Antioxidant Activity of Myrtus communis L. and Myrtus nivellei Batt. & Trab. Extracts: A Brief Review
Abstract
:1. Introduction
2. Myrtus communis: Berries
2.1. Myrtle Liqueur
2.2. Antioxidant Activity of Berry Extracts
2.3. Anti-Inflammatory Activity of Berry Extracts
2.4. Antioxidant Activity of Berry Foods
3. Myrtus communis: Leaves
3.1. Antioxidant Activity
3.2. Comparison of Antioxidant Activity of Myrtle Leaves with Other Plant Species
3.3. Effect of Extraction Method and Extraction Solvent on the Antioxidant Activity of Myrtle Leaves
3.4. Acylphloroglucinols on the Antioxidant Activity of Myrtle Leaves
3.5. Complexity of Myrtle Extracts on the Antioxidant Activity
3.6. Antioxidant Activity of the Leaf Foods
3.7. Anti-Inflammatory Activity of Leaf Extracts
4. Myrtus nivellei
5. Conclusions
Funding
Conflicts of Interest
References
- Migliore, J.; Baumel, A.; Juin, M.; Médail, F. From Mediterranean shores to central Saharan mountains: Key phylogeographical insights from the genus Myrtus. J. Biogeogr. 2012, 39, 942–956. [Google Scholar] [CrossRef]
- Thornhill, A.H.; Ho, S.Y.W.; Külheim, C.; Crisp, M.D. Interpreting the modern distribution of Myrtaceae using a dated molecular phylogeny. Mol. Phylogenet. Evol. 2015, 93, 29–43. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, T.N.C.; Proença, C.E.B.; Ahmad, B.; Aguilar, D.S.; Aguilar, R.; Amorim, B.S.; Campbell, K.; Costa, I.R.; de Carvalho, P.S.; Faria, J.E.Q.; et al. Myrteae phylogeny, calibration, biogeography and diversification patterns: Increased understanding in the most species rich tribe of Myrtaceae. Mol. Phylogenet. Evol. 2017, 109, 113–137. [Google Scholar] [CrossRef] [PubMed]
- Alipour, G.; Dashti, S.; Hosseinzadeh, H. Review of pharmacological effects of Myrtus communis L. and its active constituents. Phytother. Res. 2014, 28, 1125–1136. [Google Scholar] [CrossRef] [PubMed]
- Bouzabata, A.; Casanova, J.; Bighelli, A.; Cavaleiro, C.; Salgueiro, L.; Tomi, F. The genus Myrtus L. in Algeria: Composition and biological aspects of essential oils from M. communis and M. nivellei: A review. Chem. Biodivers. 2016, 13, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Melito, S.; la Bella, S.; Martinelli, F.; Cammalleri, I.; Tuttolomondo, T.; Leto, C.; Fadda, A.; Molinu, M.G.; Mulas, M. Morphological, chemical, and genetic diversity of wild myrtle (Myrtus communis L.) populations in Sicily. Turk. J. Agric. For. 2016, 40, 249–261. [Google Scholar] [CrossRef]
- Mobli, M.; Qaraaty, M.; Amin, G.; Haririan, I.; Hajimahmoodi, M.; Rahimi, R. Scientific evolution of medicinal plants used for the treatment of abnormal uterine bleeding by Avicenna. Arch. Gynecol. Obstet. 2015, 292, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Mulas, M.; Cani, M.R. Germaplasm evaluation of spontaneous myrtle (Myrtus communis L.) for cultivar selection and crop development. J. Herbs Spices Med. Plants 1999, 63, 31–49. [Google Scholar] [CrossRef]
- Hajiaghaee, R.; Faizi, M.; Shahmohammadi, Z.; Abdollahnejad, F.; Naghdibadi, H.; Najafi, F.; Razmi, A. Hydroalcoholic extract of Myrtus communis can alter anxiety and sleep parameters: A behavioural and EEG sleep pattern study in mice and rats. Pharm. Biol. 2016, 54, 2141–2148. [Google Scholar] [CrossRef] [PubMed]
- Sisay, M.; Gashaw, T. Ethnobotanical, ethnopharmacological, and phytochemical studies of Myrtus communis Linn: A popular herb in Unani system of medicine. J. Evid. Based Complement. Altern. Med. 2017, 22, 1035–1043. [Google Scholar] [CrossRef] [PubMed]
- Mahboubi, M. Effectiveness of Myrtus communis in the treatment of hemorrhoids. J. Integr. Med. 2017, 15, 351–358. [Google Scholar] [CrossRef]
- Rahimi, R.; Abdollahi, M. Evidence-based review of medicinal plants used for the treatment of hemorrhoids. Int. J. Pharmacol. 2013, 9, 1–11. [Google Scholar]
- Safavi, M.; Shams-Ardakani, M.; Foroumadi, A. Medicinal plants in the treatment of Helicobacter pylori infections. Pharm. Biol. 2015, 53, 939–960. [Google Scholar] [CrossRef] [PubMed]
- Fadda, A.; Palma, A.; d’Aquino, S.; Mulas, M. Effects of myrtle (Myrtus communis L.) fruit cold storage under modified atmosphere on liqueur quality. J. Food Process. Preserv. 2017, 41, e12776. [Google Scholar] [CrossRef]
- Montoro, P.; Tuberoso, C.L.; Piacente, S.; Perrone, A. Stability and antioxidant activity of polyphenols in extracts of Myrtus communis L. berries used for the preparation of myrtle liqueur. J. Pharm. Biomed. Anal. 2006, 41, 1614–1619. [Google Scholar] [CrossRef] [PubMed]
- Bouzabata, A.; Bazzali, O.; Cabral, C.; Gonçalves, M.J.; Cruz, M.T.; Bighelli, A.; Cavaleiro, C.; Casanova, J.; Salgueiro, L.; Tomi, F. New compounds, chemical composition, antifungal activity and cytotoxicity of the essential oil from Myrtus nivellei Batt. & Trab., an endemic species of Central Sahara. J. Ethnopharmacol. 2013, 149, 613–620. [Google Scholar] [PubMed]
- Hammiche, V.; Maiza, K. Traditional medicine in Central Sahara: Pharmacopoeia of Tassili N’ajjer. J. Ethnopharmacol. 2006, 105, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Sahki, A.; Boutamine Sahki, R. Le Hoggar: Promenade botanique; Editions Esope: Lyon, France, 2004. [Google Scholar]
- Touaibia, M.; Chaouch, F.Z. Proprietés antioxydantes et antimicrobiennes des extraits de Myrtus nivellei Batt et Trab. obtenus in situ et in vitro. Phytothér. 2017, 15, 16–22. [Google Scholar] [CrossRef]
- Mansour, A.; Celano, R.; Mencherini, T.; Picerno, P.; Piccinelli, A.L.; Foudil-Cherif, Y.; Csupor, D.; Rahili, G.; Yahi, N.; Nabavi, S.M.; et al. A new cineol derivative, polyphenols and norterpenoids from Saharan myrtle tea (Myrtus nivellei): Isolation, structure determination, quantitative determination and antioxidant activity. Fitoterapia 2017, 119, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Touaibia, M.; Chaouch, F.Z. Composition de l’huile essentielle et des extraits alcoholiques de l’espèce Saharo-endemique Myrtus nivellei Batt et Trab (Myrtaceae). Rev. Bioressour. 2014, 4, 13–20. [Google Scholar] [CrossRef]
- Rached, W.; Bennaceur, M.; Barros, L.; Calhelha, R.C.; Heleno, S.; Alves, M.J.; Carvalho, A.M.; Marouf, A.; Ferreira, I.C.F.R. Detailed phytochemical characterization and bioactive properties of Myrtus nivelli Batt & Trab. Food Funct. 2017, 20, 3111–3119. [Google Scholar]
- Masoudi, M.; Kopaei, M.R.; Miraj, S. A comparison of the efficacy of metronidazole vaginal gel and Myrtus (Myrtus communis) extract combination and metronidazole vaginal gel alone in the treatment of recurrent bacterial vaginosis. Avicenna J. Phytomed. 2017, 7, 129–136. [Google Scholar] [PubMed]
- Feuillolay, C.; Pecastaings, S.; le Gac, C.; Fiorini-Puybaret, C.; Luc, J.; Joulia, P.; Roques, C. A Myrtus communis extract enriched in myrtucummulones and ursolic acid reduces resistance of Propionibacterium acnes biofilms to antibiotics used in acne vulgaris. Phytomedicine 2016, 23, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Amensour, M.; Bouhdid, S.; Fernández-López, J.; Senhaji, N.S.; Abrini, J. Antibacterial activity of extracts of Myrtus communis against foodborne pathogenic and spoilage bacteria. Int. J. Food Prop. 2010, 13, 1215–1224. [Google Scholar] [CrossRef]
- Saeide, S.; Boroujeni, N.A.; Ahmadi, H.; Hassanshahian, M. Antibacterial activity of some plant extracts against extended-spectrum beta-lactamase producing Escherichia coli isolates. Jundishapur J. Microbiol. 2015, 8, e15434. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, S.; Foroumadi, A.; Ghaneie, T.; Najar, A.G. Antibacterial activity of the crude extracts and fractionated constituents of Myrtus communis. Pharm. Biol. 2001, 39, 399–401. [Google Scholar] [CrossRef]
- Al Laham, S.A.; Al Fadel, F.M. Antibacterial activity of various plants extracts against antibiotic-resistant Aeromonas hydrophila. Jundishapur J. Microbiol. 2014, 7, 211370. [Google Scholar] [CrossRef] [PubMed]
- Eslami, G.; Hashemi, A.; Yazdi, M.M.K.; Benvidi, M.E.; Rad, P.K.; Moradi, S.L.; Fallah, F.; Dadashi, M. Antibacterial effects of Zataria multiflora, Ziziphus, chamolime and Myrtus communis methanolic extracts on IMP-type metallo-beta-lactamase-producing Pseudomonas aeruginosa. Arch. Clin. Infect. Dis. 2016, 11, e32413. [Google Scholar] [CrossRef]
- Appendino, G.; Maxia, L.; Bettoni, P.; Locatelli, M.; Valdivia, C.; Ballero, M.; Stavri, M.; Gibbons, S.; Sterner, O. Antibacterial galloyllated alkylphloroglucinol glucosides from myrtle (Myrtus communis). J. Nat. Prod. 2006, 69, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Bonjar, G.H.S. Antibacterial screening of plants used in Iranian folkloric medicine. Fitoterapia 2004, 75, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Jabri, M.-A.; Tounsi, H.; Rtibi, K.; Ben-Said, A.; Aouadhi, C.; Hosni, K.; Sakly, M.; Sebai, H. Antidiarrhoeal, antimicrobial and antioxidant effects of myrtle berries (Myrtus communis L.) seeds extract. J. Pharm. Pharmacol. 2016, 68, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Abdoli, A.; Borazjani, J.M.; Roohi, P. Antimicrobial activity of aqueous and ethanolic extracts of Heracleum persicum, Myrtus and Lemon verbena against Streptococcus mutans. Biosci. Biotechnol. Res. Commun. 2017, 10, 205–212. [Google Scholar]
- Pirbalouti, A.G.; Jahanbazi, P.; Enteshari, S.; Malekpoor, F.M.; Hamedi, B. Antimicrobial activity of some Iranian medicinal plants. Arch. Biol. Belgrade 2010, 62, 633–642. [Google Scholar]
- Mothana, R.A.A.; Kriegisch, S.; Harms, M.; Wende, K.; Lindequist, U. Assessement of selected Yemeni medicinal plants for their in vitro antimicrobial, anticancer, and antioxidant activities. Pharm. Bull. 2011, 49, 200–210. [Google Scholar]
- Salvagnini, L.E.; Oliveira, J.R.S.; dos Santos, L.E.; Moreira, R.R.D.; Pietro, R.C.F.R. Avaliação da atividade antibacteriana de folhas de Myrtus communis L: (Myrtaceae). Braz. J. Pharmacogn. 2008, 18, 241–244. [Google Scholar] [CrossRef]
- Cottiglia, F.; Casu, L.; Leonti, M.; Caboni, P.; Floris, C.; Busonera, B.; Farci, P.; Ouhtit, A.; Sanna, G. Cytotoxic phloroglucinols from the leaves of Myrtus communis. J. Nat. Prod. 2012, 75, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Nourzadeh, M.; Amini, A.; Fakoor, F.; Raoof, M.; Sharififar, F. Comparative antimicrobial efficacy of Eucalyptus galbie and Myrtus communis L. extracts, chlorhexidine and sodium hypochlorite against Enterococcus faecalis. Iran. Endod. J. 2017, 12, 205–210. [Google Scholar] [PubMed]
- Masoudi, M.; Miraj, S.; Rafieian-Kopaei, M. Comparison of the effects of Myrtus communis L., Berberis vulgaris and metronidazole vaginal gel alone for the treatment of bacterial vaginosis. J. Clin. Diagn. Res. 2016, 10, QC04–QC07. [Google Scholar] [CrossRef] [PubMed]
- Al-Saimary, I.E.; Bakr, S.S.; Jaffar, T.; Al-Saimary, A.E.; Salim, H.; Al-Muosawi, R. Effects of some plant extracts and antibiotics on Pseudomonas aeruginosa isolated from various burn cases. Saudi Med. J. 2002, 23, 802–805. [Google Scholar] [PubMed]
- Mehrabani, M.; Kazemi, A.; Mousavi, S.A.A.; Rezaifar, M.; Alikhah, H.; Nosky, A. Evaluation of antifungal activities of Myrtus communis L. by bioautography method. Jundishapur J. Microbiol. 2013, 6, e8316. [Google Scholar] [CrossRef]
- Mousavi, S.A.A.; Kazemi, A. In vitro and in vivo antidermatophytic activities of some Iranian medicinal plants. Med. Mycol. 2015, 53, 852–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Mariri, A.; Safi, M. In vitro antibacterial activity of several plant extracts and oils against some Gram-negative bacteria. Iran. J. Med. Sci. 2014, 39, 36–43. [Google Scholar] [PubMed]
- Atapour, M.; Zahedi, M.J.; Mehrabani, M.; Safavi, M.; Keyvanfard, V.; Foroughi, A.; Siavoshi, F.; Foroumadi, A. In vitro susceptibility of the Gram-negative bacterium Helicobacter pylori to extracts of Iranian medicinal plants. Pharm. Biol. 2009, 47, 77–80. [Google Scholar] [CrossRef]
- Mansouri, S. Inhibition of Staphylococcus aureus mediated by extracts of Iranian plants. Pharm. Biol. 1999, 37, 375–377. [Google Scholar] [CrossRef]
- Hamdy, A.A.; Kassem, H.A.; Awad, G.E.A.; El-Kady, S.M.; Benito, M.T.; Doyagüez, E.G.; Jimeno, M.L.; Lall, N.; Hussein, A.A. In-vitro evaluation of certain Egyptian traditional medicinal plants against Propionibacterium acnes. S. Afr. J. Bot. 2017, 109, 90–95. [Google Scholar] [CrossRef]
- Rotstein, A.; Lifshitz, A.; Kashman, Y. Isolation and antibacterial activity of acylphloroglucinols from Myrtus communis. Antimicrob. Agents Chemother. 1974, 6, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Nabati, F.; Majob, F.; Habibi-Rezaei, M.; Bagherzadeh, K.; Amanlou, M.; Yousefi, B. Large scale screening of commonly used Iranian traditional medicnal plants against urease activity. DARU J. Pharm. Sci. 2012, 20, 72. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Chen, L.-F.; Li, M.-M.; Li, N.-P.; Cao, J.-Q.; Wang, Y.; Li, Y.-L.; Wang, L.; Ye, W.-C. Myrtucomvalones A–C, three unsual triketone-sesquiterpene adducts from the leaves of Myrtus communis ‘Variegata’. RSC Adv. 2017, 7, 22735. [Google Scholar] [CrossRef]
- Shaheen, F.; Ahmad, M.; Khan, S.N.; Hussain, S.S.; Anjum, S.; Tashkhodjaev, B.; Turgunov, K.; Sultankhodzhaev, M.N.; Choudhary, M.I. Atta-ur-Rahman New α-glucosidase inhibitors and antibacterial compounds from Myrtus communis L. Eur. J. Org. Chem. 2006, 2006, 2371–2377. [Google Scholar] [CrossRef]
- Appendino, G.; Bianchi, F.; Minassi, A.; Sterner, O.; Ballero, M.; Gibbons, S. Oligomeric acylphloroglucinols from myrtle (Myrtus communis). J. Nat. Prod. 2002, 65, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, N.; Jia, Y.; Niwa, K.; Imabayashi, K.; Tatano, Y.; Yagi, H.; Kashiwada, Y. Phloroglucinol derivatives and a chromone glucoside from the leaves of Myrtus communis. Tetrahedron 2018, 74, 117–123. [Google Scholar] [CrossRef]
- Ajdari, M.R.; Tondro, G.H.; Sattarahmady, N.; Parsa, A.; Heli, H. Phytosynthesis of silver nanoparticles using Myrtus communis L. leaf extract and invesrigation of bactericidal activity. J. Electron. Mater. 2017, 46, 6930–6935. [Google Scholar] [CrossRef]
- Gortzi, O.; Lalas, S.; Chinou, I.; Tsaknis, J. Reevaluation of bioactivity and antioxidant activity of Myrtus communis extract before and after encapsulation in liposomes. Eur. Food Res. Technol. 2008, 226, 583–590. [Google Scholar] [CrossRef]
- Mahmoudvand, H.; Ezzatkhah, F.; Sharififar, F.; Sharifi, I.; Dezaki, E.S. Antileishmanial and cytotoxic effects of essential oil nd methanolic extract of Myrtus communis L. Korean J. Parasitol. 2015, 53, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Sangian, H.; Faramarzi, H.; Yazdinezhad, A.; Mousavi, S.J.; Zamani, Z.; Noubarani, M.; Ramazani, A. Antiplasmodial activity of ethanolic extracts of some selected medicinal plants from the northwest of Iran. Parasitol. Res. 2013, 112, 3697–3701. [Google Scholar] [CrossRef] [PubMed]
- Shahnazi, M.; Azadmehr, A.; Jondabeh, M.D.; Hajiaghaee, R.; Norian, R.; Aghaei, H.; Saraei, M.; Alipour, M. Evaluating the effect of Myrtus communis on programmed cell death in hydatid cyst protoscolices. Asian Pac. J. Trop. Med. 2017, 10, 1072–1076. [Google Scholar] [CrossRef] [PubMed]
- Naghibi, F.; Esmaeili, S.; Abdullah, N.R.; Nateghpour, M.; Taghvai, M.; Kamkar, S.; Mosaddegh, M. In vitro and in vivo antimalarial evaluations of myrtle extract, a plant traditionally used for treatment of parasitic disorders. BioMed Res. Int. 2013, 316185. [Google Scholar] [CrossRef]
- Grandjenette, C.; Schnekenburger, M.; Morceau, F.; Mack, F.; Wiechmann, K.; Werz, O.; Dicato, M.; Diederich, M. Dual induction of mitochondrial apoptosis and senescence in chronic myelogenous leukemia by myrtucommulone. Anti-Cancer Agent Med. Chem. 2015, 15, 363–373. [Google Scholar] [CrossRef]
- Bouyahya, A.; Bakri, Y.; Et-Touys, A.; Assemian, I.C.C.; Abrini, J.; Dakka, N. In vitro antiproliferative activity of selected medicinal plants from the North-West of Morocco on several cancer cell lines. Eur. J. Integr. Med. 2018, 18, 23–29. [Google Scholar] [CrossRef]
- Wiechmann, K.; Müller, H.; König, S.; Wielsch, N.; Svatoš, A.; Jauch, J.; Werz, O. Mitochondrial chaperonin HSP60 is the apoptosis-related target for myrtucommulone. Cell Chem. Biol. 2017, 24, 614–623. [Google Scholar] [CrossRef] [PubMed]
- Tretiakova, I.; Blaaesius, D.; Maxia, L.; Wesselborg, S.; Schulze-Osthoff, K.; Cinalt, J., Jr.; Michaelis, M.; Werz, O. Myrtucommulone from Myrtus communis induces apoptosis in cancer cells via the mitochondrial pathway involving caspase-9. Apoptosis 2008, 13, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Izgi, K.; Iskender, B.; Jauch, J.; Sezen, S.; Cakir, M.; Charpentier, H.; Canatan, H.; Sakalar, C. Myrtucommulone-A induces both extrinsic and intrinsic apoptotic pathways in cancer cells. J. Biochem. Mol. Toxicol. 2015, 29, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Hayder, N.; Bouhlel, I.; Skandrani, I.; Kadri, M.; Steiman, R.; Guiraud, P.; Mariotte, A.-M.; Chedira, K.; Dijoux-Franca, M.-G.; Chekir-Ghedira, L. In vitro antioxidant and antigenotoxic potentials of myricetin-3-O-galactoside and myricetin-3-O-rhamnoside from Myrtus communis: Modulation of expression of genes involved in cell defence system using cDNA microarray. Toxicol. In Vitro 2008, 22, 567–581. [Google Scholar] [CrossRef] [PubMed]
- Ines, S.; Ines, B.; Wissem, B.; Mohamed, B.S.; Nawel, H.; Dijoux-Franca, M.-G.; Kamel, G.; Leïla, C.-G. In vitro antioxidant and antigenotoxic potentials of 3,5-O-di-galloylquinic acid extracted from Myrtus communis leaves and modulation of cell gene expression by H2O2. J. Appl. Toxicol. 2012, 32, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Hayder, N.; Abdelwahed, A.; Kilani, S.; Ben Ammar, R.; Mahmoud, A.; Ghedira, K.; Chekir-Ghedira, L. Anti-genotoxic and free-radical scavenging activities of extracts from (Tunisina) Myrtus communis. Mutat. Res. 2004, 564, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Hayder, N.; Skandrani, I.; Kilani, S.; Bouhlel, I.; Abdelwahed, A.; Ammar, R.B.; Mahmoud, A.; Ghedira, K.; Chekir-Ghedira, L. Antimutagenic activity of Myrtus communis L. using the Salmomella microsome assay. S. Afr. J. Bot. 2008, 74, 121–125. [Google Scholar] [CrossRef]
- Hayder, N.; Kilani, S.; Abdelwahed, A.; Mahmoud, A.; Meftahi, K.; Chibani, J.B.; Ghedira, K.; Chekir-Ghedira, L. Antimutagenic activity of aqueous extracts and essential oil isolated from Myrtus communis. Pharmazie 2003, 58, 523–524. [Google Scholar] [PubMed]
- Sisay, M.; Engidawork, E.; Shibeshi, W. Evaluation of the antidiarrheal activity of the leaf extracts of Myrtus communis Linn (Myrtaceae) in mice model. BMC Complement. Antern. Med. 2017, 17, 103. [Google Scholar] [CrossRef] [PubMed]
- Sumbul, S.; Ahmad, M.A.; Asif, M.; Saud, I.; Aktar, M. Evaluation of Myrtus communis Linn. berries (common myrtle) in experimental ulcer models in rats. Hum. Exp. Toxicol. 2010, 29, 935–944. [Google Scholar] [CrossRef] [PubMed]
- Hashemipour, M.A.; Lofti, S.; Torabi, M.; Sharifi, F.; Ansari, M.; Ghassemi, A.; Sheikhshoaie, S. Evaluation of the effects of three plant species (Myrtus communis L., Camellia sinensis L., Zataria multiflora Boiss.) on the healing process of intraoral ulcers in rats. J. Dent. Shiraz Univ. Med. Sci. 2017, 18, 127–135. [Google Scholar]
- Jabri, M.-A.; Rtibi, K.; Tounsi, H.; Hosni, K.; Marzouki, L.; Sakly, M.; Sebai, H. Fatty acids composition and mechanism of protective effects of myrtle berries seeds aqueous extract against alcohol-induced peptic ulcer in rat. Can. J. Physiol. Pharmacol. 2017, 95, 510–521. [Google Scholar] [CrossRef] [PubMed]
- Jabri, M.-A.; Rtibi, K.; Tounsi, H.; Hosni, K.; Souli, A.; El-Benna, J.; Marzouki, L.; Sakly, M.; Sebai, H. Myrtle berries seeds aqueous extract inhibits in vitro human neutrophils myeloperoxidase and attenuates acetic acid-induced ulcerative colitis in rat. RSC Adv. 2015. [Google Scholar] [CrossRef]
- Sen, A.; Yuksel, M.; Bulut, G.; Bitis, L.; Ercan, F.; Ozyilmaz-Yay, N.; Akbulut, O.; Cobanoğlu, H.; Ozkan, S.; Sener, G. Therapeutic potential of Myrtus communis subsp. communis extract against acetic acid-induced colonic inflammation in rats. J. Food Biochem. 2017, 41, e12297. [Google Scholar] [CrossRef]
- Sen, A.; Ozkan, S.; Recebova, K.; Cevik, O.; Ercan, F.; Demirci, E.K.; Bitis, L.; Sener, G. Effects of Myrtus communis extract treatment in bile duct ligated rats. J. Surg. Res. 2016, 205, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Zohalinezhad, M.E.; Hossini-Asl, M.K.; Akrami, R.; Nimrouzi, M.; Salehi, A.; Zarshenas, M.M. Myrtus communis L. freeze-dried aqueous extract versus omeprazol in gastrointestinal reflux disease: A double-blind randomized controlled clinical trial. J. Evid. Based Complement. Altern. Med. 2016, 21, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Salehi, M.; Azizkhani, M.; Mobli, M.; Shakeri, R.; Saberi-Firoozi, M.; Rahimi, R.; Karimi, M. The effect of Myetus communis L. syrup in reducing the recurrence of gastroesophageal reflux disease: A double-blind randomized controlled trial. Iran. Red Crescent Med. J. 2017. [Google Scholar] [CrossRef]
- Babaee, N.; Mansourian, A.; Momen-Heravi, F.; Moghadamnia, A.; Momen-Beitollahi, J. The efficacy of a paste containing Myrtus communis (myrtle) in the management of recurrent aphthous stomatitis: A randomized controlled trial. Clin. Oral Investig. 2010, 14, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Mortazavi, H.; Namazi, F.; Badiei, M.-R.; Mahin, B. Evaluation of therapeutic effects of adcortyl and Myrtus communis (myrtle) in patients with recurrent aphthous stomatitis: A clinical trial study. HealthMed 2012, 6, 1693–1698. [Google Scholar]
- Safari, R.; Hoseinifar, S.H.; van Doan, H.; Dadar, M. The effects of dietary myrtle (Myrtus communis) on skin mucus immune parameters and mRNA levels of growth, antioxidant and immune related genes in zebrafish (Danio rerio). Fish Sellfish Immunol. 2017, 66, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Janbaz, K.H.; Nisa, M.; Saqib, F.; Imran, I.; Zia-Ul-Haq, M.; de Feo, V. Bronchodilator, vasodilator and spasmolytic activities of methanolic extract of Myrtus communis. J. Physiol. Pharmacol. 2013, 64, 479–484. [Google Scholar] [PubMed]
- Gholamhoseinian, A.; Shahouzehi, B.; Sharifi-Far, F. Inhibitory activity of some plant methanol extracts on 3-hydroxy-3-methylglutaryl coenzyme A reductase. Int. J. Pharmacol. 2010, 6, 705–711. [Google Scholar]
- Ahmed, A.H. Flavonoid content and antiobesity activity of leaves of Myrtus communis. Asian J. Chem. 2013, 25, 6818–6822. [Google Scholar]
- Elfellah, M.S.; Akhter, M.H.; Khan, M.T. Anti-hyperglycaemic effect of an extract of Myrtus communis in streptozotocin-induced diabetes in mice. J. Ethnopharmacol. 1984, 11, 275–281. [Google Scholar] [CrossRef]
- Baz, H.; Gulaboglu, M.; Gozcu, L.; Demir, M.; Canayakin, D.; Suleyman, H.; Halici, Z.; Baygutalp, K. Effects of aqueous extract of Myrtus communis L. leaves on streptozotocin-induced diabetic rats. J. Res. Med. Dent. Sci. 2016, 4, 214–218. [Google Scholar]
- Önal, S.; Timur, S.; Okutucu, B.; Zihnioğlu, F. Inhibition of α-glucosidase by aqueous extracts of some potent antidiabetic medicinal herbs. Prep. Biochem. Biotechnol. 2005, 35, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Ozkol, H.; Tuluce, Y.; Dilsiz, N.; Koyuncu, I. Therapeutic potential of some plant extracts used in Turkish traditional medicine on streptozocin-induced type 1 diabetes mellitus in rats. J. Membr. Biol. 2013, 246, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Abrishamkar, M.; Kamalinejad, M.; Jafari, R.; Chaibakhsh, S.; Karimi, M.; Ghorbani, J.; Jafari, Z.; Emtiazy, M. Effect of Myrtus communis L. syrup on chronic rhinosinusitis: A randomized double-blind, placebo-controlled pilot study. Iran. Red Crescent Med. J. 2017, 19, e57511. [Google Scholar] [CrossRef]
- Fekri, M.S.; Mandegary, A.; Sharififar, F.; Poursalehi, H.R.; Nematollahi, M.H.; Izadi, A.; Mehdipour, M.; Asadi, A.; Fekri, M.S. Protective effect of standardized extract of Myrtus communis L. (myrtle) on experimentally bleomycin-induced pulmonary fibrosis: Biochemical and histopathological study. Drug Chem. Toxicol. 2018, 11, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Begum, S.; Ali, M.; Gul, H.; Ahmad, W.; Alam, S.; Khan, M. In vitro enzyme inhibition activities of Myrtus communis L. Afr. J. Pharm. Pharmacol. 2012, 6, 1083–1087. [Google Scholar]
- Hosseinzadeh, H.; Khoshdel, M.; Ghorbani, M. Antinociceptive, anti-inflammatory effects and acute toxicity of aqueous and ethanolic extracts of Myrtus communis L. aerial parts in mice. J. Acupunct. Meridian Stud. 2011, 4, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Minaei, M.B.; Yazdi, E.G.; Ardakani, M.E.Z.; Dabaghian, F.H.; Ranjbar, A.M.; Yazdi, A.G. First case report: Treatment of the facial warts by using Myrtus communis L. topically on the other part of the body. Iran. Red Crescent Med. J. 2014, 16, e13565. [Google Scholar] [CrossRef] [PubMed]
- Chaijan, M.R.; Handjani, F.; Zarshenas, M.; Rahimabadi, M.S.; Tavakkoli, A. The Myrtus communis L. solution versus ketoconazole shampoo in treatment of dandruff: A double blinded randomized clinical trial. J. Pak. Med. Assoc. 2018, 68, 715–720. [Google Scholar] [PubMed]
- Qaraaty, M.; Kamali, S.H.; Dabaghian, F.H.; Zafarghandi, N.; Mokaberinejad, R.; Mobli, M.; Amin, G.; Nasei, M.; Kamalinejad, M. Effect of myrtle fruit syrup on abnormal uterine bledding: A randomized double-blind, placebo-controlled pilot study. DARU J. Pharm. Sci. 2014, 22, 45. [Google Scholar] [CrossRef] [PubMed]
- Ergen, N.; Hoşbaş, S.; Orhan, D.D.; Aslan, M.; Sezik, E.; Atalay, A. Evaluation of the lifespan extension effects of several Turkish medicinal plants in Caenorhabditis elegans. Turk. J. Biol. 2018, 42, 163–173. [Google Scholar] [CrossRef]
- Sanjust, E.; Mocci, G.; Zucca, P.; Rescigno, A. Mediterranean shrubs as potential antioxidant sources. Nat. Prod. Res. 2008, 22, 689–708. [Google Scholar] [CrossRef] [PubMed]
- Alamanni, M.C.; Cossu, M. Radical scavenging activity and antioxidant activity of liquors of myrtle (Myrtus communis L.) berries and leaves. Ital. J. Food Sci. 2004, 16, 197–208. [Google Scholar]
- Vacca, V.; Piga, A.; del Caro, A.; Fenu, P.A.M.; Agabbio, M. Changes in phenolic compounds, colour and antioxidant activity in industrial red myrtle liqueurs during storage. Z. Naturforsch. 2003, 47, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Tuberoso, C.I.G.; Barra, A.; Cabras, P. Effect of different technological processes on the chemical composition of myrtle (Myrtus communis L.) alcoholic extracts. Eur. Food Res. Technol. 2008, 226, 801–808. [Google Scholar] [CrossRef]
- Zam, W.; Ali, A.; Ibrahim, W. Improvement of polyphenolic content and antioxidant activity of Syrian myrtle berries (Myrtus communis L.) hydro-alcoholic extracts using flavouring additives. Prog. Nutr. 2017, 19, 112–120. [Google Scholar]
- Snoussi, A.; Hayet, B.H.K.; Essaidi, I.; Zgoulli, S.; Moncef, C.M.; Thonart, P.; Bouzouita, N. Improvement of the composition of Tunisian myrtle berries (Myrtus communis L.) alcohol extracts. J. Agric. Food Chem. 2012, 60, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Tuberoso, C.I.G.; Boban, M.; Bifulco, E.; Budimir, D.; Pirisi, F.M. Antioxidant capacity and vasodilatory properties of Mediterranean food: The case of Cannonau wine, myrtle berries liqueur and strawberry-tree honey. Food Chem. 2013, 140, 686–691. [Google Scholar] [CrossRef] [PubMed]
- Serreli, G.; Jerković, I.; Gil, K.A.; Marijanović, Z.; Pacini, V.; Tuberoso, C.I.G. Phenolic compounds, volatiles and antioxidant capacity of white myrtle berry liqueurs. Plant Foods Hum. Nutr. 2017, 72, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Serce, S.; Ercisli, S.; Sengul, M.; Gunduz, K.; Orhan, E. Antioxidant activities and fatty acid composition of wild grown myrtle (Myrtus communis L.) fruits. Pharmacogn. Mag. 2010, 6. [Google Scholar] [CrossRef] [PubMed]
- Polat, B.; Oba, S.; Karaman, K.; Arici, M.; Sagdic, O. Comparison of different solvent types for determination biological activities of myrtle berries collected from Turkey. Qual. Assur. Saf. Crops 2014, 6, 221–227. [Google Scholar] [CrossRef]
- Messaoud, C.; Boussaid, M. Myrtus communis berry color morphs: A comparative analysis of essential oils, fatty acids, phenolic compounds, and antioxidant activities. Chem. Biodivers. 2011, 8, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Wannes, W.A.; Marzouk, B. Differences between myrtle fruit parts (Myrtus communis var. italica) in phenolics and antioxidant contents. J. Food Biochem. 2013, 37, 585–594. [Google Scholar]
- Wannes, W.A.; Marzouk, B. Characterization of myrtle seed (Myrtus communis var. baetica) as a source of lipids, phenolics, and antioxidant activities. J. Food Drug Anal. 2016, 24, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Babou, L.; Hadidi, L.; Grosso, C.; Zaidi, F.; Valentão, P.; Andrade, P.B. Study of phenolic composition and antioxidant activity of myrtle leaves and fruits as a function of maturation. Eur. Food Res. Technol. 2016, 242, 1447–1457. [Google Scholar] [CrossRef]
- Tuberoso, C.I.G.; Rosa, A.; Bifulco, E.; Melis, M.P.; Atzeri, A.; Pirisi, F.M.; Dessì, M.A. Chemical composition and antioxidant activities of Myrtus communis L. berries extracts. Food Chem. 2010, 123, 1242–1251. [Google Scholar] [CrossRef]
- Pereira, P.; Cebola, M.-J.; Oliveira, M.C.; Gil, M.G.B. Supercritical fluid extraction vs conventional extraction of myrtle leaves and berries: Comparison of antioxidant activity and identification of bioactive compounds. J. Supercrit. Fluids 2016, 113, 1–9. [Google Scholar] [CrossRef]
- Pereira, P.; Cebola, M.-J.; Oliveira, M.C.; Gil, M.G.B. Antioxidant capacity and identification of bioactive compounds of Myrtus communis L. extract obtained by ultrasound-assisted extraction. J. Food Sci. Technol. 2017, 54, 4362–4369. [Google Scholar] [CrossRef] [PubMed]
- Amensour, M.; Sendra, E.; Abrini, J.; Bouhdid, S.; Pérez-Alvarez, J.A.; Fernández-López, J. Total phenolic content and antioxidant activity of myrtle (Myrtus communis) extracts. Nat. Prod. Commun. 2009, 4, 819–824. [Google Scholar] [PubMed]
- Amensour, M.; Sendra, E.; Abrini, J.; Pérez-Alvarez, J.A.; Fernández-López, J. Antioxidant activity and total phenolic compounds of myrtle extracts. CyTA J. Food 2010, 8, 95–101. [Google Scholar] [CrossRef]
- Serio, A.; Chaves-López, C.; Martuscelli, M.; Mazzarrino, G.; Mattia, C.; Paparella, A. Application of Central Composite Design to evaluate the antilisterial activity of hydro-alcohol berry extract of Myrtus communis L. LWT Food Sci. Technol. 2014, 58, 116–123. [Google Scholar] [CrossRef]
- Amira, S.; Dade, M.; Schinella, G.; Rios, J.-L. Anti-inflammatory, anti-oxidant, and apoptotic activities of four plant species used in folk medicine in the Mediterranean basin. Pak. J. Pharm. Sci. 2012, 25, 65–72. [Google Scholar] [PubMed]
- Jabri, M.-A.; Tounsi, H.; Rtibi, K.; Marzouki, L.; Sakly, M.; Sebai, H. Ameliorative and antioxidant effects of myrtle berry seeds (Myrtus communis) extract during reflux-induced esophagitis in rats. Pharm. Biol. 2016, 54, 1575–1585. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, N. Inflammation and oxidative stress in gastroesophageal reflux disease. J. Clin. Biochem. Nutr. 2007, 40, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Rosa, A.; Atzeri, A.; Deiana, M.; Scano, P.; Incani, A.; Piras, C.; Marincola, F.C. Comparative antioxidant activity and 1H-NMR profiling of Mediterranean fruit products. Food Res. Int. 2015, 69, 322–330. [Google Scholar] [CrossRef]
- Öztürk, H.I.; Demirci, T.; Akin, N. Production of functional probiotic ice creams with white and dark blue fruits of Myrtus communis: The comparison of the prebiotic potentials on Lactobacillus casei 431 and functional characteristics. LWT Food Sci. Technol. 2018, 90, 339–345. [Google Scholar] [CrossRef]
- Curiel, J.A.; Pinto, D.; Marzani, B.; Filannino, P.; Farris, G.A.; Gobbeti, M.; Rizzello, C.G. Lactic acid fermentation as a tool to enhance the antioxidant properties of Myrtus communis berries. Microb. Cell Fact. 2015, 14, 67. [Google Scholar] [CrossRef] [PubMed]
- Rosa, A.; Putzu, D.; Arzeri, A.; Marincola, F.C.; Sarais, G. Sea salts flavoured with Mediterranean herbs and fruits prevent cholesterol and phospholipid membrane oxidation and cell free radical generation. Eur. Lip. Sci. Technol. 2018, 120, 1700323. [Google Scholar] [CrossRef]
- Shoshtari, Z.V.; Rahimmalek, M.; Sabzalian, M.R.; Hosseini, H. Essential oil and bioactive compounds variation in myrtle (Myrtus communis L.) as affected by seasonal variation and salt stress. Chem. Biodivers. 2017, 14, e1600365. [Google Scholar] [CrossRef] [PubMed]
- Sacchetti, G.; Muzzoli, M.; Statti, G.A.; Conforti, F.; Bianchi, A.; Agrimonti, C.; Ballero, M.; Poli, F. Intra-specific biodiversity of Italian myrtle (Myrtus communis) through chemical markers profile and biological activities of leaf methanolic extracts. Nat. Prod. Res. 2007, 21, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Wannes, W.A.; Mhamdi, B.; Sriti, J.; Jemia, M.B.; Ouchikh, O.; Hamdaoui, G.; Kchouk, M.E.; Marzouk, B. Antioxidant activities of the essential oils and methanol extracts from myrtle (Myrtus communis var. italica L.) leaf, stem and flower. Food Chem. Toxicol. 2010, 48, 1362–1370. [Google Scholar]
- Amessis-Ouchemoukh, N.; Madani, K.; Falé, P.L.V.; Serralheiro, M.L.; Araújo, M.E.M. Antioxidant capacity and phenolic contents of some Mediterranean medicinal plants and their potential role in the inhibition of cyclooxygenase-1 and acetylcholinesterase activities. Ind. Crops Prod. 2014, 53, 6–15. [Google Scholar] [CrossRef]
- Chevolleau, S.; Mallet, J.F.; Ucciani, E.; Gamisans, J.; Gruber, M. Antioxidant activity in leaves of some Mediterranean plants. J. Am. Oil Chem. Soc. 1992, 69, 1269–1271. [Google Scholar] [CrossRef]
- Chevolleau, S.; Debal, A.; Ucciani, E. Determination of the antioxidant activity of plant extracts. Rev. Française Corps Gras 1992, 39, 120–126. [Google Scholar]
- Demo, A.; Petrakis, C.; Kefalas, P.; Boskou, D. Nutrient antioxidants in some herbs and Mediterranean plant leaves. Food Res. Int. 1998, 31, 351–354. [Google Scholar] [CrossRef]
- Özcan, M.M.; Erel, Ö.; Herken, E.E. Antioxidant, phenolic content, and peroxide value of essential oil and extracts of some medicinal and aromatic plants used as condiments and herbal teas in Turkey. J. Med. Food 2009, 12, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Gião, M.S.; González-Sanjosé, M.L.; Rivero-Pérez, M.D.; Pereira, C.I.; Pintado, M.E.; Malcata, F.X. Infusions of Portuguese medicinal plants: Dependence of final antioxidant capacity and phenolic content on extraction features. J. Sci. Food Agric. 2007, 87, 2638–2647. [Google Scholar] [CrossRef] [PubMed]
- Gião, M.S.; Pereira, I.C.; Pintado, M.E.; Malcata, F.X. Effect of technological processing upon the antioxidant capacity of aromatic and medicinal plant infusions: From harvest to packaging. LWT Food Sci. Technol. 2012, 50, 320–325. [Google Scholar] [CrossRef]
- Gonçalves, S.; Gomes, D.; Costa, P.; Romano, A. The phenolic content and antioxidant activity of infusions from Mediterranean medicinal plants. Ind. Crops Prod. 2013, 43, 465–471. [Google Scholar] [CrossRef]
- Belmimoun, A.; Meddah, B.; Meddah, A.T.; Sonnet, P. Antibacterial and antioxidant activities of the essential oils and phenolic extracts of Myrtus communis and Zygophylum album from Algeria. J. Fund. Appl. Sci. 2016, 8, 510–524. [Google Scholar] [CrossRef]
- Romani, A.; Coinu, R.; Carta, S.; Pinelli, P.; Galardi, C.; Vincieri, F.; Franconi, F. Evaluation of antioxidant effect of different extracts of Myrtus communis L. Free Rad. Res. 2004, 38, 97–103. [Google Scholar] [CrossRef]
- Tumen, I.; Senol, F.S.; Orhan, I.E. Inhibitory potential of the leaves and berries of Myrtus communis L. (myrtle) against enzymes linked to neurodegenerative diseases and their antioxidant actions. Int. J. Food Sci. Nutr. 2012, 63, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, M.; Amakura, Y.; Tokuhara, M.; Yoshida, T. Polyphenolic compounds isolated from the leaves of Myrtus communis. J. Nat. Med. 2008, 62, 366–368. [Google Scholar] [CrossRef] [PubMed]
- Dairi, S.; Madani, K.; Aoun, M.; Him, J.L.K.; Bron, P.; Lauret, C.; Cristol, J.-P.; Carbonneau, M.-A. Antioxidative properties and ability of phenolic compounds of Myrtus communis leaves to counteract in vitro LDL and phospholipid aqueous dispersion oxidation. J. Food Sci. 2014, 79, C1260–C1270. [Google Scholar] [CrossRef] [PubMed]
- Dahmoune, F.; Nayak, B.; Moussi, K.; Remini, H.; Madani, K. Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chem. 2015, 166, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.; Bernardo-Gil, M.G.; Cebola, M.J.; Maurício, E.; Romano, A. Supercritical fluid extracts with antioxidant and antimicrobial activities from myrtle (Myrtus communis L.) leaves. Response surface optimization. J. Supercrit. Fluids 2013, 83, 57–64. [Google Scholar] [CrossRef]
- Messaoud, C.; Laabidi, A.; Boussaid, M. Myrtus communis L. infusions: The effect of infusion time on phytochemical composition, antioxidant, and antimicrobial activities. J. Food Sci. 2012, 77, C941–C947. [Google Scholar] [CrossRef] [PubMed]
- Rosa, A.; Melis, M.P.; Deiana, M.; Atzeri, A.; Appendino, G.; Corona, G.; Incani, A.; Loru, D.; Dessì, M.A. Protective effect of the oligomeric acylphloroglucinols from Myrtus communis on cholesterol and human low density lipoprotein oxidation. Chem. Phys. Lip. 2008, 155, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, M.I.; Khan, M.; Ahmad, M.; Uousuf, S.; Fun, H.-K.; Soomro, S.; Mesaik, M.A.; Shaheen, F. New inhibitors of ROS generation and T-cell proliferation from Myrtus communis. Org. Lett. 2013, 15, 1862–1865. [Google Scholar] [CrossRef] [PubMed]
- Sanna, D.; Delogu, G.; Mulas, M.; Schirra, M.; Fadda, A. Determination of free radical scavenging activity of plant extracts through DPPH assay: An EPR and UV-Vis study. Food Anal. Methods 2012, 5, 759–766. [Google Scholar] [CrossRef]
- Romani, A.; Campo, M.; Pinelli, P. HPLC/DAD/ESI-ESI analyses and anti-radical activity of hydrolysable tannins from different vegetal species. Food Chem. 2012, 130, 214–221. [Google Scholar] [CrossRef]
- Turhan, S.; Sagir, I.; Temiz, H. Oxidative stability of brined anchovies (Engraulis encrasicholus) with plant extracts. Int. J. Food Sci. Technol. 2009, 44, 386–393. [Google Scholar] [CrossRef]
- Dairi, S.; Galeano-Díaz, T.; Acedo-Valenzuela, M.I.; Godoy-Caballero, M.P.; Dahmoune, F.; Remini, H.; Madani, K. Monitoring oxidative stability and phenolic compounds composition of myrtle-enriched extra virgin olive during heating treatment by flame, oven and microwave using reversed phase dispersive liquid-liquid microextraction (RP-DLLME)-HPLC-DAD-FLD method. Ind. Crops Prod. 2015, 65, 303–314. [Google Scholar] [CrossRef]
- Dairi, S.; Carbonneau, M.-A.; Galeano-Diaz, T.; Remini, H.; Dahmoune, F.; Aoun, O.; Belbahi, A.; Lauret, C.; Cristol, J.-P.; Madani, K. Antioxidant effects of extra virgin olive oil enriched by myrtle phenolic extracts on iron-mediated lipid peroxidation under intestinal conditions model. Food Chem. 2017, 237, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, S.F.; Muhammad, J.S.; Shahryar, S.; Usmanghani, K.; Gilani, A.-H.; Jafri, W.; Sugiyama, T. Anti-inflammatory and cytoprotective effects of selected Pakistani medicinal plants in Helicobacter pylori-infected gastric epithelial cells. J. Ethnopharmacol. 2012, 141, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Feisst, C.; Franke, L.; Appendino, G.; Werz, O. Identification of molecular targets of the oligomeric nonprenylated acylphloroglucinols from Myrtus communis and their implication as anti-inflammatory compounds. J. Pharmacol. Exp. Ther. 1995, 315, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Koeberle, A.; Pollastro, F.; Northoff, H.; Werz, O. Myrtucommulone, a natural acylphloroglucinol, inhibits microsomal prostaglandin E2 synthase-1. Br. J. Pharmacol. 2009, 156, 952–961. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.; di Paola, R.; Mazzon, E.; Genovese, T.; Caminiti, R.; Bramanti, P.; Pergola, C.; Koeberle, A.; Werz, O.; Sautebin, L.; et al. Myrtucommulone from Myrtus communis exhibits potent anti-inflammatory effectiveness in vivo. J. Pharmacol. Exp. Ther. 2009, 329, 76–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiorini-Puybaret, C.; Aries, M.-F.; Fabre, B.; Mamatas, S.; Luc, J.; Degouy, A.; Ambonati, M.; Mejean, C.; Poli, F. Pharmacological properties of Myrtacine® and its potential value in acne treatment. Planta Med. 2011, 77, 1582–1589. [Google Scholar] [CrossRef] [PubMed]
- Rosa, A.; Deiana, M.; Casu, V.; Corona, G.; Appendino, G.; Bianchi, F.; Ballero, M.; Dessì, M.A. Antioxidant activity of oligomeric acylphloroglucinols from Myrtus communis L. Free Rad. Res. 2003, 37, 1013–1019. [Google Scholar]
- Gerbeth, K.; Hüsch, J.; Meins, J.; Rossi, A.; Sautebin, L.; Wiechmann, K.; Werz, O.; Skarke, C.; Barrett, J.S.; Schubert-Zsilavecz, M.; et al. Myrtucommulone from Myrtus communis: Metabolism, permeability, and systemic exposure in rats. Planta Med. 2012, 78, 1932–1938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rached, W.; Benamar, H.; Bennaceur, M.; Marouf, A. Screening of the antioxidant potential of some Algerian indigenous plants. J. Biol. Sci. 2010, 10, 316–324. [Google Scholar] [CrossRef]
- Touaibia, M.; Chaouch, F.Z. Evaluation de l’activité anti-oxydante des extraits aqueux, méthanolique et éthanolique de l’éspèce saharo-endémique Myrtus nevelli Batt et Trab. (Myrtaceae). Int. J. Innov. Appl. Stud. 2014, 6, 407–413. [Google Scholar]
- Touaibia, M.; Chaouch, F.Z. Anti-inflammatory effect of Myrtus nivellei Batt & Trab (Myrtaceae) methanolic extract. J. Fund. Appl. Sci. 2015, 7, 77–82. [Google Scholar]
Plant Part Used | Compounds | Biological Properties | References |
---|---|---|---|
Antimicrobial | |||
Leaves | Not reported | Bacterial vaginosis | [23] |
Leaves | Not reported | Propionibacterium acnes | [24] |
Leaves and berries | Not reported | - Spoilage bacteria Pseudomonas aeruginosa IH, Pseudomonas aeruginosa CECT 118, Pseudomonas aeruginosa CECT 110T, Pseudomonas fluorescens CECT 378 and Bacillus subtilis DCM 3366 - Food-borne pathogenic bacteria, namely Escherchia coli K12, Listeria innocua CECT 4030, Listeria monocytogenes CECT 4032, Enteroccus faecium CECT 410, Staphylococcus aureus MBLA, Staphylococcus aureus CECT 976, Staphylococcus aureus CECT 794 and Proteus vulgaris CECT 484 | [25] |
Leaves | Not reported | One hundred and twenty strains of Escherichia coli isolated from the urine culture | [26] |
Leaves | Not reported | Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus agalactiae, Listeria monocytogenes, Campylobacter jejuni, Staphylococcus aureus, Micrococcus luteus, Escherichia coli, Proteus vulgaris, and Pseudomonas aeruginosa | [27] |
Leaves | Not reported | Aeromonas hydrophilica isolated from four hundred and fifty samples from the intestines of the infected Cyprinus carpio fish | [28] |
Leaves | Not reported | Ninety-six P. aeruginosa strains isolated from 400 burn patients (men and women) in Iranian hospital | [29] |
Leaves | Galloylated nonprenylated phloroglucinol glucosides: Gallomyrtucommulone A Gallomyrtucommulone B Gallomyrtucommulone C Gallomyrtucommulone D | Staphylococcus aureus strain ATCC 25923 gift of E. Udo (Kuwait University, Kuwait) S. aureus RN4220 containing plasmid pUL5054, which carries the gene encoding the MsrA macrolide efflux protein, provided by J. Cove S. aureus XU-212 which possesses the TetK tetracycline efflux protein, provided by E. Udo S. aureus SA-1199B, which overexpresses the norA gene encoding the NorA MDR efflux protein, provided by G. Kaatz S. aureus EMRSA-15 is an epidemic strain of MRSA gift of P. Stapleton, School of Pharmacy, University of London | [30] |
Seeds | Not reported | Escherichia coli (PTCC No. 1330), Pseudomonas aeruginosa (PTCC No. 1074), P. fluorescens (PTCC No. 1181), Klebsiella pneumoniae (PTCC No. 1053), Bordetella bronchiseptica (PTCC No. 1025), Staphylococcus aureus (PTCC No. 1112), S. epidermidis (PTCC No. 1114), Micrococcus luteus (PTCC No. 1170), Bacillus cereus (PTCC No. 1015), and B. pumilis (PTCC No. 1319) | [31] |
Berry seeds | Hydroxybenzoic acid hexose Delphinidin-3-O-galactoside Delphinidin-3-O-glucoside Quercetin hexoside Delphinidin-3-O-rhamnoside Delphinidin rutinoside Delphinidin-3-(6 coumaroyl)-glucoside Petunidin-3-O-glucoside Petunidin diglucoside Petunidin malonylglucoside Petunidin-3-O-rutinoside Isorhamnetin-O-rhamnoside Malvidin-O-galactoside Malvidin-O-glucoside Peonidin diglucoside Petunidin methyl pentose | Escherichia coli ATCC 8739, Salmonella typhimurium NCTC 6017, Staphylococcus aureus ATCC 29213, Pseudomonas aeruginosa ATCC 27853, Aeromonas hydrophila EI, and Bacillus cereus ATCC 1247 | [32] |
Leaves | Not reported | Streptococcus mutans (PTCC 1683) | [33] |
Leaves | Not reported | Gram-positive (Listeria monocytogenes and Bacillus cereus) Gram-negative (Escherichia coli O157:H7) bacterial strains Fungal strain (Candida albicans) | [34] |
Leaves and berries | Not reported | Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6059), Micrococcus flavus (SBUG 16), Escherichia coli (ATCC 11229), Pseudomonas aeruginosa (ATCC 27853), and three multi-resistant Staphylococcus strains (Staphylococcus epidermidis 847, Staphylococcus haemolyticus 535, Staphylococcus aureus north German epidemic strain) Candida maltosa (SBUG) | [35] |
Leaves | Not reported | Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Bacillus subtilis and Serratia marcescens | [36] |
Leaves | Myrtucommulones J-L Myrtucommulone A | Staphylococcus aureus (ATCC 25923) | [37] |
Leaves | Not reported | Enterococcus faecalis (ATCC 29212) | [38] |
Leaves | Not reported | Bacterial vaginosis | [39] |
Leaves | Not reported | Pseudomonas aeruginosa | [40] |
Leaves | Not reported | Microsporum canis ATCC 32903, M. gypseum ATCC 14683, and Trichophyton mentagrophytes ATCC 1481 (var. interdigitale) from Tehran University of Medical Sciences | [41] |
Aerial parts | Not reported | Trichophyton mentagrophytes, T. interdigitale, Microsporum canis, and M. gypseum (10 strain of each) | [42] |
Leaves | Not reported | Escherichia coli O157:H7, Yersinia enterocolitica O9, Proteus spp., and Klebsiella pneumoniae | [43] |
Berries | Not reported | Helicobacter pylori (12 clinical isolates) | [44] |
Leaves | Not reported | Staphylococcus aureus (489 samples) isolated either from healthy carriers (nose and throat) or clinical samples S. aureus used as reference strains for comparison: ATCC 25923, ATCC 9144, ATCC 29737, ATCC 12596, and Bristol A 9596 | [45] |
Leaves | 5-Acetoxy-4-hydroxy-4-isobutyl-2,2,6,6-tetramethylcyclohexan-1,3-dione β-Sitosterol Isomyrtucommulone-B Endoperoxide-G-3-hormone Gallic acid Myricetin-3-O-α-l-rhamnoside Myricetin-3-O-β-d-glucoside Myricetin-3-O-β-d-galactoside-6″-O-gallate (8) | Propionibacterium acnes NRRL (B-4224) | [46] |
Leaves | Myrtucommulone A | Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Saccharomyces cerevisiae, Escherichia coli B, E. coli CW 3747, E. coli K-12, Klebsiella pneumoniae, Proteus mirabilis, Proteus morganii, Shigella dysenteriae, S. flexneri, Salmonella typhimurium, Pseudomonas fluorescens, Vibrio cholerae, Serratia, Staphylococcus aureus, S. albus, Bacillus subtilis W23, B. subtilis 16, B. pumilus, Streptococcus faecalis, Corynebacterium diphtheriae, and C. xerosis | [47] |
Leaves | Not reported | Helicobacter pylori | [48] |
Leaves | Myrtucomvalones A–C Callistiviminene J-N | Respiratory syncytial virus (RSV) | [49] |
Aerial parts | Myrtucommulone B-E Usnone A Tectochrysine 2,5-Dihydroxy-4-methoxybenzophenone (cearoin) β-Sitosterol Sideroxylin Ursolic acid Corosolic acid Arjunolic acid Erythrodiol Oleanolic acid Betulin | Escherichia coli, Bacillus subtilis, Shigella flexneri, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella typhi | [50] |
Leaves | Semimyrtucommulone myrtucommulone A | Staphylococcus aureus strains RN4220 (Msr(A)), XU212 (Tet(K)), 1199-B (Nor(A)), and ATCC 25923 | [51] |
Leaves | Myrtucommunins A-D 6-Methyl-isomyrtucommulone B 4-Methyl myrtucommulone B 2-Isobutyryl-4-methylphloroglucinol 1-O-β-d-glucopyranoside Chromone derivative, undulatoside A 6’-O-gallate | Escherichia coli, Staphylococcus aureus (MRSA), Staphylococcus aureus (MSSA), and Bacillus subtilis | [52] |
Leaves | Silver nanoparticles synthesized using Myrtus communis L. leaf extract | Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus methicillin-resistant, Staphylococcus aureus, and Enterococcus faecalis | [53] |
Leaves | Before and after encapsulation in liposomes | Staphylococcus aureus (ATCC25923), Staphylococcus epidermidis (ATCC 12228), Staphylococcus mutans (ATCC 31989) and Staphylococcus viridans (ATCC 19952), Pseudomonas aeruginosa (ATCC 27853), Escherichia coli (ATCC 25922), Enterobacter cloacae (ATCC 13047) and Klebsiella pneumoniae (ATCC13883), Candida albicans (ATCC 10231), Candida tropicalis (ATCC 13801) and Candida glabrata (ATCC 28838), and Listeria monocytogenes | [54] |
Other organisms | |||
Leaves | Not reported | Anti-Leishmania tropica on an in vitro model | [55] |
Aerial parts | Not reported | In vivo, anti- Plasmodium berghei in female Swiss albino mice, weight 18–20 g In vitro, chloroquine-sensitive strain (3D7) of P. falciparum | [56] |
Not reported (myrtle was obtained from a local grocery for herbal plants) | Not reported | Induced programmed cell death in hydatid cyst protoscolices | [57] |
Aerial part | Not reported | In vitro, anti-chloroquine-resistant (K1) and chloroquine-sensitive (3D7) strains of Plasmodium falciparum In vivo, anti-Plasmodium berghei infection in adult male albino mice | [58] |
Cytotoxicity | |||
Leaves | Not reported | Cytotoxic activities against J774 cells (Mouse BALB/c monocyte macrophage) | [55] |
Leaves and berries | Not reported | Cytotoxic activities against urinary bladder 5637 and human breast carcinoma MCF-7 cell lines | [35] |
Leaves | Myrtucommulones J-L Myrtucommulone A | Cytotoxic activities against human haematological tumor cell line MT-4. Cytotoxic activities against against solid tumor cell lines (HepG2 or human liver cancer, DU145 or human prostate cancer cell lines), and against “normal” human tissue cells (CRL7065) | [37] |
Leaves | Myrtucommulone A | Cytotoxic activities against U-937 (human lung (lymphoblast), K-562 (human blood (chronic myelogenous leukemia), leukemic cell line KBM-5, and MEG-01 (human bone marrow) cell lines | [59] |
Aerial part | Not reported | Cytotoxic activities against MCF7 (breast adenocarcinoma), HepG2 (hepatocellular carcinoma), WEHI (fibrosarcoma), and MDBK (normal kidney cells) | [58] |
Not reported | Not reported | L20B (cell line a mouse cell-line genetically engineered to express human poliovirus receptor, CD155 cell lines), RD (rhabdomyosarcom), and Vero (African green monkey kidney) | [60] |
Not reported | Myrtucommulone A | Mitochondrial lysates from leukemic HL-60 cells | [61] |
Leaves | Myrtucommulone Semi-myrtucommulone | Jurkat-A3 cells, caspase-8-deficient Jurkat cells, FADD deficient Jurkat cells, PC-3 (androgen-independent prostate carcinoma), LNCaP (androgen-dependent prostate carcinoma), H9 (cutaneous T-cell lymphoma), DLD-1 (colorectal adenocarcinoma), HL-60 (acute promyelocytic leukaemia), Jurkat (acute T-cell leukaemia) and Jurkat DD3 (mutated in CD95), KFR (rhabdomyosarcoma) and UKF-NB-3 (neuroblastoma) cells, mono Mac 6 (MM6, acute monocytic leukaemia) cells, and human peripheral blood mononuclear cells (PBMC) | [62] |
Not reported | Myrtucommulone | Mouse Breast cancer cell line 4T1, mouse embryonic fibroblasts, and human dermal fibroblasts (hDFs) | [63] |
Leaves | Myrtucomvalones A–C Callistiviminene J-N | Human larynx epidermoid carcinoma cells (HEp-2) cells | [49] |
Leaves | Myricetin-3-O-galactoside Myricetin-3-O-rhamnoside | Human chronic myelogenous leukemia cell line K562 | [64] |
Leaves | 3,5-O-Di-galloylquinic acid | Human chronic myelogenous leukemia CML cell line K562 | [65] |
Genotoxicity/mutagenicity | |||
Leaves | Not reported | Protective effect against genotoxicity on the SOS reponse induced by Aflatoxin B1 (AFB1) and Nifuroxazide in Escherichia coli PQ37 | [66] |
Leaves | Not reported | Protective effect against the mutagenicity induced by aflatoxin B1 (AFB1) in Salmonella typhimurium TA100 and TA98 assay systems, and against the mutagenicity induced by sodium azide in TA100 and TA1535 assay system | [67] |
Leaves | Not reported | Protective effect against on the mutagenicity induced by aflatoxin B1 in Salmonella typhimurium TA100 or TA98 | [68] |
Leaves | Myricetin-3-O-galactoside Myricetin-3-O-rhamnoside | Protective effect against the mutagenicity induced by aflatoxin B1 in Escherichia coli PQ37 strain | [64] |
Leaves | 3,5-O-Di-galloylquinic acid | Inhibitory effect against H2O2-induced genotoxicity, using the comet assay | [65] |
Gastrointestinal system | |||
Berry seeds | Hydroxybenzoic acid hexose Delphinidin-3-O-galactoside Delphinidin-3-O-glucoside Quercetin hexoside Delphinidin-3-O-rhamnoside Delphinidin rutinoside Delphinidin-3-(6 coumaroyl)-glucoside Petunidin-3-O-glucoside Petunidin diglucoside Petunidin malonylglucoside Petunidin-3-O-rutinoside Isorhamnetin-O-rhamnoside Malvidin-O-galactoside Malvidin-O-glucoside Peonidin diglucoside Petunidin methyl pentose | Anti-diarrhoeal in adult male Wistar rats after castor oil administration | [32] |
Leaves | Not reported | Anti-diarrhoeal in Swiss albino mice of either sex weighing 20–30 g and aged 6–8 weeks, after castor oil administration | [69] |
Berries | Not reported | Protective effect on gastric ulcer against ethanol, indomethacin, and pyloric ligation induced models in albino rats of Wistar strain weighing 150–200 g | [70] |
Stems and seeds | Not reported | Protective effect on oral ulcer recovery process in white Spraque–Dawley rats weighing 250–300 g after punch to create a wound in the hard palate in the oral cavity | [71] |
Berry seeds | Palmitic acid Stearic acid Oleic acid Linoleic acid Linolelaidic (trans, trans-C18:2) Arachidic acid | Protective effect on peptic ulcer against ethanol induced in adult male Wistar rats (weighing 220–240 g) | [72] |
Berry seeds | Hydroxybenzoic acid hexose Delphinidin-3-O-galactoside Delphinidin-3-O-glucoside Quercetin hexoside Delphinidin-3-O-rhamnoside Delphinidin rutinoside Delphinidin-3-(6 coumaroyl)-glucoside Petunidin-3-O-glucoside Petunidin diglucoside Petunidin malonylglucoside Petunidin-3-O-rutinoside Isorhamnetin-O-rhamnoside Malvidin-O-galactoside Malvidin-O-glucoside Peonidin diglucoside Petunidin methyl pentose | Protective effect on acetic acid-induced ulcerative colitis in adult male Wistar rats (weighing 220–240 g) | [73] |
Leaves | Not reported | Protective effect on acetic acid-induced ulcerative colitis in Wistar albino rats (weighing 250–300 g) | [74] |
Leaves | Not reported | Protective effect on liver injury and fibrosis occurring in Wistar albino rats (weighing 250–300 g) with biliary obstruction by double ligatures with suture silk | [75] |
Berries | Not reported | Decrease of reflux and dyspeptic scores as compared with the baseline, in double-blind randomized controlled clinical trial in adult aged from 18 to 60 years | [76] |
Berries | Not reported | Decrease of the recurrence of symptoms in reflux patients after the discontinuance of proton pump inhibitors, in outpatient, double-blind, randomized, parallel treatment groups study | [77] |
Leaves | Not reported | Decrease of the recurrent aphthous stomatitis in randomized, double blind, controlled before–after clinical trial | [78] |
Leaves | Not reported | Decrease of recurrent aphthous stomatitis in a single-blind, placebo-controlled clinical trial | [79] |
Aerial parts | Not reported | Upregulation of appetite related gene (ghrelin) and food intake in zebrafish | [80] |
Aerial parts | Not reported | Spasmolytic: complete relaxation of spontaneous and K+ (80 mM)-induced contractions in isolated rabbit jejunum | [81] |
Cardiovascular system | |||
Leaves | Not reported | Anti-hypercholesterolemia by inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase | [82] |
Leaves | 5,8-Dihydroxy-6,7,4′-trimethoxyflavone Quercetin-3-O-neohesperidoside, Quercetin-3-O-galactoside trans-1′,5′-5-(5-Carboxymethyl-2-oxocyclopentyl)-3Z-pentenyl-(6-O-galloyl) glucopyranoside, 3-Methoxy myricetin 7-O-β-l-rhamnopyranoside | Antiobesity effect on high fat diet induced male wistar albino obese rats | [83] |
Aerial parts | Not reported | Vasodilator: Relaxation of phenylephrine (1 μM)- and K+ (80 mM)-induced contractions in isolated rabbit aorta | [81] |
Anti-hyperglycaemic | |||
Leaves | Not reported | Streptozotocin-induced diabetic female Swiss albino mice | [84] |
Leaves | Not reported | Streptozotocin-induced diabetic 6-week-old male Albino Wistar rats | [85] |
Not reported | Not reported | Inhibition of α-glucosidase from for baker’s yeast, rabbit liver, and rabbit small intestine | [86] |
Aerial parts | Myrtucommulone B-E Usnone A Tectochrysine 2,5-Dihydroxy-4-methoxybenzophenone (cearoin) β-Sitosterol Sideroxylin Ursolic acid Corosolic acid Arjunolic acid Erythrodiol Oleanolic acid Betulin | Inhibition of α-glucosidase from Saccharomyces species | [50] |
Aerial parts | Not reported | Streptozocin-induced type 1 diabetes mellitus in Sprague–Dawley male rats (weighing 225–250 g) | [87] |
Respiratory system | |||
Aerial parts | Not reported | Relaxant effect on carbachol- and K+ (80 mM)-induced contractions in isolated rabbit tracheal preparations | [81] |
Berries | Not reported | Treatment of chronic rhinosinusitis in double-blinded randomized placebo-controlled trial | [88] |
Leaves | Not reported | Inhibition of inflammation and fibrosis of lung parenchyma in both preventive and therapeutic methods in male albino rats weighting 180–200 g | [89] |
Nervous system | |||
Leaves | Not reported | Anxiolytic and muscle relaxant effect without anticonvulsant activities, hypnotic effects without effect on seizure threshold: Male NMRI mice subjected to open field, righting reflex, grip strength, and pentylentetrazole-induced seizure tests. Male Wistar rats used to evaluate the alterations in rapid eye movement (REM) and non-REM (NREM) sleep | [9] |
Aerial parts | Not reported | Inhibition of acetylcholinesterse and butyrylcholinesterase | [90] |
Aerial parts | Not reported | Antinociceptive activity using male albino mice weighing 25–30 g and the following tests: assessed using the hot plate and Writhing tests | [91] |
Skin | |||
Leaves | Not reported | Case report: Two patients with common warts | [92] |
Leaves | Not reported | Treatment of dandruff: A double blinded randomized clinical trial comprised patients with dandruff aged 18–60 years visiting the dermatology out-patient clinic | [93] |
Genito-urinary system | |||
Berries | Not reported | A randomized, double-blind, placebo-controlled pilot study conducted on 30 women suffering from abnormal uterine bleeding-menometrorrhagia | [94] |
Longevity | |||
Leaves | Not reported | Caenorhabditis elegans used a model organism for longevity research and age-related diseases | [95] |
Origin | Type of Extract | Identification/Quantification | Compounds | Reference |
---|---|---|---|---|
Italy (Sardinia) | - Traditional recipe for the preparation of the liqueur: maceration of fresh berries in ethanol:water (70:30) 960 mL for 40 days. - Lyophilized berries extracted by macerating berries in ethanol:water (70:30) for 40 days. - Fresh berries extracted by sonication for 1 h followed by maceration in ethanol:water (70:30) for one night. | HPLC-ESI-MS/HPLC-UV/VIS | Anthocyanins | [15] |
Delphinidin-3-O-glucoside | ||||
Cyanidin-3-O-glucoside | ||||
Petunidin 3-O-glucoside | ||||
Peonidin-3-O-glucoside | ||||
Malvidin-3-O-glucoside | ||||
Delphinidin-3-O-arabinoside | ||||
Petunidin-3-O-arabinoside | ||||
Malvidin-3-O-arabinoside | ||||
For quantitative determination: HPLC-UV/VIS using the internal standards cyanidin-3-O-galactopyranoside for anthocyans, and rutin (quercetin-3-O-rutinoside) for flavonoids | Flavonoids | |||
Myricetin-3-O-galactoside | ||||
Myricetin-3-O-rhamnoside | ||||
Myricetin-3-O-arabinoside | ||||
Quercetin-3-O-glucoside | ||||
Quercetin-3-O-rhamnoside | ||||
Myricetin | ||||
Italy (Sardinia) | - Berries extracted by maceration with ethanol, for six weeks, in the dark at 4 °C. | HPLC-MS/MS and HPLC-DAD | Ethanol extract | [110] |
Gallic acid derivatives—352.2 | ||||
Gallic acid—111.5 | ||||
Elagic acid—76.5 | ||||
Other gallic acid derivatives—164.2 | ||||
Anthocyanins—2195.0 | ||||
Delphinidin-3-O-glucoside—494.8 | ||||
Petunidin 3-O-glucoside—425.9 | ||||
Malvidin-3-O-glucoside—840.9 | ||||
Other anthocyanins—433.4 | ||||
Flavonols—1492.8 | ||||
Myricetin-3-O-galactoside—450.5 | ||||
Myricetin-3-O-rhamnoside—441.2 | ||||
Myricetin—342.2 | ||||
Quercetin—36.2 | ||||
Other flavonols—222.7 | ||||
Total—4040.0 mg/mL | ||||
- Berries extracted by maceration with water, for six weeks, in the dark at 4 °C. | Water extract | |||
Gallic acid derivatives—195.9 | ||||
Gallic acid—76.0 | ||||
Elagic acid—8.4 | ||||
Other gallic acid derivatives—111.5 | ||||
Anthocyanins—74.7 | ||||
Delphinidin-3-O-glucoside—7.4 | ||||
Petunidin-3-O-glucoside—11.2 | ||||
Malvidin-3-O-glucoside—39.1 | ||||
Other anthocyanins—17.0 | ||||
Flavonols—103.0 | ||||
Myricetin-3-O-galactoside- 23.4 | ||||
Myricetin-3-O-rhamnoside- 52.9 | ||||
Myricetin— | ||||
Quercetin— | ||||
Other flavonols—26.7 | ||||
- Berries extracted by maceration with ethyl acetate, for six weeks, in the dark at 4 °C. | Total—373.6 (mg/mL) | |||
Ethyl acetate extract | ||||
For quantitative determination: HPLC-DAD using calibration curves built with the method of external standard | Gallic acid derivatives—600.5 | |||
Gallic acid—361.7 | ||||
Elagic acid—104.7 | ||||
Other gallic acid derivatives—134.1 | ||||
Anthocyanins—36.4 | ||||
Delphinidin-3-O-glucoside—0.9 | ||||
Petunidin 3-O-glucoside—1.7 | ||||
Malvidin-3-O-glucoside—10.7 | ||||
Other anthocyanins—1389.0 | ||||
Flavonols—4.9 | ||||
Myricetin-3-O-galactoside—216.9 | ||||
Myricetin-3-O-rhamnoside—942.2 | ||||
Myricetin—139.9 | ||||
Quercetin—85.1 | ||||
Other flavonols—26.7 | ||||
Total—2025.9 (mg/L) | ||||
Italy (Sardinia) | Obtained directly from producer and with known industrial processes | HPLC-MS/MS and HPLC-DAD | Hydroxybenzoic acids—18 | [102] |
Gallic acid—12 | ||||
Gallic acid derivatives—6 | ||||
Flavanols—25 | ||||
(+)-Catechin—25 | ||||
Flavonols—124 | ||||
Myricetin-3-O-arabinoside—51 | ||||
Myricetin-3-O-galactoside—34 | ||||
Myricetin-3-O-rhamnoside—3 | ||||
Quercetin-3-O-glucoside—7 | ||||
Quercetin-3-O-rhamnoside—6 | ||||
Myricetin—20 | ||||
Quercetin—3 | ||||
Anthocyanins—110 | ||||
Delphinidin-3-O-glucoside—20 | ||||
Cyanidin-3-O-glucoside—5 | ||||
Petunidin-3-O-glucoside—22 | ||||
Peonidin-3-O-glucoside—5 | ||||
Malvidin-3-O-glucoside—57 | ||||
Anthocyanins arabinoside—11 | ||||
Total—277 (mg/L) | ||||
Italy (Sardinia) | Maceration in an ethanol–water mixture for four months. After separation of the berries of the macerates, the liqueurs were produced by adding sucrose and water to obtain a final percentage of 28% v/v (alcohol) and 32% w/v (sugar). | HPLC-MS/MS and HPLC-DAD | Hydroxybenzoic acids—408.2 | [103] |
Gallic acid—294.2 | ||||
Ellagic acid—55.8 | ||||
Flavonols—58.1 | ||||
Myricetin-3-O-galactoside—2.1 | ||||
Myricetin-3-O-rhamnoside—23.0 | ||||
Myricetin—25.6 | ||||
Other flavonols—7.4 | ||||
Anthocyanins—not detected | ||||
Total—466.4 (mg/L) | ||||
Tunisia | Berries extracted by maceration with mixtures of ethanol/water (90:10—60:40) ethanol, for 40 days | HPLC/ESMS and HPLC/UV/Vis | Myricetin-3-O-arabinoside | [101] |
Myricetin-3-O-galactoside | ||||
Myricetin-3-O-rhamnoside | ||||
Quercetin-3-O-glucoside | ||||
Quercetin-3-O-rhamnoside | ||||
Myricetin | ||||
Quercetin | ||||
Kaempferol | ||||
Delphinidin-3-O-glucoside | ||||
Cyanidin-3-O-glucoside | ||||
Petunidin-3-O-glucoside | ||||
Delphinidin-3-O-arabinoside | ||||
Petunidin-3-O-glucoside | ||||
Peonidin-3-O-glucoside | ||||
Malvidin-3-O-glucoside | ||||
Petunidin-3-O-arabinoside | ||||
Malvidin-3-O-arabinoside | ||||
Tunisia | Extraction with 70% MeOH for 24 h in a H2O bath shaker | HPLC/UV/Vis | Dark blue fruits | [106] |
Delphinidin-3-O-glucoside—172 | ||||
Cyanidin-3-O-glucoside—25.2 | ||||
Petunidin-3-O-glucoside—103.7 | ||||
Delphinidin-3-O-arabinoside—28.3 | ||||
Peonidin-3-O-glucoside—11.8 | ||||
Malvidin-3-O-glucoside—257.6 | ||||
Petunidin-3-O-arabinoside—18.8 | ||||
Malvidin-3-O-arabinoside—8.6 | ||||
Total—625.8 (mg malvidin-3-O-glucoside equivalent/100 mL) | ||||
White fruits | ||||
Delphinidin-3-O-glucoside—1.7 | ||||
Cyanidin-3-O-glucoside—0.3 | ||||
Petunidin-3-O-glucoside—0.9 | ||||
Delphinidin-3-O-arabinoside—0.2 | ||||
Peonidin-3-O-glucoside—0.2 | ||||
Malvidin-3-O-glucoside—1.9 | ||||
Petunidin-3-O-arabinoside—0.2 | ||||
Malvidin-3-O-arabinoside—0.1 | ||||
Total—5.4 (mg malvidin-3-O-glucoside equivalent/100 mL) | ||||
Tunisia | Maceration | HPLC-DAD | Whole fruit (mg/g) | [107] |
Phenolic acids—1.03 | ||||
Gallic acid—1.03 | ||||
Hydrolysable tannins—0.69 | ||||
Gallotannins—0.69 | ||||
Flavonols—0.33 | ||||
Quercetin-3-O-rutinoside—0.01 | ||||
Myricetin-3-O-galactoside—0.08 | ||||
Quercetin-3-O-galactoside—0.12 | ||||
Myricetin-3-O-rhamnoside—0.07 | ||||
Quercetin-3-O-rhamnoside—0.05 | ||||
Anthocyanins—4.64 | ||||
Delphinidin-3-O-glucoside—0.66 | ||||
Cyanidin-3-O-glucoside—0.29 | ||||
Petunidin-3-O-glucoside—0.89 | ||||
Malvidin-3-O-glucoside—1.42 | ||||
Petunidin-3-O-arabinoside—0.87 | ||||
Malvidin-3-O-arabinoside—0.51 | ||||
Total—6.69 mg/g | ||||
Seed (mg/g) | ||||
Phenolic acids—2.22 | ||||
Gallic acid—2.22 | ||||
Hydrolysable tannins—8.99 | ||||
Gallotannins—8.99 | ||||
Flavonols— | ||||
Quercetin-3-O-rutinoside— | ||||
Myricetin-3-O-galactoside— | ||||
Quercetin-3-O-galactoside— | ||||
Myricetin-3-O-rhamnoside— | ||||
Quercetin-3-O-rhamnoside— | ||||
Anthocyanins— | ||||
Delphinidin-3-O-glucoside— | ||||
Cyanidin-3-O-glucoside— | ||||
Petunidin-3-O-glucoside— | ||||
Malvidin-3-O-glucoside— | ||||
Petunidin-3-O-arabinoside— | ||||
Malvidin-3-O-arabinoside— | ||||
Total—11.11 mg/g | ||||
Pericarp (mg/g) | ||||
Phenolic acids—0.89 | ||||
Gallic acid—0.89 | ||||
Hydrolysable tannins— | ||||
Gallotannins— | ||||
Flavonols—0.33 | ||||
Quercetin-3-O-rutinoside—0.01 | ||||
Myricetin-3-O-galactoside—0.08 | ||||
Quercetin-3-O-galactoside—0.12 | ||||
Myricetin-3-O-rhamnoside—0.07 | ||||
Quercetin-3-O-rhamnoside—0.05 | ||||
Anthocyanins—3.74 | ||||
Delphinidin-3-O-glucoside—0.66 | ||||
Cyanidin-3-O-glucoside—0.19 | ||||
Petunidin-3-O-glucoside—0.39 | ||||
Malvidin-3-O-glucoside—1.12 | ||||
Petunidin-3-O-arabinoside—0.87 | ||||
Malvidin-3-O-arabinoside—0.51 | ||||
Total—4.96 mg/g | ||||
Tunisia | Sonication followed by maceration with methanol:water 1:1 (met/aq) Decoction using water (aq) | HPLC-DAD | Leaves-September (aq—met/aq) (g/kg) | [109] |
Gallic acid—16.90; 9.33 | ||||
Delphinidin-3-O-glucoside—nd; nd | ||||
Myricetin-3-O-rhamnoside—18.26; 23.13 | ||||
Quercetin-3-O-galactoside—0.24, 0.21 | ||||
Quercetin-3-O-rutinoside—0.41; 0.45 | ||||
Malvidin-3-O-glucoside—nd; nd | ||||
Myricetin—0.41; 0.41 | ||||
Ellagic acid—5.15; 2.76 | ||||
Quercetin—0.05; 0.09 | ||||
Kaempferol—0.14; 0.14 | ||||
Total—41.56; 36.52 | ||||
Leaves-December (aq—met/aq) (g/kg) | ||||
Gallic acid—11.37; 0.79 | ||||
Delphinidin-3-O-glucoside—nd; nd | ||||
Myricetin-3-O-rhamnoside—20.93; 18.95 | ||||
Quercetin-3-O-galactoside—0.27, 0.29 | ||||
Quercetin-3-O-rutinoside—0.51; 0.32 | ||||
Malvidin-3-O-glucoside—nd; nd | ||||
Myricetin—4.20; 0.50 | ||||
Ellagic acid—7.27; 3.52 | ||||
Quercetin—0.16; 0.10 | ||||
Kaempferol—0.22; 0.21 | ||||
Total—44.93; 24.68 | ||||
Berries-September (aq—met/aq) (g/kg) | ||||
Gallic acid—16.32; 5.00 | ||||
Delphinidin-3-O-glucoside—nd; nd | ||||
Myricetin-3-O-rhamnoside—9.67; 9.80 | ||||
Quercetin-3-O-galactoside—1.92, 2.05 | ||||
Quercetin-3-O-rutinoside—together with quercetin-3-O-galactoside in both cases | ||||
Malvidin-3-O-glucoside—nd; nd | ||||
Myricetin—0.27; 0.31 | ||||
Ellagic acid—19.10; 8.34 | ||||
Quercetin—0.32; 0.28 | ||||
Kaempferol—0.17; 0.11 | ||||
Total—47.77; 25.89 | ||||
Berries-December (aq—met/aq) (g/kg) | ||||
Gallic acid—4.54; 1.21 | ||||
Delphinidin-3-O-glucoside—0.21; 0.16 | ||||
Myricetin-3-O-rhamnoside—4.02; 5.69 | ||||
Quercetin-3-O-galactoside—1.01, 1.22 | ||||
Quercetin-3-O-rutinoside—together with quercetin-3-O-galactoside in both cases | ||||
Malvidin-3-O-glucoside—0.30; 0.32 | ||||
Myricetin—0.31; 0.18 | ||||
Ellagic acid—4.92; 2.99 | ||||
Quercetin—0.04; 0.11 | ||||
Kaempferol—0.09; 0.05 | ||||
Total—15.44; 11.93 | ||||
Pericarps-December (aq—met/aq) (g/kg) | ||||
Gallic acid—1.72; 0.24 | ||||
Delphinidin-3-O-glucoside—0.22; 0.39 | ||||
Myricetin-3-O-rhamnoside—3.10; 3.51 | ||||
Quercetin-3-O-galactoside—0.40; 0.59 | ||||
Quercetin-3-O-rutinoside—together with quercetin-3-O-galactoside in both cases | ||||
Malvidin-3-O-glucoside—0.42; 0.43 | ||||
Myricetin—0.08; 0.08 | ||||
Ellagic acid—0.69; 0.73 | ||||
Quercetin—0.01; 0.02 | ||||
Kaempferol—nd; 0.01 | ||||
Total—6.64; 6.00 | ||||
Seeds-December (aq—met/aq) (g/kg) | ||||
Gallic acid—16.62; 15.98 | ||||
Delphinidin-3-O-glucoside—nd; nd | ||||
Myricetin-3-O-rhamnoside—2.25; 4.85 | ||||
Quercetin-3-O-galactoside—0.33; 5.30 | ||||
Quercetin-3-O-rutinoside—2.51; together with quercetin-3-O-galactoside in both cases | ||||
Malvidin-3-O-glucoside—nd; nd | ||||
Myricetin—1.90; 0.94 | ||||
Ellagic acid—29.35; 21.18 | ||||
Quercetin—0.18; 1.40 | ||||
Kaempferol—0.19; 0.49 | ||||
Total—53.33; 50.14 | ||||
Portugal | Sonication for 30 min, followed by maceration with water for 24 h, in the dark | HPLC–DAD–ESI–MS/MS | Berries | [112] |
Oenothein B | ||||
Galloyl-HHDP-glucose | ||||
Digalloyl HHDP-glucose | ||||
Quinic acid 3,5-di-O-gallate | ||||
Delphinidin-3-O-glucoside—1.33 mg/g | ||||
Cyanidin-3-O-glucoside—1.33 mg/g | ||||
Petunidin-3-O-glucoside—1.33 mg/g | ||||
Malvidin-3-O-monoglucoside—1.67 mg/g | ||||
Peonidin-3-O-monoglucoside—1.67 mg/g | ||||
Petunidin-3-O-pentoside—0.977 mg/g | ||||
Malvidin-3-O-pentoside—0.977 mg/g | ||||
Myricetin galactoside-gallate | ||||
Myricetin galactoside—0.00171 mg/g | ||||
Myricetin rhamnoside—0.00236 mg/g | ||||
Quercetin rhamnoside—0.000698 mg/g | ||||
Leaves | ||||
Myricetin galactoside-gallate—0.00261 mg/g | ||||
Myricetin galactoside—0.00261 mg/g | ||||
Myricetin rhamnoside—0.000255 mg/g | ||||
Myricetin—0.000075 mg/g | ||||
Quercetin galactoside-gallate—0.0136 mg/g | ||||
Portugal | Liquid phase extraction (LPE) Supercritical fluid extraction (SFE) | HPLC–DAD–ESI–MS/MS | Leaves and berries (LPE) | [111] |
Gallic acid | ||||
Myricetin-3-O-rhamnoside V | ||||
Ellagic acid | ||||
Quercetin-O-rhamnoside | ||||
Myricetin | ||||
Kaempferol-O-rhamnoside | ||||
Quercetin | ||||
Leaves (SFE) | ||||
Myricetin-galactoside | ||||
Myricetin-rhamnoside | ||||
Quercetin-rhamnoside | ||||
Berries (SFE) | ||||
Myricetin-galactoside | ||||
Myricetin-3-O-rhamnoside | ||||
Quercetin-O-rhamnoside | ||||
Delphinidin-3-O-glucoside | ||||
Petunidin-3-O-glucoside | ||||
Malvidin-3-O-glucoside | ||||
Italy (Sardinia) | Maceration in methanol | HPLC/UV | Control | [121] |
Phenolic acids (mg/g) | ||||
Gallic acid—0.17 | ||||
Vanillic acid—0.10 | ||||
Syringic acid—0.14 | ||||
Ellagic acid—1.44 | ||||
Flavonols/flavanols | ||||
Myricetin—1.11 | ||||
Quercetin—0.20 | ||||
Catechin—1.12 | ||||
Fermented homogenate | ||||
Phenolic acids (mg/g) | ||||
Gallic acid—0.55 | ||||
Vanillic acid—0.28 | ||||
Syringic acid—0.28 | ||||
Ellagic acid—2.78 | ||||
Flavonols/flavanols | ||||
Myricetin—2.56 | ||||
Quercetin—0.79 | ||||
Catechin—1.26 | ||||
Tunisia | Maceration in water | HPLC–DAD–ESI–MS/MS | Hydroxybenzoic acid hexose | [32] |
Delphinidin-3-O-galactoside | ||||
Delphinidin-3-O-glucoside | ||||
Quercetin hexoside | ||||
Delphinidin-3-O-rhamnoside | ||||
Delphinidin rutinoside | ||||
Delphinidin-3-(6 coumaroyl)-glucoside | ||||
Petunidin-3-O-glucoside | ||||
Petunidin diglucoside | ||||
Petunidin malonylglucoside | ||||
Petunidin-3-O-rutinoside | ||||
Isorhamnetin-O-rhamnoside | ||||
Malvidin-O-galactoside | ||||
Malvidin-O-glucoside | ||||
Peonidin diglucoside | ||||
Petunidin methyl pentose | ||||
Tunisia | Maceration in water | HPLC–DAD–ESI–MS/MS | Hydroxybenzoic acid hexose | [73] |
Delphinidin-3-O-galactoside | ||||
Delphinidin-3-O-glucoside | ||||
Quercetin hexoside | ||||
Delphinidin-3-O-rhamnoside | ||||
Delphinidin rutinoside | ||||
Delphinidin-3-(6 coumaroyl)-glucoside | ||||
Petunidin-3-O-glucoside | ||||
Petunidin diglucoside | ||||
Petunidin malonylglucoside | ||||
Petunidin-3-O-rutinoside | ||||
Isorhamnetin-O-rhamnoside | ||||
Malvidin-O-galactoside | ||||
Malvidin-O-glucoside | ||||
Peonidin diglucoside | ||||
Petunidin methyl pentose | ||||
Italy | Flavoured sea salts | HPLC-DAD and 1H-NMR | Phenols (mg/100 g) | [122] |
Ellagic acid—11.7 | ||||
Gallic acid—69.4 | ||||
Myricetin—0.9 | ||||
Myricetin-3-galactoside—7.3 | ||||
Myricitrin—13.3 | ||||
Quercetin-3-galactoside—0.9 | ||||
Quercetin-3-glucoside | ||||
Quercitrin—1.1 | ||||
Vitexin—0.7 |
Origin | Type of Extract | Identification/Quantification | Compounds | Reference |
---|---|---|---|---|
Italy | Hydroalcoholic extract, the remnant was fractionated by liquid–liquid extraction with ethyl acetate, and water residue | HPLC/MS and HPLC/DAD | Hydroalcoholic extract | [135] |
Galloyl derivatives (mg/mL) | ||||
Gallic acid—0.259 | ||||
Mono, di-galloyl glucosides and ellagitannins—10.06 | ||||
5-O-galloyl quinic acid—traces | ||||
3,5-O-galloyl quinic acid—0.64 | ||||
Flavonols (mg/mL) | ||||
Myricitrin—0.91 | ||||
Myricetin-3-O-galactoside—0.47 | ||||
Myricetin-3-(6″-O-galloylgalactoside)—0.33 | ||||
Myricetin glycosides—0.06 | ||||
Quercitrin—0.02 | ||||
Ethyl acetate extract | ||||
Galloyl derivatives (mg/mL) | ||||
Gallic acid—0.73 | ||||
Mono, di-galloyl glucosides and ellagitannins—5.92 | ||||
5-O-galloyl quinic acid—traces | ||||
3,5-O-galloyl quinic acid—1.49 | ||||
Flavonols (mg/mL) | ||||
Myricitrin—2.83 | ||||
Myricetin-3-O-galactoside—1.54 | ||||
Myricetin-3-(6″-O-galloylgalactoside)—1.07 | ||||
Myricetin glycosides—0.23 | ||||
Quercitrin—0.07 | ||||
Aqueous residue | ||||
Galloyl derivatives (mg/mL) | ||||
Mono, di-galloyl glucosides and ellagitannins—0.30 | ||||
Flavonols (mg/mL) | ||||
Myricitrin—0.001 | ||||
Tunisia | Acid hydrolysis with HCl 1 M, sonication, and decoction with water | HPLC/UV/Vis | Leaf | [125] |
Phenolic acids—1.40 (mg/g) | ||||
Gallic acid—1.05 | ||||
Caffeic acid—0.08 | ||||
Syringic acid—0.08 | ||||
Vanillic acid—0.04 | ||||
Ferulic acid—0.05 | ||||
Hydrolysable tannins—8.90 (mg/g) | ||||
Gallotannins—8.75 | ||||
Flavonoids—0.91 (mg/g) | ||||
Quercetin-3-rutinoside— | ||||
Myricetin-3-O-galactoside—0.23 | ||||
Quercetin-3-galactoside—0.13 | ||||
Myricetin-3-O-rahmnoside—0.05 | ||||
Quercetin-3-O-rahmnoside—0.29 | ||||
Myricetin—0.10 | ||||
Quercetin—0.11 | ||||
Catechin—traces | ||||
Unknown—0.15 (mg/g) | ||||
Total—11.21 (mg/g) | ||||
Stem | ||||
Phenolic acids—1.17 (mg/g) | ||||
Gallic acid—1.02 | ||||
Caffeic acid— | ||||
Syringic acid—0.08 | ||||
Vanillic acid—0.02 | ||||
Ferulic acid—0.05 | ||||
Hydrolysable tannins—traces (mg/g) | ||||
Gallotannins—traces | ||||
Flavonoids—1.86 (mg/g) | ||||
Quercetin-3-rutinoside—0.08 | ||||
Myricetin-3-O-galactoside—0.11 | ||||
Quercetin-3-galactoside—0.12 | ||||
Myricetin-3-O-rahmnoside—0.15 | ||||
Quercetin-3-O-rahmnoside—0.09 | ||||
Myricetin—0.19 | ||||
Quercetin— | ||||
Catechin—1.12 | ||||
Unknown—(mg/g) | ||||
Total—3.03 (mg/g) | ||||
Flower | ||||
Phenolic acids—2.34 (mg/g) | ||||
Gallic acid—2.34 | ||||
Caffeic acid— | ||||
Syringic acid— | ||||
Vanillic acid— | ||||
Ferulic acid— | ||||
Hydrolysable tannins—3.50 (mg/g) | ||||
Gallotannins—3.50 | ||||
Flavonoids—traces (mg/g) | ||||
Quercetin-3-rutinoside– | ||||
Myricetin-3-O-galactoside—traces | ||||
Quercetin-3-galactoside— | ||||
Myricetin-3-O-rahmnoside—traces | ||||
Quercetin-3-O-rahmnoside— | ||||
Myricetin— | ||||
Quercetin— | ||||
Catechin—traces | ||||
Unknown—0.19 (mg/g) | ||||
Total—6.02 (mg/g) | ||||
Algeria | - Maceration in hydroalcoholic solution (50:50) - Hydroalcoholic extract (50:50) irradiated by microwaves (700 w), for 1 min | HPLC-DAD | Microwave assisted extraction | [147] |
Galloylquinic acid—7.33 GAE mg/g | ||||
Gallic acid—3.53 mg/g | ||||
Myricetin-3-O-galactoside—2.38 mg MRE/g | ||||
Myricetin-3-O-rhamnoside (MR)—12.26 mg/g | ||||
Ellagic acid—0.84 mg MRE/g | ||||
Maceration | ||||
Galloylquinic acid—7.66 GAE mg/g | ||||
Gallic acid—3.31 mg/g | ||||
Myricetin-3-O-galactoside—2.37 mg MRE/g | ||||
Myricetin-3-O-rhamnoside (MR)—11.78 mg/g | ||||
Ellagic acid—0.88 mg MRE/g | ||||
Algeria | Microwave-assisted extraction Ultrasound-assisted extraction Maceration | HPLC-DAD | Galloylquinic acid | [138] |
Gallic acid | ||||
Gallotannin | ||||
Myricetin-3-O-galactoside | ||||
Digalloylquinic acid | ||||
Trigalloylquinic HHDD-glucose | ||||
Myricetin galloylgalactoside | ||||
Myricetin-3-O-rhamnoside | ||||
Quercetin-3-O-rhamnoside | ||||
Iran | Maceration with methanol | HPLC | Spring (mg/100 g) | [123] |
Gallic acid—5.32 | ||||
Chlorogenic acid—2.89 | ||||
p-Coumaric acid—11.73 | ||||
Ferulic acid—85.56 | ||||
Rutin—10.87 | ||||
Luteolin—2.21 | ||||
Quercetin—5.23 | ||||
Apigenin—7.45 | ||||
Summer (mg/100 g) | ||||
Gallic acid—6.72 | ||||
Chlorogenic acid—3.79 | ||||
p-Coumaric acid—14.13 | ||||
Ferulic acid—94.71 | ||||
Rutin—16.48 | ||||
Luteolin—1.72 | ||||
Quercetin—6.41 | ||||
Apigenin—8.70 | ||||
Fall (mg/100 g) | ||||
Gallic acid—18.79 | ||||
Chlorogenic acid—3.70 | ||||
p-Coumaric acid—15.24 | ||||
Ferulic acid—168.89 | ||||
Rutin—35.38 | ||||
Luteolin—3.40 | ||||
Quercetin—5.70 | ||||
Apigenin—10.07 | ||||
Tunisia | Decoction in water: 5, 10, and 15 min of heating | HPLC-UV/Vis | 5 min (μmol/g) | [141] |
Gallic acid—6.47 | ||||
Caffeic acid—0.71 | ||||
Syringic acid—0.18 | ||||
Ferulic acid—0.29 | ||||
Myricetin-3-O- galactoside—0.59 | ||||
Myricetin-3-O-rhamnoside—0.71 | ||||
Myricetin-3-O-arabinoside—0.12 | ||||
Quercetin-3-O-galactoside—5.35 | ||||
Quercetin-3-O-rhamnoside—0.29 | ||||
Myricetin—3.00 | ||||
Quercetin—1.59 | ||||
Total—19.28 | ||||
Phenolic acids—7.64 | ||||
Flavonol glycosides—7.05 | ||||
Flavonols—4.58 | ||||
10 min (μmol/g) | ||||
Gallic acid—8.23 | ||||
Caffeic acid—0.88 | ||||
Syringic acid—0.29 | ||||
Ferulic acid—0.41 | ||||
Myricetin-3-O-galactoside—0.76 | ||||
Myricetin-3-O-rhamnoside—0.82 | ||||
Myricetin-3-O-arabinoside—0.18 | ||||
Quercetin-3-O-galactoside—6.64 | ||||
Quercetin-3-O-rhamnoside—0.29 | ||||
Myricetin—3.82 | ||||
Quercetin—2.41 | ||||
Total—24.75 | ||||
Phenolic acids—9.82 | ||||
Flavonol glycosides—8.70 | ||||
Flavonols—6.23 | ||||
15 min (μmol/g) | ||||
Gallic acid—11.82 | ||||
Caffeic acid—1.41 | ||||
Syringic acid—0.53 | ||||
Ferulic acid—0.53 | ||||
Myricetin-3-O-galactoside—1.06 | ||||
Myricetin-3-O-rhamnoside—1.18 | ||||
Myricetin-3-O-arabinoside—0.24 | ||||
Quercetin-3-O-galactoside—9.11 | ||||
Quercetin-3-O-rhamnoside—0.53 | ||||
Myricetin—5.00 | ||||
Quercetin—3.59 | ||||
Total—34.98 | ||||
Phenolic acids—14.28 | ||||
Flavonol glycosides—12.11 | ||||
Flavonols—8.58 | ||||
Not reported | Not reported | Single-crystal X-ray diffraction 1H-NMR, high resolution electrospray ionization mass spectrometry, and Heteronuclear multiple-bond correlation spectroscopy | Myrtucommuacetalone | [143] |
Myrtucommulone M | ||||
Myricetin | ||||
Isousnic acid | ||||
Growth regulator G3 factor | ||||
Myrtucommulone E | ||||
Italy | Aqueous | HPLC/DAD/ESI-MS methods | Aqueous (2009–2010) fresh material (mmol/L) | [145] |
HHDP glucose—0.151–nd | ||||
Monogalloyl-glucose—0.102–nd | ||||
Galloylquinic acid—nd–0.169 | ||||
Gallic acid—2.712–4.232 | ||||
Gallotannin m/z 801—0.545–nd | ||||
Gallotannin m/z 429—nd–nd | ||||
Gallotannin m/z 633—0.249–0.300 | ||||
Gallotannin m/z 633—0.134–nd | ||||
Gallotannin m/z 801—0.338–0.335 | ||||
Gallotannin m/z 633—0.484–nd | ||||
Gallotannin m/z 1583—nd–nd | ||||
Ellagitannin m/z 933—0.132–0.067 | ||||
Galloylquinic acid—0.619–0.355 | ||||
Gallotannin m/z 1565—3.378–0.400 | ||||
Gallotannin m/z 1567—2.403–2.344 | ||||
Gallotannin m/z 935—1.075–nd | ||||
Digalloylquinic acid—nd–0.711 | ||||
Trigalloyl HHDP-glucose—nd–0.423 | ||||
Ellagitannin m/z 953—0.261–0.551 | ||||
Gallotannin m/z 783—5.824–nd | ||||
Ellagitannin m/z 1253—nd–0.254 | ||||
Ellagitannin m/z 953—0.240–nd | ||||
Ellagitannin m/z 1085—0.336–0.239 | ||||
Myricetin galloylgalactoside—0.297–0.429 | ||||
Myricetin 3-O-galactoside—0.274–0.754 | ||||
Myricetin 3-O-rhamnoside—1.326–1.945 | ||||
Ellagic acid—0.266–0.757 | ||||
Quercetin-3-O-rhamnoside—1.326–1.945 | ||||
Total polyphenols—21.148–14.266 | ||||
Aqueous—hydroalcoholic (2010) dried material (mmol/L) | ||||
HHDP glucose—nd–nd | ||||
Monogalloyl-glucose—nd–nd | ||||
Galloylquinic acid—0.208–0.144 | ||||
Gallic acid—4.489–0.268 | ||||
Gallotannin m/z 801—nd–nd | ||||
Gallotannin m/z 429—nd–0.144 | ||||
Gallotannin m/z 633—0.435–0.265 | ||||
Gallotannin m/z 633—nd–nd | ||||
Gallotannin m/z 801—0.397–0.154 | ||||
Gallotannin m/z 633—nd–nd | ||||
Gallotannin m/z 1583—nd–7.050 | ||||
Ellagitannin m/z 933—0.189–nd | ||||
Galloylquinic acid—0.386–0.374 | ||||
Gallotannin m/z 1565—0.606–0.495 | ||||
Gallotannin m/z 1567—2.968–2.678 | ||||
Gallotannin m/z 935—0.286–nd | ||||
Digalloylquinic acid—0.559–1.574 | ||||
Trigalloyl HHDP-glucose—nd–nd | ||||
Ellagitannin m/z 953—nd–nd | ||||
Gallotannin m/z 783—nd–nd | ||||
Ellagitannin m/z 1253—0.407–0.416 | ||||
Ellagitannin m/z 953—0.794–nd | ||||
Ellagitannin m/z 1085—0.276–nd | ||||
Myricetin galloylgalactoside—0.300–0.486 | ||||
Myricetin 3-O-galactoside—0.620–1.084 | ||||
Myricetin 3-O-rhamnoside—1.392–2.526 | ||||
Ellagic acid—0.918–0.612 | ||||
Quercetin-3-O-rhamnoside—nd–0.038 | ||||
Total polyphenols—15.229–18.308 | ||||
Japan | Aqueous acetone 70% | Preparative chromatography and comparison of spectroscopy data with those previously reported | Oenothein B | [122] |
Eugeniflorin | ||||
Tellimagrandin I | ||||
Tellimagrandin II | ||||
Gallic acid | ||||
Quinic acid 3,5-di-O-gallate | ||||
Myricetin-3-O-β-d-xyloside | ||||
Myricetin-3-O-β-d-galactoside | ||||
Myricetin-3-O-β-d-galactoside-6″-O-gallate | ||||
Myricetin-3-O-β-l-rhamnoside |
Origin | Type of Extract | Identification/Quantification | Compounds | Reference |
---|---|---|---|---|
Algeria (Sahara) | Infusion and decoction | UHPLC-PDA-HRMS, NMR and HPLC-UV-PDA | Roseoside | [20] |
2-Hydroxy-1,8-cineole-β-d-glucopyranoside | ||||
2-Hydroxy-1,8-cineole 2-O-α-l-arabinofuranosyl (1→6)-β-d-glucopyranoside | ||||
3,4,5-Tri-O-galloyl-quinic acid | ||||
Myricetin-3-O-β-d(6″-galloyl)glucopyranoside | ||||
Isomyricitrin | ||||
1,2,3,6-Tetra-O-galloyl glucose | ||||
Myricitrin | ||||
Quercetin-3-O-β-d-(6″-galloyl)glucopyranoside | ||||
Myricetin-3-O-β-xyloside | ||||
Isoquercitrin | ||||
3-Oxo-α-ionol-9-O-β-d-glucopyranoside | ||||
Myricetin | ||||
Quercitrin | ||||
Algeria (Sahara) | Decoction water Fractionation: ethyl acetate and butanol | Liquid chromatography with diode array detection, coupled to mass spectrometry (ion trap) with electrospray ionization (HPLC-DAD−ESI/MSn) | Crude aqueous extract (mg/g) | [22] |
Galloyl-HHDP-glucoside—nd | ||||
Galloyl-HHDP-glucoside—29.0 | ||||
Digalloylquinic acid—nd | ||||
Digalloyl-HHDP-glucoside—14.5 | ||||
Trigalloylglucoside—3.0 | ||||
Rugosin B—5.4 | ||||
Digalloyl-HHDP-glucoside—8.9 | ||||
Trigalloylquinic acid—11.2 | ||||
Trigalloylglucoside—nd | ||||
Digalloyl-HHDP-glucoside—7.22 | ||||
Gallocatechin-gallate-dimer—10.9 | ||||
Valoneic acid dilactone—nd | ||||
Myricetin-hhexosyl-gallate—13.4 | ||||
Trigalloyl-HHDP-glucoside—4.63 | ||||
Myricetin-3-O-glucoside—8.48 | ||||
Tetragalloylglucose—nd | ||||
Rugosin A—4.9 | ||||
Tetragalloylglucose—4.02 | ||||
Quercetin-hexoxyl-gallate—1.88 | ||||
Myricetin-3-O-rhamnoside—11.3 | ||||
Quercetin-3-O-glucoside—1.64 | ||||
Ellagic acid—nd | ||||
Kaempferol-hexosyl-gallate—4.3 | ||||
Kaempferol-3-O-glucoside—nd | ||||
Quercetin-3-O-rhamnoside—nd | ||||
Myricetin—nd | ||||
Myricetin-coumaroylhexoside—nd | ||||
Total hydrosable tannins—93 (mg/g) | ||||
Total phenolic acids— | ||||
Total flavonoids—45 | ||||
Total phenolic compounds—138 | ||||
Ethyl acetate fraction (mg/g) | ||||
Galloyl-HHDP-glucoside—nd | ||||
Galloyl-HHDP-glucoside—nd | ||||
Digalloylquinic acid—6.41 | ||||
Digalloyl-HHDP-glucoside—19.28 | ||||
Trigalloylglucoside—7.1 | ||||
Rugosin B—7.0 | ||||
Digalloyl-HHDP-glucoside—20.72 | ||||
Trigalloylquinic acid—22.2 | ||||
Trigalloylglucoside—12.3 | ||||
Digalloyl-HHDP-glucoside—11.1 | ||||
Gallocatechin-gallate-dimer—35.6 | ||||
Valoneic acid dilactone—9.5 | ||||
Myricetin-hhexosyl-gallate—37.0 | ||||
Trigalloyl-HHDP-glucoside—17.1 | ||||
Myricetin-3-O-glucoside—19.88 | ||||
Tetragalloylglucose—16.3 | ||||
Rugosin A—9.7 | ||||
Tetragalloylglucose—13.2 | ||||
Quercetin-hexoxyl-gallate—10.54 | ||||
Myricetin-3-O-rhamnoside—85.75 | ||||
Quercetin-3-O-glucoside—3.1 | ||||
Ellagic acid—27.1 | ||||
Kaempferol-hexosyl-gallate—8.34 | ||||
Kaempferol-3-O-glucoside—3.3 | ||||
Quercetin-3-O-rhamnoside—3.2 | ||||
Myricetin—5.5 | ||||
Myricetin-coumaroylhexoside—2.12 | ||||
Total hydrosable tannins—172 (mg/g) | ||||
Total phenolic acids—27.08 | ||||
Total flavonoids—200 | ||||
Total phenolic compounds—398 | ||||
Butanol fraction (mg/g) | ||||
Galloyl-HHDP-glucoside—10.01 | ||||
Galloyl-HHDP-glucoside—17.4 | ||||
Digalloylquinic acid—14.3 | ||||
Digalloyl-HHDP-glucoside—26.7 | ||||
Trigalloylglucoside—6.18 | ||||
Rugosin B—9.4 | ||||
Digalloyl-HHDP-glucoside—16.9 | ||||
Trigalloylquinic acid—31.3 | ||||
Trigalloylglucoside—12.2 | ||||
Digalloyl-HHDP-glucoside—6.6 | ||||
Gallocatechin-gallate-dimer—13.2 | ||||
Valoneic acid dilactone—8.47 | ||||
Myricetin-hhexosyl-gallate—17.8 | ||||
Trigalloyl-HHDP-glucoside—nd | ||||
Myricetin-3-O-glucoside—23.6 | ||||
Tetragalloylglucose—nd | ||||
Rugosin A—7.8 | ||||
Tetragalloylglucose—nd | ||||
Quercetin-hexoxyl-gallate—1.99 | ||||
Myricetin-3-O-rhamnoside—12.4 | ||||
Quercetin-3-O-glucoside—2.18 | ||||
Ellagic acid—6.4 | ||||
Kaempferol-hexosyl-gallate—nd | ||||
Kaempferol-3-O-glucoside—nd | ||||
Quercetin-3-O-rhamnoside—nd | ||||
Myricetin—nd | ||||
Myricetin-coumaroylhexoside—nd | ||||
Total hydrosable tannins—167.5 (mg/g) | ||||
Total phenolic acids—6.4 | ||||
Total flavonoids—62.9 | ||||
Total phenolic compounds—236.8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hennia, A.; Miguel, M.G.; Nemmiche, S. Antioxidant Activity of Myrtus communis L. and Myrtus nivellei Batt. & Trab. Extracts: A Brief Review. Medicines 2018, 5, 89. https://doi.org/10.3390/medicines5030089
Hennia A, Miguel MG, Nemmiche S. Antioxidant Activity of Myrtus communis L. and Myrtus nivellei Batt. & Trab. Extracts: A Brief Review. Medicines. 2018; 5(3):89. https://doi.org/10.3390/medicines5030089
Chicago/Turabian StyleHennia, Aicha, Maria Graça Miguel, and Said Nemmiche. 2018. "Antioxidant Activity of Myrtus communis L. and Myrtus nivellei Batt. & Trab. Extracts: A Brief Review" Medicines 5, no. 3: 89. https://doi.org/10.3390/medicines5030089
APA StyleHennia, A., Miguel, M. G., & Nemmiche, S. (2018). Antioxidant Activity of Myrtus communis L. and Myrtus nivellei Batt. & Trab. Extracts: A Brief Review. Medicines, 5(3), 89. https://doi.org/10.3390/medicines5030089