Clinical and Basic Studies on Therapeutic Efficacy of Herbal Medicines against Mycobacterial Infections
Abstract
:1. Introduction
2. General Aspect of Immunoadjunctive Therapy for the Clinical Treatment of Mycobacteriosis
3. Immunological Effects of Herbal Medicines/Medicinal Plants, and Their Chemical Components in Modulating Host Antimycobacterial Resistance
3.1. Curcumin
3.2. Astragalus Polysaccharide and Polyphenol
3.3. Triptolide of Tripterygium Regelii
3.4. Berberine of Coptis Japonic and Phellodendron Amurense
3.5. Artemisinin of Artemisia Annua
3.6. Andrographolide of Andrographis Paniculata
3.7. Piperlongumine of Piper Longum
3.8. Osthole of Cnidium Monnieri
3.9. Glycyrrhiza Uralensis
3.10. Gastrodiae Rhizoma
3.11. Some Remarks on the Immunological Action of Chemical Components of Herbal Medicines
4. In Vivo Efficacy of Herbal Medicines as Immunoadjunctive Therapeutics against Mycobacteriosis
4.1. Therapeutic Effects of Herbal Medicines against Experimental Mycobacterial Infections Induced in Mice and Rats
4.2. Therapeutic Effects of Traditional Herbal Medicines against Clinical Control of Intractable Mycobacteriosis in Humans
4.3. Clinical Studies on the Therapeutic Efficacies of Individual Herbal Medicines
4.3.1. Ninjin’yoeito
4.3.2. Hochuekkito
4.3.3. Saikanto
4.3.4. Shakanzoto
4.3.5. Chikuyosekkoto and Shigyakuto
5. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Tomioka, H. Current status of some antituberculosis drugs and the development of new antituberculous agents with special reference to their in vitro and in vivo antimicrobial activities. Curr. Pharm. Des. 2006, 12, 4047–4070. [Google Scholar] [CrossRef] [PubMed]
- Mdluli, K.; Kaneko, T.; Upton, A. The tuberculosis drug discovery and development pipeline and emerging drug targets. Cold Spring Harb. Perspect. Med. 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Benson, C.A. Disseminated Mycobacterium avium complex infection: Implications of recent clinical trials on prophylaxis and treatment. AIDS Clin. Rev. 1997, 1997–1998, 271–287. [Google Scholar]
- Tomioka, H.; Tatano, Y.; Yasumoto, K.; Shimizu, T. Recent advances in antituberculous drug development and novel drug targets. Expert. Rev. Respir. Med. 2008, 2, 455–471. [Google Scholar] [CrossRef] [PubMed]
- Tomioka, H. New approaches to tuberculosis—Novel drugs based on drug targets related to toll-like receptors in macrophages. Curr. Pharm. Des. 2014, 20, 4404–4417. [Google Scholar]
- Tomioka, H. Adjunctive immunotherapy of mycobacterial infections. Curr. Pharm. Des. 2004, 10, 3297–3312. [Google Scholar] [CrossRef]
- Wallis, R.S.; Hafner, R. Advancing host-directed therapy for tuberculosis. Nat. Rev. Immunol. 2015, 15, 255–263. [Google Scholar] [CrossRef]
- Shaikh, Z. Cytokines & their physiologic and pharmacologic functions in inflammation: A review. Int. J. Pharm. Life Sci. 2011, 2, 1247–1263. [Google Scholar]
- Hawn, T.R.; Shah, J.A.; Kalman, D. New tricks for old dogs: Countering antibiotic resistance in tuberculosis with host-directed therapeutics. Immunol. Rev. 2015, 264, 344–362. [Google Scholar] [CrossRef]
- Rayasam, G.V.; Balganesh, T.S. Exploring the potential of adjunct therapy in tuberculosis. Trends Pharmacol. Sci. 2015, 36, 506–513. [Google Scholar] [CrossRef]
- Tobin, D.M. Host-directed therapies for tuberculosis. Cold Spring Harb. Perspect. Med. 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Tomioka, H.; Sato, K.; Sano, C.; Akaki, T.; Dekio, S.; Yamada, Y.; Kamei, T.; Sibata, H.; Higashi, N. Effects of the Chinese traditional medicine Mao-Bushi-Saishin-To on therapeutic efficacy of a new benzoxazinorifamycin, KRM-1648, against Mycobacterium avium infection in mice. Antimicrob. Agents Chemother. 1999, 43, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Tomioka, H.; Sato, K.; Sano, C.; Yamada, Y.; Shibata, H.; Higashi, N. Effects of Yokuinin on the therapeutic efficacy of a new benzoxazinorifamycin KRM-1648 against Mycobacterium avium infection. Int. J. Antimicrob. Agents 1999, 11, 69–74. [Google Scholar] [CrossRef]
- Lu, J.; Ye, S.; Qin, R.; Deng, Y.; Li, C.P. Effect of Chinese herbal medicine extracts on cell-mediated immunity in a rat model of tuberculosis induced by multiple drug-resistant bacilli. Mol. Med. Rep. 2013, 8, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Oberley-Deegan, R.E.; Bai, A.; Ovrutsky, A.R.; Kinney, W.H.; Weaver, M.; Zhang, G.; Honda, J.R.; Chan, E.D. Curcumin enhances human macrophage control of Mycobacterium tuberculosis infection. Respirology 2016, 21, 951–957. [Google Scholar] [CrossRef]
- Karuppagounder, V.; Arumugam, S.; Thandavarayan, R.A.; Sreedhar, R.; Giridharan, V.V.; Afrin, R.; Harima, M.; Miyashita, S.; Hara, M.; Suzuki, K.; et al. Curcumin alleviates renal dysfunction and suppresses inflammation by shifting from M1 to M2 macrophage polarization in daunorubicin induced nephrotoxicity in rats. Cytokine 2016, 84, 1–9. [Google Scholar] [CrossRef]
- Xu, H.D.; You, C.G.; Zhang, R.L.; Gao, P.; Wang, Z.R. Effects of Astragalus polysaccharides and astragalosides on the phagocytosis of Mycobacterium tuberculosis by macrophages. J. Int. Med. Res. 2007, 35, 84–90. [Google Scholar] [CrossRef]
- Shao, B.M.; Xu, W.; Dai, H.; Tu, P.; Li, Z.; Gao, X.M. A study on the immune receptors for polysaccharides from the roots of Astragalus membranaceus, a Chinese medicinal herb. Biochem. Biophys. Res. Commun. 2004, 320, 1103–1111. [Google Scholar] [CrossRef]
- Hou, Y.C.; Wu, J.M.; Wang, M.Y.; Wu, M.H.; Chen, K.Y.; Yeh, S.L.; Lin, M.T. Modulatory effects of Astragalus polysaccharides on T-Cell polarization in mice with polymicrobial sepsis. Mediators Inflamm. 2015, 2015, 826319. [Google Scholar] [CrossRef]
- Qiu, D.; Zhao, G.; Aoki, Y.; Shi, L.; Uyei, A.; Nazarian, S.; Ng, J.C.; Kao, P.N. Immunosuppressant PG490 (triptolide) inhibits T-cell interleukin-2 expression at the level of purine-box/nuclear factor of activated T-cells and NF-κB transcriptional activation. J. Biol. Chem. 1999, 274, 13443–13450. [Google Scholar] [CrossRef]
- Qin, X.; Guo, B.T.; Wan, B.; Fang, L.; Lu, L.; Wu, L.; Zang, Y.Q.; Zhang, J.Z. Regulation of Th1 and Th17 cell differentiation and amelioration of experimental autoimmune encephalomyelitis by natural product compound berberine. J. Immunol. 2010, 185, 1855–1863. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Tan, W.S.; Wong, W.S. Andrographolide restores steroid sensitivity to block lipopolysaccharide/IFN—Induced IL-27 and airway hyperresponsiveness in mice. J. Immunol. 2016, 196, 4706–4712. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Shi, M.; Qiu, Q.; Huang, M.; Zeng, S.; Zou, Y.; Zhan, Z.; Liang, L.; Yang, X.; Xu, H. Piperlongumine suppresses dendritic cell maturation by reducing production of reactive oxygen species and has therapeutic potential for rheumatoid arthritis. J. Immunol. 2016, 196, 4925–4934. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.-Y.; Lee, C.-C.; Fan, C.-K.; Huang, H.-M.; Chiang, B.-L.; Lee, Y.-L. Osthole treatment ameliorates Th2-mediated allergic asthma and exerts immunomodulatory effects on dendritic cell maturation and function. Cell. Mol. Immunol. 2017, 14, 935–947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, G.; Lee, H.E.; Han, S.-H.; An, T.-J.; Jang, J.-K.; Lee, J.Y. A natural product inhibitor of the NLRP3 inflammasome derived from Glycyrrhiza uralensis for the treatment of inflammatory diseases. J. Immunol. 2017, 198 (Suppl. 1), 138.3. [Google Scholar]
- Park, S.Y.; Kim, E.J.; Song, B.N.; Jeong, D.S.; Kim, S.Y.; Park, B.R.; Choi, H.S. Anti-inflammatory activities and component change of processed and fermented Gastrodiae Rhizoma. J. Immunol. 2018, 200 (Suppl. 1), 42.11. [Google Scholar]
- Goel, A.; Kunnumakkara, A.B.; Aggarwal, B.B. Curcumin as “Curecumin”: From kitchen to clinic. Biochem. Pharmacol. 2008, 75, 787–809. [Google Scholar] [CrossRef]
- Tomioka, H.; Tatano, Y.; Maw, W.W.; Sano, C.; Kanehiro, Y.; Shimizu, T. Characteristics of suppressor macrophages induced by mycobacterial and protozoal infections in relation to alternatively activated M2 macrophages. Clin. Dev. Immunol. 2012, 2012, 6354512. [Google Scholar] [CrossRef]
- Murray, P.J.; Allen, J.E.; Biswas, S.K.; Fisher, F.A.; Gilroy, D.W.; Goerdt, S.; Gordon, S.; Hamilton, J.A.; Ivashkiv, L.B.; Lawrence, T.; et al. Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity 2014, 41, 14–20. [Google Scholar] [CrossRef]
- Tomioka, H. Exploration for promising drug targets useful for the development of novel antimycobacterial agents based on macrophage activation and polarization. Austin J. Clin. Immunol. 2016, 3, 1029–1035. [Google Scholar]
- Li, M.; Wu, Z.; Niu, W.; Wan, Y.; Zhang, L.; Shi, G.; Xi, X. The protective effect of curcumin against the 19-kDa Mycobacterium tuberculosis protein-induced inflammation and apoptosis in human macrophages. Mol. Med. Rep. 2014, 10, 3261–3267. [Google Scholar] [CrossRef] [PubMed]
- Baker, M. Deceptive curcumin offers cautionary tale for chemists. Nature 2017, 541, 144–145. [Google Scholar] [CrossRef] [PubMed]
- McKenna, D.; Hughes, K.; Jones, K. Astragalus. Altern. Ther. Health Med. 2002, 8, 34–40. [Google Scholar] [PubMed]
- Han, R.; Rostami-Yazdi, M.; Gerdes, S.; Mrowietz, U. Triptolide in the treatment of psoriasis and other immune-mediated inflammatory diseases. Br. J. Clin. Pharmacol. 2012, 74, 424–436. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Eisenbrand, G. Phellodendron amurense Rupr. In Chinese Drugs of Plant Origin; Springer Science & Business Media: Berlin, Germany, 1992. [Google Scholar]
- Klayman, D.L. Qinghaosu (artemisinin): An antimalarial drug from China. Science 1985, 31, 1049–1055. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.G.; Wang, Y.; Guo, Z.; Gu, A.D.; Dan, H.C.; Baldwin, A.S.; Hao, W.; Wan, Y.Y. Dihydroartemisinin ameliorates inflammatory disease by its reciprocal effects on Th and regulatory T cell function via modulating the mammalian target of rapamycin pathway. J. Immunol. 2012, 189, 4417–4425. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kamboj, J.; Suman; Sharma, S. Overview for various aspects of the health benefits of Piper longum linn. fruit. J. Acupunct. Meridian Stud. 2011, 4, 134–140. [Google Scholar] [CrossRef]
- Zhang, Z.R.; Leung, W.N.; Cheung, H.Y.; Chan, C.W. Osthole: A review on its bioactivities, pharmacological properties, and potential as alternative medicine. Evid.-Based Complement. Altern. Med. 2015, 2015, 919616. [Google Scholar] [CrossRef]
- Fiore, C.; Eisenhut, M.; Ragazzi, E.; Zanchin, G.; Armanini, D. A history of the therapeutic use of liquorice in Europe. J. Ethnopharmacol. 2005, 99, 317–324. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; Hong, Y.; Feng, Y.; Chen, M.; Wang, Y. Phytochemical and Pharmacological Review of Da Chuanxiong Formula: A Famous Herb Pair Composed of Chuanxiong Rhizoma and Gastrodiae Rhizoma for Headache. Evid. Based Complement Altern. Med. 2013, 2013, 425369. [Google Scholar] [CrossRef]
- Li, F.-S.; Weng, J.K. Demystifying traditional herbal medicine with modern approach. Nat. Plants 2017, 3, 17109. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Wang, X.; Song, J.; Wang, L.; Chen, D.; Yang, Y.; Bai, X.; Wang, J.; Shi, Y.; Chen, S.; et al. Therapeutic effects of traditional Chinese medicine Niubeixiaohe in mouse tuberculosis models. J. Ethnopharmacol. 2017, 195, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Liu, Y.; He, F.; Liu, C.; Ye, Z.; Fu, Z.; Chen, X.; Chen, X.; Lei, J.; Li, C. Short-term therapeutic effect of Yifei Tongluo Decoction combined with chemotherapy for multidrug-resistant tuberculosis. J. New Chin. Med. 2012, 44, 22–25. [Google Scholar]
- Fan, X.; Li, N.; Wang, X.; Zhang, J.; Xu, M.; Liu, X.; Wang, B. Protective immune mechanisms of Yifei Tongluo, a Chinese herb formulation, in the treatment of mycobacterial infection. PLoS ONE 2018, 13, e0203678. [Google Scholar] [CrossRef] [PubMed]
- Ito, H.; Baba, S.; Takagi, I.; Ohya, Y.; Yokota, A.; Ito, H.; Inagaki, M.; Oyama, K.; Hojo, G.; Maruo, T.; et al. Effect of Mao-Bushi-Saishin-To on nasal allergy with nasal obstruction. Pract. Otol. 1994, 52, 107–118. [Google Scholar]
- Sato, K.; Shimizu, T.; Sano, C.; Tomioka, H. Effects of the Chinese traditional medicines Kakkon-to, Hochu-ekki-to, and Juzen-taiho-to on the antimicrobial activity of clarithromycin in combination with rifampicin against Mycobacterium avium complex within THP-1 human macrophages and A-549 human type II alveolar epithelial cells. Jpn. J. Chemother. 2004, 52, 486–489. (In Japanese) [Google Scholar]
- Jiang, R.H.; Xu, H.B.; Fu, J. Outcomes of Chinese herb medicine for the treatment of multidrug-resistant tuberculosis: A systematic review and meta-analysis. Complement Ther. Med. 2015, 23, 544–554. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Guan, X.; Chi, Y.; Robinson, N.; Liu, J.P. Chinese herbal medicine as adjuvant treatment to chemotherapy for multidrug-resistant tuberculosis (MDR-TB): A systematic review of randomised clinical trials. Tuberculosis 2015, 95, 364–372. [Google Scholar] [CrossRef]
- Enomoto, Y.; Hagiwara, E.; Komatsu, S.; Nishihira, R.; Baba, T.; Kitamura, H.; Sekine, A.; Nakazawa, A.; Ogura, T. Pilot quasi-randomized controlled study of herbal medicine Hochuekkito as an adjunct to conventional treatment for progressed pulmonary Mycobacterium avium complex disease. PLoS ONE 2014, 9, e104411. [Google Scholar] [CrossRef]
- Inagaki, M. A case of patient with pulmonary atypical micobacteriosis to whoom administration of Ninjin-Youei-To was effective. Gendai Toyo Igaku 1994, 15, 108–109. (In Japanese) [Google Scholar]
- Nogami, T.; Sekiya, N.; Mitsuma, T.; Yamaguchi, T. A case of pulmonary Mycobacterium fortuitum infection succesfully treated with Kampo treatments. Kekkaku 2006, 81, 525–529. (In Japanese) [Google Scholar] [PubMed]
- Shimada, T.; Terasawa, K. A case of atypical micobacteriosis to which the administration of Ninjin-Youei-To (Seizaisouroku) was effective. Cur. Ther. 1997, 15, 509–512. (In Japanese) [Google Scholar]
- Hikizuna, H.; Terasawa, K. A case of atypical micobacteriosis with chronic potent inflammatory reactions, to which the administration of Saikan-To was very efficacious. Cur. Ther. 1997, 15, 1403–1406. (In Japanese) [Google Scholar]
- Shibahara, N.; Terasawa, K. A case of patient with atypical micobacteriosis to whoom the combination therapy with antimicrobials and traditional chinese medicines was efficacious. Toyama Med. J. 1992, 5, 30–33. (In Japanese) [Google Scholar]
- Kuwatani, K.; Kainuma, S.; Kubota, M.; Furusyo, N. A case of refractory blood sputum due to pulmonary atypical mycobacteriosis successfully treated by Shakanzo and Yokuinin. Kampo Med. 2013, 64, 115–118. (In Japanese) [Google Scholar] [CrossRef]
- Shi, G.; Zhang, L. Effects on type 2 diabetes complicated with pulmonary tuberculosis: Regiment of insulin, isoniazid, rifampicin, pyrazinamide and ethambutol versus the regiment plus Qi-boosting and Yin-nourishing decoction of Traditional Chinese Medicine. J. Tradit. Chin. Med. 2015, 35, 260–265. [Google Scholar] [PubMed]
- Putri, D.U.; Rintiswati, N.; Soesatyo, M.H.; Haryana, S.M. Immune modulation properties of herbal plant leaves: Phyllanthus niruri aqueous extract on immune cells of tuberculosis patient—In vitro study. Nat. Prod. Res. 2018, 32, 463–467. [Google Scholar] [CrossRef]
Chemical Components | Herbs/Medicinal Plants | Remarks | References |
---|---|---|---|
| Curcuma longa | Potentiation of anti-MTB activity of macrophages Blocking effect against M1 macrophage polarization due to inhibition of TLR2 activation of macrophages | [15,16] |
| Astragalus membranaceus | Potentiation of macrophage production of inflammatory cytokines (IL-6, IL-1β, TNF-α) Up-regulation of expansion of Th1 and Th17 cells Down-regulation of Treg and Th2 cells | [17,18,19] |
| Astragalus membranaceus | Potentiation of macrophage production of inflammatory cytokines (IL-6, IL-1β, TNF-α) | [17] |
| Tripterygium regelii | Supression of IL-2 production by T cells Reduction of macrophage production of IL-12 and IL-23 | [20] |
| Coptis japonica Phellodendron amurense | Inhibition of the expansion of Th1 and Th17 cells but not Treg cells | [21] |
| Andrographis paniculata | Restoration of LPS-IFN-g-induced reduction of macrophage sensitivity to dexamesasone based on IL-27 generation | [22] |
| Piper longum | Inhibition of dendritic cell maturation in response to LPS resulting in supression of inflammatory cytokines (IL-12, IL-6, TNF-α) | [23] |
| Cnidium monnieri | Suppression of Th2-cell-mediated asthma by inhibiting Th2-type cytokines (Il-4, IL-5, IL-13, but not IL-10) Blocking of dendritic cell maturation, resulting in lowered expression of inflammatory cytokines (IL-12, IL-6, TNF-α) but increased expression of IL-10 | [24] |
| Glycyrrhiza uralensis | Reduction of matured IL-1β production by macrophages due to inhibition of caspase-1 expression | [25] |
| Gastrodiae rhizome (Gastrodia elata) | Suppression of macrophage production of reactive oxygen species, prostaglandin E2 | [26] |
CHM/Study Design | Remarks | References |
---|---|---|
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [43] |
|
| [12] |
|
| [13] |
|
| [14] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomioka, H.; Tatano, Y.; Shimizu, T.; Sano, C. Clinical and Basic Studies on Therapeutic Efficacy of Herbal Medicines against Mycobacterial Infections. Medicines 2019, 6, 67. https://doi.org/10.3390/medicines6020067
Tomioka H, Tatano Y, Shimizu T, Sano C. Clinical and Basic Studies on Therapeutic Efficacy of Herbal Medicines against Mycobacterial Infections. Medicines. 2019; 6(2):67. https://doi.org/10.3390/medicines6020067
Chicago/Turabian StyleTomioka, Haruaki, Yutaka Tatano, Toshiaki Shimizu, and Chiaki Sano. 2019. "Clinical and Basic Studies on Therapeutic Efficacy of Herbal Medicines against Mycobacterial Infections" Medicines 6, no. 2: 67. https://doi.org/10.3390/medicines6020067
APA StyleTomioka, H., Tatano, Y., Shimizu, T., & Sano, C. (2019). Clinical and Basic Studies on Therapeutic Efficacy of Herbal Medicines against Mycobacterial Infections. Medicines, 6(2), 67. https://doi.org/10.3390/medicines6020067