | 2.25 ± 0. 02 ab | 2.24 ± 0.02 a | 2.22 ± 0.02 a | 2.22 ± 0.02 b |
IV | CMEO -II | 5% (0.2 mL) | 2.27 ± 0.03 | 2.30 ± 0.02 ab | 2.36 ± 0.04 b | 2.40 ± 0.05 ab | 2.39 ± 0.05 b | 2.38 ± 0.05 b | 2.38 ± 0.04 b | 2.38 ± 0.03 b | 2.37 ± 0.03 b | 2.36 ± 0.03 b | 2.36 ± 0.03 a |
V | CMEO-II | 10% (0.2 mL) | 2.24 ± 0.03 | 2.27 ± 0.02 ab | 2.34 ± 0.04 b | 2.38 ± 0.04 ab | 2.37 ± 0.04 b | 2.36 ± 0.03 b | 2.35 ± 0.03 b | 2.33 ± 0.03 b | 2.32 ± 0.02 b | 2.31 ± 0.02 b | 2.30 ± 0.02 b |
VI | CMEO-II | 20% (0.2 mL) | 2.23 ± 0.02 | 2.24 ± 0.02 ab | 2.26 ± 0.02 a | 2.28 ± 0.03 a | 2.26 ± 0.03 a | 2.25 ± 0.02 a | 2.24 ± 0.02 ab | 2.24 ± 0.02 ab | 2.22 ± 0.03 a | 2.21 ± 0.02 a | 2.20 ± 0.03 a |
VII | CMEO-I | 5% (0.2 mL) | 2.28 ± 0.02 | 2.29 ± 0.02 ab | 2.37 ± 0.03 b | 2.42 ± 0.04 b | 2.41 ± 0.03 b | 2.41 ± 0.03 b | 2.41 ± 0.03 b | 2.41 ± 0.02 b | 2.41 ± 0.02 b | 2.41 ± 0.02 b | 2.40 ± 0.02 b |
VIII | CMEO-I | 10% (0.2 mL) | 2.26 ± 0.03 | 2.29 ± 0.02 ab | 2.32 ± 0.03 b | 2.36 ± 0.04 a | 2.35 ± 0.03 b | 2.35 ±0.03 b | 2.34 ± 0.02 b | 2.33 ± 0.03 b | 2.35 ± 0.03 b | 2.33 ± 0.03 b | 2.33 ± 0.03 b |
IX | CMEO-I | 20% (0.2 mL) | 2.26 ± 0.02 | 2.27 ± 0.02 ab | 2.29 ± 0.03 b | 2.31 ± 0.03 a | 2.30 ± 0.02 ab | 2.29 ± 0.02 ab | 2.27 ± 0.01 ab | 2.27 ± 0.02 ab | 2.25 ± 0.02 ab | 2.24 ± 0.02 a | 2.24 ± 0.02 ab |
X | Control | (0.2 mL) | 2.13 ± 0.02 | 2.17 ± 0.04 | 2.38 ± 0.03 | 2.52 ± 0.04 | 2.44 ± 0.02 | 2.39 ± 0.01 | 2.38 ± 0.02 | 2.38 ± 0.01 | 2.36 ± 0.01 | 2.36 ± 0.02 | 2.37 ± 0.03 |
XI | Ibuprofen | 10 mg/kg | 2.11 ± 0.02 | 2.13 ± 0.02 a | 2.19 ±0.01 a | 2.27 ± 0.01 a | 2.21 ± 0.02 a | 2.19 ± 0.01 a | 2.15 ± 0.01 a | 2.16 ± 0.01 a | 2.17 ± 0.01 a | 2.19 ± 0.01 b | 2.15 ± 0.02 a |
Group | Treatment | Doses | Writhing Counts | % Writhings | Inhibition (%) |
---|---|---|---|---|---|
I | CMLEO | 5% | 115.83 ± 8.06 ab | 83.53 | 16.47 |
II | CMLEO | 10% | 107.00 ± 4.52 ab | 77.16 | 22.84 |
III | CMLEO | 20% | 95.00 ± 9.01 ab | 69.95 | 31.49 |
IV | CMEO -II | 5% | 112.33 ± 5.28 ab | 81 | 18.99 |
V | CMEO-II | 10% | 104.33 ± 7.09 ab | 75.24 | 24.76 |
VI | CMEO-II | 20% | 85.33 ± 7.74 a | 61.53 | 38.46 |
VII | CMEO-I | 5% | 119.67 ± 7.09 ab | 86.3 | 13.7 |
VIII | CMEO-I | 10% | 111.67 ± 6.12 ab | 80.53 | 19.47 |
IX | CMEO-I | 20% | 103.00 ± 4.86 ab | 74.28 | 25.72 |
X | Control | - | 138.67 ± 5.75 | - | - |
XI | Ibuprofen | 40 mg/kg b. wt. | 77.67 ± 6.86 a | 56.01 | 43.99 |
Group | Treatment | Dose | Body Temperature (°C) | Body Temperature After Administration of Drug (°C) | % Reduction in Body Temperature | |||||
---|---|---|---|---|---|---|---|---|---|---|
Before Injection of Yeast | After 18 h of Yeast Injection | 1 h | 3 h | 24 h | 1 h | 3 h | 24 h | |||
I | CMLEO | 5% (0.2 mL) | 37.57 ± 0.05 | 38.57 ± 0.04 | 38.29 ± 0.03 b | 38.18 ± 0.04 ab | 38.13 ± 0.03 b | 28 | 39 | 44.00 |
II | CMLEO | 10% (0.2 mL) | 37.47 ± 0.03 | 38.49 ± 0.03 b | 38.15 ± 0.03 ab | 38.01 ± 0.04 ab | 37.94 ± 0.04 ab | 33.33 | 47.05 | 53.92 |
III | CMLEO | 20% (0.2 mL) | 37.56 ± 0.02 a | 38.58 ± 0.04 | 37.99 ± 0.03 ab | 37.86 ± 0.04 ab | 37.77 ± 0.05 ab | 57.84 | 70.59 | 79.41 |
IV | CMEO-II | 5% (0.2 mL) | 37.55 ± 0.03 | 38.56 ± 0.03 | 38.27 ± 0.02 b | 38.12 ± 0.03 ab | 38.08 ± 0.03 ab | 28.71 | 43.56 | 47.52 |
V | CMEO-II | 10% (0.2 mL) | 37.49 ± 0.04 | 38.51 ± 0.03 | 38.14 ± 0.04 ab | 37.97 ± 0.04 ab | 37.90 ± 0.04 ab | 36.27 | 52.94 | 59.8 |
VI | CMEO-II | 20% (0.2 mL) | 37.51 ± 0.04 | 38.55 ± 0.03 | 37.89 ± 0.04 ab | 37.73 ± 0.02 ab | 37.63 ± 0.03 a | 63.46 | 78.85 | 88.46 |
VII | CMEO-I | 5% (0.2 mL) | 37.48 ± 0.03 | 38.46 ± 0.03 b | 38.19 ± 0.03 ab | 38.12 ± 0.04 ab | 38.06 ± 0.04 ab | 27.55 | 34.69 | 40.82 |
VIII | CMEO-I | 10% (0.2 mL) | 37.52 ± 0.02 | 38.53 ± 0.03 | 38.20 ± 0.04 ab | 38.07 ± 0.04 ab | 38.00 ± 0.05 ab | 32.67 | 45.54 | 52.47 |
IX | CMEO-I | 20% (0.2 mL) | 37.49 ± 0.02 | 38.54 ± 0.02 | 37.97 ± 0.02 ab | 37.87 ± 0.02 ab | 37.76 ± 0.05 ab | 54.28 | 63.81 | 74.29 |
X | Control | (0.2 mL) | 37.46 ± 0.02 | 38.50 ± 0.03 | 38.36 ± 0.04 | 38.30 ± 0.03 | 38.22 ± 0.03 | 13.46 | 19.23 | 26.92 |
XI | Paracetamol | 33.0 mg/kg | 37.50 ± 0.03 | 38.59 ± 0.04 a | 37.75 ± 0.04 a | 37.61 ± 0.03 a | 37.54 ± 0.04 a | 77.06 | 89.91 | 96.33 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chandra, M.; Prakash, O.; Kumar, R.; Bachheti, R.K.; Bhushan, B.; Kumar, M.; Pant, A.K. β-Selinene-Rich Essential Oils from the Parts of Callicarpa macrophylla and Their Antioxidant and Pharmacological Activities. Medicines 2017, 4, 52. https://doi.org/10.3390/medicines4030052
Chandra M, Prakash O, Kumar R, Bachheti RK, Bhushan B, Kumar M, Pant AK. β-Selinene-Rich Essential Oils from the Parts of Callicarpa macrophylla and Their Antioxidant and Pharmacological Activities. Medicines. 2017; 4(3):52. https://doi.org/10.3390/medicines4030052
Chicago/Turabian StyleChandra, Mahesh, Om Prakash, Ravendra Kumar, Rakesh Kumar Bachheti, Brij Bhushan, Mahesh Kumar, and Anil Kumar Pant. 2017. "β-Selinene-Rich Essential Oils from the Parts of Callicarpa macrophylla and Their Antioxidant and Pharmacological Activities" Medicines 4, no. 3: 52. https://doi.org/10.3390/medicines4030052
APA StyleChandra, M., Prakash, O., Kumar, R., Bachheti, R. K., Bhushan, B., Kumar, M., & Pant, A. K. (2017). β-Selinene-Rich Essential Oils from the Parts of Callicarpa macrophylla and Their Antioxidant and Pharmacological Activities. Medicines, 4(3), 52. https://doi.org/10.3390/medicines4030052