High Serum Phosphate Level as a Risk Factor to Determine Renal Prognosis in Autosomal Dominant Polycystic Kidney Disease: A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Covariate Assessments and Definitions of the Comorbidities
2.3. Study End Point
2.4. Statistical Analyses
3. Results
3.1. Patient Characteristics
3.2. Prognostic Indicators in Patients with ADPKD
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mochizuki, T.; Tsuchiya, K.; Nitta, K. Autosomal dominant polycystic kidney disease: Recent advances in pathogenesis and potential therapies. Clin. Exp. Nephrol. 2013, 17, 317–326. [Google Scholar] [CrossRef]
- Johnson, A.M.; Gabow, P.A. Identification of patients with autosomal dominant polycystic kidney disease at highest risk for end-stage renal disease. J. Am. Soc. Nephrol. 1997, 8, 1560–1567. [Google Scholar] [PubMed]
- Cornec-Le Gall, E.; Audrezet, M.P.; Rousseau, A.; Hourmant, M.; Renaudineau, E.; Charasse, C.; Morin, M.P.; Moal, M.C.; Dantal, J.; Wehbe, B.; et al. The PROPKD Score: A New Algorithm to Predict Renal Survival in Autosomal Dominant Polycystic Kidney Disease. J. Am. Soc. Nephrol. 2016, 27, 942–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kataoka, H.; Fukuoka, H.; Makabe, S.; Yoshida, R.; Teraoka, A.; Ushio, Y.; Akihisa, T.; Manabe, S.; Sato, M.; Mitobe, M.; et al. Prediction of Renal Prognosis in Patients with Autosomal Dominant Polycystic Kidney Disease Using PKD1/PKD2 Mutations. J. Clin. Med. 2020, 9, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, V.E.; Grantham, J.J.; Chapman, A.B.; Mrug, M.; Bae, K.T.; King, B.F., Jr.; Wetzel, L.H.; Martin, D.; Lockhart, M.E.; Bennett, W.M.; et al. Potentially modifiable factors affecting the progression of autosomal dominant polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 2011, 6, 640–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ushio, Y.; Kataoka, H.; Sato, M.; Manabe, S.; Watanabe, S.; Akihisa, T.; Makabe, S.; Yoshida, R.; Tsuchiya, K.; Nitta, K.; et al. Association between anemia and renal prognosis in autosomal dominant polycystic kidney disease: A retrospective study. Clin. Exp. Nephrol. 2020. [Google Scholar] [CrossRef]
- Schwarz, S.; Trivedi, B.K.; Kalantar-Zadeh, K.; Kovesdy, C.P. Association of disorders in mineral metabolism with progression of chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2006, 1, 825–831. [Google Scholar] [CrossRef]
- Pavik, I.; Jaeger, P.; Kistler, A.D.; Poster, D.; Krauer, F.; Cavelti-Weder, C.; Rentsch, K.M.; Wuthrich, R.P.; Serra, A.L. Patients with autosomal dominant polycystic kidney disease have elevated fibroblast growth factor 23 levels and a renal leak of phosphate. Kidney Int. 2011, 79, 234–240. [Google Scholar] [CrossRef] [Green Version]
- Pei, Y.; Obaji, J.; Dupuis, A.; Paterson, A.D.; Magistroni, R.; Dicks, E.; Parfrey, P.; Cramer, B.; Coto, E.; Torra, R.; et al. Unified criteria for ultrasonographic diagnosis of ADPKD. J. Am. Soc. Nephrol. 2009, 20, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Rossetti, S.; Harris, P.C. Genotype-phenotype correlations in autosomal dominant and autosomal recessive polycystic kidney disease. J. Am. Soc. Nephrol. 2007, 18, 1374–1380. [Google Scholar] [CrossRef] [Green Version]
- Voormolen, N.; Noordzij, M.; Grootendorst, D.C.; Beetz, I.; Sijpkens, Y.W.; van Manen, J.G.; Boeschoten, E.W.; Huisman, R.M.; Krediet, R.T.; Dekker, F.W.; et al. High plasma phosphate as a risk factor for decline in renal function and mortality in pre-dialysis patients. Nephrol. Dial. Transpl. 2007, 22, 2909–2916. [Google Scholar] [CrossRef] [PubMed]
- O’Seaghdha, C.M.; Hwang, S.J.; Muntner, P.; Melamed, M.L.; Fox, C.S. Serum phosphorus predicts incident chronic kidney disease and end-stage renal disease. Nephrol. Dial. Transpl. 2011, 26, 2885–2890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zoccali, C.; Ruggenenti, P.; Perna, A.; Leonardis, D.; Tripepi, R.; Tripepi, G.; Mallamaci, F.; Remuzzi, G.; Group, R.S. Phosphate may promote CKD progression and attenuate renoprotective effect of ACE inhibition. J. Am. Soc. Nephrol. 2011, 22, 1923–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, W.X.; Xu, N.; Kumagai, T.; Shiraishi, T.; Kikuyama, T.; Omizo, H.; Sakai, K.; Arai, S.; Tamura, Y.; Ota, T.; et al. The Impact of Normal Range of Serum Phosphorus on the Incidence of End-Stage Renal Disease by A Propensity Score Analysis. PLoS ONE 2016, 11, e0154469. [Google Scholar] [CrossRef]
- Shimada, T.; Hasegawa, H.; Yamazaki, Y.; Muto, T.; Hino, R.; Takeuchi, Y.; Fujita, T.; Nakahara, K.; Fukumoto, S.; Yamashita, T. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J. Bone Miner. Res. 2004, 19, 429–435. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.C.; Shi, M.; Zhang, J.; Pastor, J.; Nakatani, T.; Lanske, B.; Razzaque, M.S.; Rosenblatt, K.P.; Baum, M.G.; Kuro-o, M.; et al. Klotho: A novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J. 2010, 24, 3438–3450. [Google Scholar] [CrossRef] [Green Version]
- Wolf, M. Update on fibroblast growth factor 23 in chronic kidney disease. Kidney international. 2012, 82, 737–747. [Google Scholar] [CrossRef] [Green Version]
- Isakova, T.; Xie, H.; Yang, W.; Xie, D.; Anderson, A.H.; Scialla, J.; Wahl, P.; Gutierrez, O.M.; Steigerwalt, S.; He, J.; et al. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA 2011, 305, 2432–2439. [Google Scholar] [CrossRef] [Green Version]
- Nakano, C.; Hamano, T.; Fujii, N.; Matsui, I.; Tomida, K.; Mikami, S.; Inoue, K.; Obi, Y.; Okada, N.; Tsubakihara, Y.; et al. Combined use of vitamin D status and FGF23 for risk stratification of renal outcome. Clin. J. Am. Soc. Nephrol. 2012, 7, 810–819. [Google Scholar] [CrossRef]
- Pavik, I.; Jaeger, P.; Ebner, L.; Wagner, C.A.; Petzold, K.; Spichtig, D.; Poster, D.; Wuthrich, R.P.; Russmann, S.; Serra, A.L. Secreted Klotho and FGF23 in chronic kidney disease Stage 1 to 5: A sequence suggested from a cross-sectional study. Nephrol. Dial. Transplant. 2013, 28, 352–359. [Google Scholar] [CrossRef] [Green Version]
- Pavik, I.; Jaeger, P.; Ebner, L.; Poster, D.; Krauer, F.; Kistler, A.D.; Rentsch, K.; Andreisek, G.; Wagner, C.A.; Devuyst, O.; et al. Soluble klotho and autosomal dominant polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 2012, 7, 248–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akiyama, K.; Mochizuki, T.; Kataoka, H.; Tsuchiya, K.; Nitta, K. Fibroblast growth factor 23 and soluble Klotho in patients with autosomal dominant polycystic kidney disease. Nephrology 2017, 22, 848–853. [Google Scholar] [CrossRef] [PubMed]
- Spichtig, D.; Zhang, H.; Mohebbi, N.; Pavik, I.; Petzold, K.; Stange, G.; Saleh, L.; Edenhofer, I.; Segerer, S.; Biber, J.; et al. Renal expression of FGF23 and peripheral resistance to elevated FGF23 in rodent models of polycystic kidney disease. Kidney Int. 2014, 85, 1340–1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakatani, T.; Sarraj, B.; Ohnishi, M.; Densmore, M.J.; Taguchi, T.; Goetz, R.; Mohammadi, M.; Lanske, B.; Razzaque, M.S. In vivo genetic evidence for klotho-dependent, fibroblast growth factor 23 (Fgf23) -mediated regulation of systemic phosphate homeostasis. FASEB J. 2009, 23, 433–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Entire | Men | Women | p–value |
---|---|---|---|---|
n = 55 | n = 25 | n = 30 | ||
Clinical Findings | ||||
Age (years, median (Q1, Q3)) | 49 [40, 59] | 49 [41, 54.5] | 47.5 [37.5, 64] | 0.7543 |
Sex (Men; %) | 25 (45.5) | 25 (100) | 0 (0) | < 0.0001 |
SBP (mmHg, median (Q1, Q3)) | 127.3 [120.5, 135.4] | 128.8 [122.1, 136.6] | 126 [118.9, 135.1] | 0.3252 |
DBP (mmHg, median (Q1, Q3)) | 80.3 [74.8, 87.3] | 84.7 [75.3, 88.7] | 77.2 [71.6, 86.8] | 0.1409 |
MBP (mmHg, median (Q1, Q3)) | 95.6 [90.3, 102.8] | 98.2 [91.6, 103.1] | 93.1 [79.3, 102.3] | 0.1317 |
PP (mmHg, median (Q1, Q3)) | 48 [41.3, 53.2] | 50.7 [39.3, 53] | 47.3 [43.1, 54] | 0.7876 |
BMI (kg/m2, median (Q1, Q3)) | 22.1 [20.5, 23.4] | 23 [21.9, 24.6] | 21.1 [19.7, 22.9] | 0.0053 |
Mutation Type | ||||
PKD1 (%) | 40 (72.7) | 19 (82.6) | 21 (72.4) | 0.5132 |
PKD2 (%) | 12 (21.8) | 4 (17.4) | 8 (27.6) | |
Laboratory Findings | ||||
Hemoglobin (g/dL, median [Q1, Q3]) | 12.6 [11.3, 13.6] | 13 [11.4, 14.3] | 12.5 [11.2, 13.4] | 0.1110 |
Total Protein (g/dL, median [Q1, Q3]) | 7 [6.8, 7.4] | 7.1 [6.8, 7.3] | 7 [6.8, 7.4] | 0.6633 |
Serum Albumin (g/dL, median [Q1, Q3]) | 4.2 [4.1, 4.5] | 4.2 [4.1, 4.6] | 4.2 [4, 4.4] | 0.2262 |
Blood Urea Nitrogen (mg/dL, median [Q1, Q3]) | 22.4 [16.5, 32.6] | 23.4 [19.1, 40.8] | 19.8 [15.8, 29.6] | 0.1556 |
Serum Creatinine (mg/dL, median [Q1, Q3]) | 1.48 [0.88, 2.7] | 1.8 [1.31, 3.99] | 1.01 [0.70, 2.34] | 0.0035 |
eGFR (mL/min/1.73m2, median [Q1, Q3]) | 39.5 [17.6, 65.7] | 35.6 [14.1, 47.4] | 46.6 [18.7, 77.4] | 0.0745 |
Uric Acid (mg/dL, median [Q1, Q3]) | 6.3 [5.1, 7.2] | 7.1 [6, 7.8] | 5.4 [4.2, 6.6] | 0.0004 |
Triglyceride (mg/dL, median [Q1, Q3]) | 109 [74, 167] | 137.5 [97.3, 182.5] | 79 [59, 135.5] | 0.0044 |
LDL Cholesterol (mg/dL, median [Q1, Q3]) | 104.6 [82.8, 116.9] | 108 [85, 126.8] | 100.8 [74.8, 115.9] | 0.7042 |
HDL Cholesterol (mg/dL, median [Q1, Q3]) | 59 [44, 81.5] | 45.2 [36.5, 57] | 71 [57.5, 93.5] | 0.0049 |
AST (IU/L, median [Q1, Q3]) | 18.5 [15.8, 21] | 17 [15, 19] | 19.5 [16.8, 21.3] | 0.0963 |
ALT (IU/L, median [Q1, Q3]) | 15 [13, 19.8] | 15.5 [12.5, 20.3] | 14.5 [12.8, 18.5] | 0.6474 |
ALP (IU/L, median [Q1, Q3]) | 218 [148, 265.5] | 220 [211.5, 294.5] | 191 [133.3, 266.8] | 0.4555 |
GGT (IU/L, median [Q1, Q3]) | 32 [21.5, 52] | 36 [26.5, 62] | 24 [17.3, 45.3] | 0.1602 |
Sodium (mEq/L, median [Q1, Q3]) | 141.5 [140, 143] | 141 [140, 143] | 142 [138.8, 143] | 0.5323 |
Potassium (mEq/L, median [Q1, Q3]) | 4.3 [4, 4.7] | 4.4 [4.1, 4.7] | 4.2 [4, 4.8] | 0.4111 |
Phosphorus (mg/dL, median [Q1, Q3]) | 3.4 [3.1, 3.9] | 3.1 [2.8, 4] | 3.5 [3.3, 3.9] | 0.0903 |
Calcium (mg/dL, median [Q1, Q3]) | 9.1 [8.8, 9.3] | 9 [8.7, 9.5] | 9.2 [8.9, 9.3] | 0.5678 |
Intact PTH (pg/mL, median [Q1, Q3]) | 195 [140, 244] | 171 [135, 244] | 211 [143.3, 323.8] | 0.7133 |
Bicarbonate (mEq/L, median [Q1, Q3]) | 19.6 [18, 23.9] | 19.5 [18.3, 24.0] | 20.6 [16.5, 24.9] | 0.9431 |
U-Prot (g/gCre, median [Q1, Q3]) | 0.33 [0.15, 0.57] | 0.33 [0.19, 0.56] | 0.34 [0.12, 0.63] | 0.8601 |
HbA1c (%, median [Q1, Q3]) | 5.5 [5.2, 5.9] | 5.7 [5.4, 6.0] | 5.3 [4.8, 5.8] | 0.1244 |
Concomitant drugs | ||||
Antihypertensive Agents (%) | 36 (65.5) | 23 (92) | 13 (43.3) | 0.0002 |
ARB and or ACEI (%) | 26(47.3) | 16 (64) | 10 (33.3) | 0.0223 |
Calcium Channel Blockade (%) | 19 (34.5) | 12 (48) | 7 (23.3) | 0.0872 |
Others (%) | 11 (20) | 8 (32) | 3 (10) | 0.0876 |
Antihyperuricemic Agents (%) | 15 (27.3) | 14 (56) | 1 (3.3) | <0.0001 |
Antidyslipidemic Agents (%) | 4 (7.3) | 3 (12) | 1 (3.3) | 0.3198 |
Statin (%) | 3 (5.5) | 2 (8) | 1 (3.3) | 0.5855 |
Others (%) | 1 (1.8) | 1 (4) | 0 (0) | 0.4545 |
Diuretics (%) | 7 (12.7) | 2 (8) | 5 (16.7) | 0.4363 |
Antiplatelets (%) | 2(3.6) | 0 | 2 (6.7) | 0.4949 |
EPA or DHA (%) | 3 (5.5) | 2 (8) | 1 (3.3) | 0.5855 |
ESAs (%) | 4 (7.3) | 2 (8) | 2 (6.7) | 1.0000 |
Irons (%) | 0 (0.0) | 0 (0) | 0 (0) | 0 |
Tolvaptan (%) | 0 (0.0) | 0 (0) | 0 (0) | 0 |
Comorbidities | ||||
Hypertension (%) | 39 (70.9) | 23 (100) | 16 (53.3) | < 0.0001 |
Hyperuricemia (%) | 27 (49) | 21 (84) | 6 (20) | < 0.0001 |
Dyslipidemia (%) | 22 (40) | 13 (52) | 9 (30) | 0.0973 |
Diabetes (%) | 2 (3.6) | 2 (8) | 0 | 0.2020 |
Variables | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
Hazard Ratio (95% CI) | p–Value | Hazard Ratio (95% CI) | p-Value | |
Age (1 year increase) | 1.04 (1.01–1.08) | 0.0221 | 0.96 (0.90-1.02) | 0.1790 |
Men (vs. Women) | 1.28 (0.52–3.11) | 0.5851 | - | - |
SBP (10-mmHg increase) | 1.12 (0.83–1.48) | 0.4565 | - | - |
DBP (10-mmHg increase) | 0.96 (0.61–1.53) | 0.8732 | - | - |
MBP (10-mmHg increase) | 1.13 (0.74–1.70) | 0.5535 | - | - |
BMI (1 kg/m2 increase) | 1.05 (0.88–1.24) | 0.5655 | - | - |
PKD1 (vs. PKD2) | 3.61 (1.02–22.96) | 0.0468 | 0.59 (0.07–5.41) | 0.6221 |
eGFR (1-mL/min/1.73m2 increase) | 0.83 (0.76–0.89) | < 0.0001 | 0.82 (0.74–0.90) | < 0.0001 |
Phosphorus (1-mg/dL increase) | 4.61 (2.14–10.27) | 0.0001 | 6.78 (1.94–34.02) | 0.0021 |
U-Prot (1-g/g/Cre increase) | 1.69 (1.17–2.39) | 0.0104 | 1.92 (0.14–14.90) | 0.5869 |
Hypertension (vs. no) | 2.756e+9 (5.23-.) | < 0.0001 | - | - |
Hyperuricemia (vs. no) | 3.09 (1.23–8.75) | 0.0155 | 1.11 (0.28–4.89) | 0.8812 |
Dyslipidemia (vs. no) | 1.33 (0.55–3.25) | 0.5229 | - | - |
Diabetes (vs. no) | 1.462e-8(0-.) | 0.4043 | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, M.; Kataoka, H.; Ushio, Y.; Manabe, S.; Watanabe, S.; Akihisa, T.; Makabe, S.; Yoshida, R.; Iwasa, N.; Mitobe, M.; et al. High Serum Phosphate Level as a Risk Factor to Determine Renal Prognosis in Autosomal Dominant Polycystic Kidney Disease: A Retrospective Study. Medicines 2020, 7, 13. https://doi.org/10.3390/medicines7030013
Sato M, Kataoka H, Ushio Y, Manabe S, Watanabe S, Akihisa T, Makabe S, Yoshida R, Iwasa N, Mitobe M, et al. High Serum Phosphate Level as a Risk Factor to Determine Renal Prognosis in Autosomal Dominant Polycystic Kidney Disease: A Retrospective Study. Medicines. 2020; 7(3):13. https://doi.org/10.3390/medicines7030013
Chicago/Turabian StyleSato, Masayo, Hiroshi Kataoka, Yusuke Ushio, Shun Manabe, Saki Watanabe, Taro Akihisa, Shiho Makabe, Rie Yoshida, Naomi Iwasa, Michihiro Mitobe, and et al. 2020. "High Serum Phosphate Level as a Risk Factor to Determine Renal Prognosis in Autosomal Dominant Polycystic Kidney Disease: A Retrospective Study" Medicines 7, no. 3: 13. https://doi.org/10.3390/medicines7030013
APA StyleSato, M., Kataoka, H., Ushio, Y., Manabe, S., Watanabe, S., Akihisa, T., Makabe, S., Yoshida, R., Iwasa, N., Mitobe, M., Hanafusa, N., Tsuchiya, K., Nitta, K., & Mochizuki, T. (2020). High Serum Phosphate Level as a Risk Factor to Determine Renal Prognosis in Autosomal Dominant Polycystic Kidney Disease: A Retrospective Study. Medicines, 7(3), 13. https://doi.org/10.3390/medicines7030013