Estrogen and Thyroid Hormone Receptor Activation by Medicinal Plants from Bahia, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Plant Species
2.2. Obtaining Extracts
2.3. Transformation and Purification
2.4. Human HEK Cells Cultivation
2.5. ER Reporter GeneAssay
2.6. TR Reporter Gene Assay
2.7. Statistical Analysis
3. Results and Discussion
Author Contributions
Conflicts of Interest
Funding
References
- Sonoda, J.; Pei, L.; Evans, R.M. Nuclear receptors: Decoding metabolic disease. FEBS Lett. 2008, 582, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Helsen, C.; Kerkhofs, S.; Clinckemalie, L.; Spans, L.; Laurent, M.; Boonen, S.; Vanderschueren, D.; Claessens, F. Structural basis for nuclear hormone receptor DNA binding. Mol. Cell. Endocrinol. 2012, 348, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Edwards, D.P. The Role of Coactivators and Corepressors in the Biology and Mechanism of Action of Steroid Hormone Receptors. J. Mammary Gland Biol. Neoplasia 2000, 5, 307–324. [Google Scholar] [CrossRef] [PubMed]
- Clinckemalie, L.; Vanderschueren, D.; Boonen, S.; Claessens, F. The hinge region in androgen receptor control. Mol. Cell. Endocrinol. 2012, 358, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Arnal, J.-F.; Valéra, M.-C.; Payrastre, B.; Lenfant, F.; Gourdy, P. Structure-function relationship of estrogen receptors in cardiovascular pathophysiological models. Thromb. Res. 2012, 130, S7–S11. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.; Dahlman-Wright, K.; Gustafsson, J.-A. Estrogen receptor alpha and beta in health and disease. Best Pract. Res. Clin. Endocrinol. Metab. 2015, 29, 557–568. [Google Scholar] [CrossRef] [PubMed]
- Goglia, F.; Moreno, M.; Lanni, A. Action of thyroid hormones at the cellular level: The mitochondrial target. FEBS Lett. 1999, 452, 115–120. [Google Scholar] [CrossRef]
- Pascual, A.; Aranda, A. Biochimica et Biophysica Acta Thyroid hormone receptors, cell growth and differentiation. BBA Gen. Subj. 2013, 1830, 3908–3916. [Google Scholar] [CrossRef] [PubMed]
- Flamant, F.; Baxter, J.D.; Forrest, D.; Refetoff, S.; Samuels, H.; Scanlan, T.S.; Vennstrom, B.; Samarut, J. International Union of Pharmacology. LIX. The Pharmacology and Classification of the Nuclear Receptor Superfamily: Thyroid Hormone Receptors. Pharmacol. Rev. 2006, 58, 705–711. [Google Scholar] [CrossRef] [PubMed]
- Işık, E.; Beck-Peccoz, P.; Campi, I.; Özön, A.; Alikaşifoğlu, A.; Gönç, N.; Kandemir, N. Thyroid hormone resistance: A novel mutation in thyroid hormone receptor beta (THRB) gene—Case report. Turk. J. Pediatr. 2013, 55, 322–327. [Google Scholar] [PubMed]
- Lahlou, M. The Success of Natural Products in Drug Discovery. Pharmacol. Pharm. 2013, 4, 17–31. [Google Scholar] [CrossRef]
- Rates, S.M.K. Plants as source of drugs. Toxicon 2001, 39, 603–613. [Google Scholar] [CrossRef]
- McChesney, J.D.; Venkataraman, S.K.; Henri, J.T. Plant natural products: Back to the future or into extinction? Phytochemistry 2007, 68, 2015–2022. [Google Scholar] [CrossRef] [PubMed]
- Hotamisligil, G.S. Inflammation and metabolic disorders. Nature 2006, 444, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Rani, V.; Deep, G.; Singh, R.K.; Palle, K.; Yadav, U.C.S. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sci. 2016, 148, 183–193. [Google Scholar] [CrossRef] [PubMed]
- National Institutes of Health (NIH). Available online: https://www.nhlbi.nih.gov (accessed on 10 June 2017).
- Lima, S.T.C.; Rodrigues, E.D.; Merrigan, T.L.; Melo, T.; Guedes, M.L.S.; Nascimento, A.F.; Toralles, M.B. The use of medicinal plants by an indigenous Pataxó community in NE Brazil. Rev. Bras. Plantas Med. 2012, 14, 84–91. [Google Scholar]
- Lima, S.T.C.; Rodrigues, E.D.; Melo, T.; Nascimento, A.F.; Guedes, M.L.S.; Cruz, T.; Alves, C.; Meyer, R.; Toralles, M.B. Levantamento da flora medicinal usada no tratamento de doenças metabólicas em. Rev. Bras. Plantas Med. 2008, 10, 83–89. [Google Scholar]
- Legler, J.; van den Brink, C.; Brouwer, A.; Murk, A.J.; van der Saag, P.T.; Vethaak, A.D.; van der Burg, B. Development of a Stably Transfected Estrogen Receptor-Mediated Luciferase Reporter Gene Assay in the Human T47D Breast Cancer Cell Line. Toxicol. Sci. 1999, 48, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Wei, Y.; Peng, C.; Ran, X.; Zhang, H.; Jiang, Y.; Rahman, K.; Qin, L. Establishment of a luciferase assay-based screening system for detecting estrogen receptor agonists in plant extracts. Bone 2011, 49, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Jordan, M.; Schallhorn, A.; Wurm, F.M. Transfecting mammalian cells: Optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res. 1996, 24, 596–601. [Google Scholar] [CrossRef] [PubMed]
- Vasudevan, N.; Koibuchi, N.; Chin, W.W.; Pfaff, D.W. Differential crosstalk between estrogen receptor (ER)a and ERb and the thyroid hormone receptor isoforms results in flexible regulation of the consensus ERE. Mol. Brain Res. 2001, 95, 9–17. [Google Scholar] [CrossRef]
- Gullo, V.P.; McAlpine, J.; Lam, K.S.; Baker, D.; Petersen, F. Drug discovery from natural products. J. Ind. Microbiol. Biotechnol. 2006, 33, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Agra, M.D.F.; de Freitas, P.F.; Barbosa-Filho, J.M. Synopsis of the plants known as medicinal and poisonous in Northeast of Brazil. Brazilian J. Pharmacogn. 2007, 17, 114–140. [Google Scholar] [CrossRef]
- Ong, V.Y.C.; Tan, B.K.H. Novel phytoandrogens and lipidic augmenters from Eucommia ulmoides. BMC Complement. Altern. Med. 2007, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burris, T.P.; Montrose, C.; Houck, K.A.; Osborne, H.E.; Bocchinfuso, W.P.; Yaden, B.C.; Cheng, C.C.; Zink, R.W.; Barr, R.J.; Hepler, C.D.; et al. The Hypolipidemic Natural Product Guggulsterone Is a Promiscuous Steroid Receptor Ligand. Mol. Pharmacol. 2005, 67, 948–954. [Google Scholar] [CrossRef] [PubMed]
- He, Y.-Q.; Ma, G.-Y.; Peng, J.; Ma, Z.-Y.; Hamann, M.T. Biochimica et Biophysica Acta Liver X receptor and peroxisome proliferator-activated receptor agonist from Cornus alternifolia. Biochim. Biophys. Acta 2012, 1820, 1021–1026. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Burdette, J.E.; Xu, H.; Gu, C.; van Breemen, R.B.; Bhat, K.P.L.; Booth, N.; Constantinou, A.I.; Pezzuto, J.M.; Fong, H.H.S.; et al. Evaluation of Estrogenic Activity of Plant Extracts for the Potential Treatment of Menopausal Symptoms. J. Agric. Food Chem. 2001, 49, 2472–2479. [Google Scholar] [CrossRef] [PubMed]
- Duker-Eshun, G.; Jaroszewski, J.W.; Asomaning, W.A.; Oppong-Boachie, F.; Christensen, S.B. Antiplasmodial constituents of Cajanus cajan. Phyther. Res. 2004, 18, 128–130. [Google Scholar] [CrossRef] [PubMed]
- Vieira, I.J.C.; Mathias, L.; Braz-Filho, R.; Schripsema, J. Iridoids from Borreria verticillata. Org. Lett. 1999, 1, 1169–1171. [Google Scholar] [CrossRef]
- Moreira, F.; Oliveira, R.R.; Mathias, L.; Braz-filho, R.; Vieira, I.J.C.V. New Chemical Constituents from Borreria verticillata (Rubiaceae). Helv. Chim. Acta 2010, 93, 1751–1757. [Google Scholar] [CrossRef]
- Wang, H.; Li, M.-C.; Yang, J.; Yang, D.; Su, Y.-F.; Fan, G.-W.; Zhu, Y.; Gao, X.-M.; Paoletti, R. Estrogenic properties of six compounds derived from Eucommia ulmoides Oliv. and their differing biological activity through estrogen receptors a and b. Food Chem. 2011, 129, 408–416. [Google Scholar] [CrossRef]
- Lin, F.-M.; Chen, L.-R.; Lin, E.-H.; Ke, F.-C.; Chen, H.-Y.; Tsai, M.-J.; Hsiao, P.-W. Compounds from Wedelia chinensis synergistically suppress androgen activity and growth in prostate cancer cells. Carcinogenesis 2007, 28, 2521–2529. [Google Scholar] [CrossRef] [PubMed]
Code | Species | Family | Voucher n° (ALCB) | Vernacular Name | Indication | Part Used |
---|---|---|---|---|---|---|
E1 | Cissus verticilata L. | Vitaceae | 102,060 | Insulina | hypertension, diabetes | leaf |
E2 | Syzygium cumini (L.) Skeels | Myrtaceae | 76,156 | Jamelão | obesity, diabetes | leaf |
E3 | Bidens pilosa L. | Asteraceae | 23,464 | Picão, Carrapixo | diabetes, menstrual disorders | whole plant |
E4 | Petiveria alliaceae L. | Phytolaccaceae | 123,358 | Guine | diabetes | leaf |
E5 | Cajanus cajan (L.) Millsp | Fabaceae | 76,098 | Feijão Guandu | diabetes | leaf, flower |
E6 | Rosmarinus officinalis L. | Lamiaceae | 76,128 | Alecrim do Reino | metabolic syndrome, human fertility | leaf |
E7 | Croton heliotropiifolius Kunth | Euphorbiaceae | 108,456 | Caçutinga | diabetes, Alzheimer, Parkinson | flowers and leaf |
E8 | Sambucus australis Cham. | Caprifoliaceae | 76,145 | Sabugueiro | abdominal adiposity; obesity | stem, flowers |
E9 | Senna angulata (Vogel) | Fabaceae | 12,375 * | Sene | obesity | bark, seed |
E10 | Psidium guajava Raddi | Myrtaceae | 78,144 | Goiabeira | diabetes | leaf, buds |
E11 | Maytenus ilicifolia (Schrad.) | Celastraceae | 92,411 | Espinheira-Santa | obesity | leaf |
E12 | Baccharis trimera (Less.) DC | Asteraceae | 76,132 | Carqueja | obesity, diabetes | aerial parts |
E13 | Cinchona officinalis L. | Rubiaceae | 12,010 | Quina-Quina | cholesterol disorders, obesity | leaf |
E14 | Cinnamomum zeylanicum Blume | Lauraceae | 76,099 | Canela | cardiopathies, diabetes | bark |
E15 | Alpinia nutans Roscoe | Zingiberaceae | 76,123 | Levante | metabolic disorders | leaf, rhizome |
E16 | Peperomia pellucida (DC.) H.B.K. | Piperaceae | 78,145 | Alfavaca-de-cobra | cholesterol disorders, obesity, diabetes | leaf, seed |
E17 | Plantago major (L.) | Plantaginaceae | 95,608 | Trancagem | diabetes | leaf and seeds |
E18 | Abarema cochliacarpus (Gomes) Barneby & J.W. Grimes | Fabaceae | 76,158 | Barbatimão | obesity, diabetes | whole plant |
E19 | Byrsonima sericea DC. | Malpighiaceae | 78,150 | Murici | obesity | leaf |
E20 | Borreria verticillata (L.) G. Mey. | Rubiaceae | 76,113 | Tiririca de Babado | obesity, diabetes, fever and flu | leaf |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reis, L.T.C.; Da Silva, M.R.D.; Costa, S.L.; Velozo, E.D.S.; Batista, R.; Da Cunha Lima, S.T. Estrogen and Thyroid Hormone Receptor Activation by Medicinal Plants from Bahia, Brazil. Medicines 2018, 5, 8. https://doi.org/10.3390/medicines5010008
Reis LTC, Da Silva MRD, Costa SL, Velozo EDS, Batista R, Da Cunha Lima ST. Estrogen and Thyroid Hormone Receptor Activation by Medicinal Plants from Bahia, Brazil. Medicines. 2018; 5(1):8. https://doi.org/10.3390/medicines5010008
Chicago/Turabian StyleReis, Luã Tainã Costa, Magnus Régios Dias Da Silva, Silvia Lima Costa, Eudes Da Silva Velozo, Ronan Batista, and Suzana Telles Da Cunha Lima. 2018. "Estrogen and Thyroid Hormone Receptor Activation by Medicinal Plants from Bahia, Brazil" Medicines 5, no. 1: 8. https://doi.org/10.3390/medicines5010008
APA StyleReis, L. T. C., Da Silva, M. R. D., Costa, S. L., Velozo, E. D. S., Batista, R., & Da Cunha Lima, S. T. (2018). Estrogen and Thyroid Hormone Receptor Activation by Medicinal Plants from Bahia, Brazil. Medicines, 5(1), 8. https://doi.org/10.3390/medicines5010008